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Abstract In this research, an analytical solution based on the finite Hankel transformation was developed
for the magneto–thermoelasticity problem in an orthotropic hollow cylinder. Two second sound theories of
generalized thermoelasticity, the Lord–Shulman and Green–Lindsay theories, were considered in a unified
form to study the response of the cylinder subjected to thermal and mechanical loads, as well as a magnetic
field. The inner boundary of the cylinder was subjected to a thermal shock in the form of heat flux, while the
temperature was kept constant on the outer boundary. The displacement and traction boundary conditions were
considered for the inner and outer surfaces of the cylinder, respectively. Closed-from solutions were presented
for the magneto–thermoelasticity equations, and effects of the magnetic field intensity on the response of the
cylinder were investigated. It was shown that considering finite velocity for the temperature causes propagation
and reflection of the thermal wave in the cylinder. The impact of considering orthotropic material properties
for the structure was studied, and the results were compared with known data from the literature, revealing
strong agreement.

1 Introduction

Cylindrical elements and structures have a broad range of industrial applications. While metals and alloys with
isotropic material properties are widely utilized to manufacture mechanical components, new manufacturing
processes may change the mechanical properties of the materials during the process. For instance, parts created
using metal additive manufacturing experience complex thermal loads, potentially resulting in anisotropic
material properties which differ from those of parts manufactured using traditional methods [1]. Therefore,
investigating the effects of anisotropic material properties for the mechanical components appears to be a
crucial factor in the design process.

In classical thermoelasticity, which was developed based on Fourier’s heat conduction law, the second
derivative of temperature with respect to time does not exist, and the absence of this term in the heat conduction
equation implies that the temperature wave travels at infinite speed. While classical thermoelasticity can
successfully predict stress distribution for a wide range of engineering problems, its results deviate from actual
physical behavior of materials at temperatures near zero Kelvin or when subjected to thermal shocks [2]. To
address this problem and present more accurate predictions, second sound theories of thermoelasticity such as
Lord–Shulman and Green–Lindsay were proposed [3].

Typically, structures in real-world applications are subjected to various types of loads, such as thermal or
mechanical shocks, magnetic or electrical fields, or combination of these loads. For example, magneto–elec-
tro–elastic composites have various applications in energy harvesting, actuators and sensing devices [4]. In
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addition, a wide range of materials exhibit anisotropic properties. Taking this into account, solving the mag-
neto–thermoelasticity problem in anisotropic media, such as cylinders, has emerged as a topic of significant
interest. In this regard, Sherief and Ezzat [5] used Fourier series expansion to solve the problem of generalized
magneto–thermoelasticity in a long annular cylinder based on the Lord–Shulman theory. Zenkour and Abbas
[6] investigated the magneto–thermoelastic response of a functionally graded hollow cylinder using the finite
element method, and Hosseini and Dini [7] presented an analytical solution for the same problem in a rotating
functionally graded thick cylinder. Abd-El-Salam et al. [8] used finite difference method to address the magne-
to–thermoelasticity problem in a non-homogeneous isotropic cylinder based on the hyperbolic heat conduction
equation. Das et al. [9] studied the magneto–thermoelastic response of a transversely isotropic hollow cylin-
der subjected to a thermal shock using the Green–Naghdi type III thermoelasticity. The Laplace transform
and the Galerkin finite element method were used to solve the governing equations. Abbas [10] developed
the equations of generalized magneto–thermoelasticity in a nonhomogeneous hollow cylinder based on the
Green–Lindsay and Lord–Shulman theories. In a separate study, the same author [11] used the Lord–Shul-
man theory to investigate the magneto–thermoelastic interaction in a fiber–reinforced transversely isotropic
hollow cylinder. Abd-Alla and Mahmoud [12] used implicit finite difference method to study magneto–ther-
moelasticity of a rotating non-homogeneous orthotropic hollow cylinder, using the hyperbolic heat conduction
equation with one relaxation time. They also investigated the effects of rotation, inhomogeneity, and magnetic
field on the response of the cylinder. Biswas [13] employed the three–phase lag generalized thermoelasticity
and the eigenvalue approach to investigate the magneto–thermoelasticity problem in a transversely isotropic
hollow cylinder. Othman and Abbas [14] employed the finite element method and the Green–Naghdi theory
of type III to investigate the influence of rotation on the magneto–thermoelastic response of a homogeneous
isotropic hollow cylinder with energy dissipation. Said et al. [15] utilized the two-temperature fractional-order
thermoelasticity to study the effects of the magnetic field on the stress distribution of a rotating thick hol-
low cylinder using the harmonic wave technique. Ezzat and El-Bary [16] employed the Laplace transform to
analyze impacts of variable thermal conductivity on the stress and temperature distribution in a long hollow
cylinder, using generalized magneto–thermoelasticity based on fractional order heat conduction. Sherief and
Allam [17] studied 2-D electro–magneto interaction in an infinitely long solid cylinder using generalized elec-
tro–magneto–thermoelasticity with one relaxation time and employing the Laplace transform and the potential
functions. Patra et al. [18] employed finite difference method to study the magneto–thermoelastic response of
a nonhomogeneous isotropic rotating hollow cylinder, based on the Lord–Shulman and Green–Lindsay the-
ories. Akbarzadeh and Chen [19] presented an exact solution for thermo–magneto–electro–elastic responses
of rotating hollow cylinders. The problem had the steady state conditions, and both functionally graded and
homogeneous orthotropic material properties were considered for the cylinders. Othman studied the electro—
magneto–thermos–elastic behavior of an elastic half-space using different theories of thermoelasticity [20–22].
Othman and Abd-Elaziz [23] investigated the effect of rotation and gravitational field on a micropolar magne-
to–thermoelastic solid using the dual-phase lagmodel. Additionally, Othman et al. [24] employed five different
theories of thermoelasticity to study the effects of the magnetic field on the thermoelastic behavior of a rotating
medium.

In the context of the analytical solutions, due to the complicated equations of generalized thermoelasticity,
many approaches were developed based on classical thermoelasticity, owing to the complexity of the general-
ized thermoelasticity equations. In cylindrical coordinates, different problems involving both homogenous and
nonhomogeneous materials were solved [25–30]. Bagri and Eslami utilized the Galerkin finite element method
to solve the Lord–Shulman generalized thermoelasticity in isotropic [31] and functionally graded disks [32].
The same problem for an orthotropic rotating disk was solved by Sharifi [33]. Kiani and Eslami [34] used the
Generalized Differential Quadrature (GDQ) method to investigate thermally nonlinear generalized thermoe-
lasticity in disks, and Kiani and Zeverdejani [35] employed the same method to address a similar problem
for an exponentially graded disk. Tokovyy et al. [36] presented an analytical solution for the axisymmetric
thermoelasticity problem in a long solid cylinder with varying thermomechanical properties.

Bagri and Eslami [37] proposed a new unified formulation that included the Lord–Shulman, Green–Lind-
say and Green–Naghdi theories of generalized thermoelasticity. Sharifi [38] used a unified formulation of
generalized thermoelasticity, incorporating both the Lord–Shulman and Green–Lindsay theories to study the
dynamic response of an orthotropic hollow cylinder under thermal shock. The same problem in an orthotropic
hollow sphere investigated by Soroush and Soroush [39]. Othman and Abbas [40] studied the generalized
thermoelasticity of a non-homogeneous isotropic hollow cylinder based on the Green–Naghdi theory of type
II and III. Tiwari and Abouelregal [41] employed fractional-order Kelvin–Voigt thermoelasticity with three-
phase lag to investigate the behavior of a viscoelastic transversely isotropic rotating hollow cylinder under
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Fig. 1 Geometry of the problem

a thermal load and a magnetic field. The problem was solved using the Laplace transform and the effects
of considering elastic and viscoelastic materials were studied. Additionally, other types of materials, such as
porothermoelastic [42] and Cosserat media [43], were investigated using different thermoelasticity theories.

To the best knowledge of the author, the problem of generalized magneto–thermoelasticity in orthotropic
cylinders based on the Lord–Shulman and Green–Lindsay theories has not been solved analytically yet. In
this research, an orthotropic hollow cylinder subjected to mechanical and thermal loads, as well as a magnetic
field, was considered and the equations of generalized magneto–thermoelasticity based on the Lord–Shulman
and Green–Lindsay theories were extracted, and the closed-form solutions were presented. Subsequently, the
problem of an orthotropic hollow cylinder subjected to a thermal shock in the form of heat flux on its inner
surface was investigated. Numerical results for different scenarios, including the effects of magnetic field
intensity and orthotropic material properties on the history and distribution of the stress components, were
illustrated in the figures. To validate the results of the presented solution, the special case of generalized
thermoelasticity based on the Lord–Shulman theory in an isotropic disk subjected to a thermal shock was
considered, and the history of temperature, displacement, the radial and hoop stress componentswere compared
with the results presented by Kiani and Eslami [34], showing a good agreement.

2 Governing equations

Consider an orthotropic cylinder with the inner and outer radii a and b, which is subjected to axisymmetric
thermal and mechanical loadings. The geometry of the problem is shown in Fig. 1.

Due to the symmetry in the boundary conditions and the geometry of the problem, the displacement compo-
nents in the circumferential and axial directions are zero, and the temperature and displacement distributions at
each point depend only on the radial position. Previously, unified equations of the generalized thermoelasticity
for this problem were presented in the following form [38]:
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where k is the thermal conduction coefficient in radial direction, ρ is the density, c is heat capacity, ci j are the
elastic constants and are defined as below:

c11 � (1 − ν23ν32)

1 − νt
E1, c12 � (ν21 + ν31ν23)

1 − νt
E1,

c22 � (1 − ν13ν31)

1 − νt
E2, c13 � (ν31 + ν21ν32)

1 − νt
E1,

c33 � (1 − ν12ν21)

1 − νt
E3, c23 � (ν32 + ν12ν31)

1 − νt
E2,

c44 � G23, c55 � G13, c66 � G12, (3)

νt � ν12ν21 + ν23ν32 + ν13ν31 + ν12ν23ν31 + ν21ν32ν13 (4)

νi j and Ei are Poisson’s ratios and Young’s moduli in different directions where 1, 2 and 3 correspond with r ,
ϕ and z directions, respectively. Also, we have:

β11 � c11αr + c12αϕ + c13αz (5)

β22 � c12αr + c22αϕ + c23αz (6)

β33 � c13αr + c23αϕ + c33αz (7)

Equations (1) and (2) comprise both Lord–Shulman and Green–Lindsay theories of thermoelasticity. These
equations reduce to the Lord–Shulman theory when t1 � 0 and t2 � t3, and if t3 � 0, the equations of the
Green–Lindsay theory can be obtained. Additionally, the relationship between stress and strain components
for orthotropic material properties in the polar coordinates (when t1 � 0) can be found in different references
such as [44]:
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(8)

where�T is the temperature variation,αr ,αϕ andαz are thermal expansion coefficients in threemain directions
of the cylinder. Also, we have:

θ � T (r , t) − T0 (9)

T0 is the reference temperature of the orthotropic cylinder. By considering axisymmetric boundary condi-
tions for the problem, all stress components become zero except σrr and σϕϕ . The strain components can be
expressed as a function of the radial displacement u as follows:

εrr � ∂u

∂r
, εϕϕ � u

r
, εϕz � εzr � εrϕ � 0 (10)

In addition, the radial stress (σrr ) and hoop stress (σθθ ) components are functions of the radial displacement
and the temperature, and can be obtained in the following form [3, 45]:
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Now consider the orthotropic hollow cylinder is subjected to a constant magnetic field in the Z direction
with H0 intensity, which induces a magnetic field

−→
h and an electric field

−→
E . With slow movement of the
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cylinder in the magnetic field, the Lorentz force is applied to the cylinder. The equation of this force in polar
coordinate was presented by Karimipour Dehkordi1and Kiani [46]:
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where ε0 and μ0 are electric permittivity and magnetic permeability, respectively, and induced magnetic and
electric fields can be calculated using the following formulas [46]:
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)
(15)

By inserting Eq. (13) into Eqs. (1) and (2), the equations of the generalized magneto–thermoelasticity in
an orthotropic hollow cylinder can be expressed in the following form:
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By considering the same materials properties in 1 and 2 directions, as is seen in Eqs. (16) and (17), these
equations reduce to the equations of magneto–thermoelasticity for an isotropic hollow cylinder [46].

To define the boundary conditions for the problem, the heat flux and temperature itself were considered
for the inner and the outer boundaries of the cylinder in the form of time-dependent functions:

−k
∂θ

∂r
|r�a � f (t) (18)

θ(b, t) � g(t) (19)

Also, the thermal initial conditions of the orthotropic cylinder are:

θ(r , 0) � F1(r) (20)

θ̇ (r , 0) � F2(r) (21)

where F1(r) and F2(r) are arbitrary functions of the radial position and the superscript dot denotes the partial
derivative of the variable with respect to time. For the mechanical boundary conditions, the displacement and
traction are applied on the inner and the outer surfaces of the cylinder, respectively:

u(a, t) � P1(t) (22)

σrr (b, t) � P2(t) (23)

where P1(t) and P2(t) are arbitrary time-dependent functions. By substituting Eq. (11) in (23), we will have:
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c11
g(t) (26)

The mechanical initial conditions for the problem can be expressed as general functions of the radial
position, as follows:

u(r , 0) � F3(r) (27)

u̇(r , 0) � F4(r) (28)
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3 The method of solution

To simplify the equations, the following parameters were considered to convert the problem into nondimen-
sional form [46]:

r̂ � c0ηr , t̂ � c20ηt , t̂1 � c20ηt1, t̂2 � c20ηt2, t̂3 � c20ηt3
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c0 is the velocity of the elastic wave propagation in the medium in the absence of the magnetic field. By
applying the nondimensional parameters to Eqs. (14) to (17), and omitting the hat sign for convenience, the
nondimensional equations of unified generalizedmagneto–thermoelasticity in the orthotropic cylinder become:
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Coefficient C1 is the thermomechanical coupling coefficient, and D shows the effect of considering the
orthotropic material properties for the cylinder. It can be seen that by considering the same values for the
material properties in all directions, coefficients D and ν2 equal 1, which reduces the orthotropic cylinder
equations to those for an isotropic cylinder. Also, given the parameters from Eq. (29), the thermal boundary
and initial conditions, i.e. Equations (18) to (21), appear as follows:

∂θ

∂r
|r�a � − f (t)αr

kc0η
(36)

θ(b, t) � g(t)αr (37)

θ(r , 0) � F1(r)αr (38)

θ̇ (r , 0) � F2(r)αr
c20η

(39)

And for the mechanical boundary and initial conditions, we have:

u(a, t) � c0ηP1(t) (40)

∂u

∂r
|r�b + h2u(b, t) � B2(t) (41)

u(r , 0) � c0ηF3(r) (42)
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u̇(r , 0) � F4(r)

c0
(43)

As is seen, Eqs. (33) and (34) are coupled and should be solved simultaneously. By employing the method
developed by Shahani and Momeni [47], Eqs. (33) and (34) can be separated into two homogeneous and
nonhomogeneous boundary value problems. The boundary conditions are considered to solve the homogeneous
equations, and the nonhomogeneous equations, which contain thermo–mechanical coupling terms, should be
solved by considering the initial conditions of the problem. The final solutions for the temperature and the
displacement fields are the summation of the homogeneous and nonhomogeneous solutions. Accordingly, to
solve the unified generalized magneto–thermoelasticity equations, θ(r , t) and u(r , t) are resolved into two
components:

u(r , t) � u1(r , t) + u2(r , t) (44)

θ(r , t) � θ1(r , t) + θ2(r , t) (45)

By applying Eq. (45), the boundary value problem related to Eqs. (18)–(21) are separated into the following
two boundary value problems:
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In the same way, Eq. (34) can be resolved into the following boundary value problems by applying the
Eq. (44):
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u2(a, t) � 0 (62)

∂u2
∂r

|r�b + h2u2(b, t) � 0 (63)

u2(r , 0) � c0ηF3(r) (64)
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(65)

The Eqs. (46) to (50) and (56) to (60) and can be solved using the finite Hankel transform [48]:

H [θ1(r , t); ζn] � θ1(ζn , t) �
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rθ1(r , t)K1(ζn , r)dr (66)
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a
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where K1(ζn , r) and K2(ξm , r) are the kernels of the transformation. The appropriate kernels for the transfor-
mation depend on the general form of the equations and the considered boundary conditions for the problem.
For the present problem, the kernels of the transformations are defined as follows [48, 49]:
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The inverses of transformations are defined in the following equations:
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in which
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Applying the finite Hankel transform to the Eqs. (46) and (56), results in:

t2
∂2θ1

∂t2
+

∂θ1

∂t
+ ζ 2

n θ1(ζn , t) �
[
2

π
g(t) − 2J0(ζnb)

πζnJ′0(ζna)
f (t)

]
� A1(t) (77)

∂2u1(ξm , t)

∂t2
+

(
ξm

γ

)2

u1(ξm , t) � 1

γ 2

[
2Jν(ξma)

πe2
B2(t) − 2

π
B1(t)

]
� A2(t) (78)



Magneto–thermoelastic behavior of an orthotropic hollow cylinder 4871

By comparing Eqs. (56) and (78), it can be seen that both sides were divided by αA, and for the new
parameter γ , we have:

γ �
√

αA

βA
(79)

Solutions for Eqs. (77) and (78), which are non-homogeneous ordinary differential equations, can be
obtained in the following form:

θ1(ζn , t) � 2

�

t∫
0

A1(τ )e
−1
2t2

(t−τ)sin

(
�

2t2
(t − τ)

)
dτ (80)

u1(ξm , t) � γ

ξm

t∫
0

A2(τ ) sin

(
γ

ξm
(t − τ)

)
dτ (81)

where � � √
4t2ζ 2

n − 1. Using the inversion relations of the transformation for Eqs. (72) and (73), we have:

θ1(r , t) �
∞∑
n�1

anK1(r , ζn)
2

�

∫ t

0
A1(τ )e

−1
2t2

(t−τ)sin

(
(t − τ)

�

2t2

)
dτ (82)

u1(r , t) �
∞∑

m�1

γ

ξm
bmK2(r , ξm)

∫ t

0
A2(τ )sin

(
γ

ξm
(t − τ)

)
dτ (83)

As is seen, Eqs. (82) and (83) are the solution of the homogeneous parts of the equations. To solve the
nonhomogeneous set of the equations the following forms can be considered for θ2(r , t) and u2(r , t) [47]:

θ2(r , t) �
∞∑
n�1

Q(t)K1(r , ζn) (84)

u2(r , t) �
∞∑

m�1

S(t)K2(r , ξm) (85)

where Q(t) and S(t) are functions of time that should be calculated. It is worth noting that, the considered forms
for θ2(r , t) and u2(r , t) satisfy the related boundary conditions, hence (52), (53) and (62), (63). Substituting
Eqs. (72), (73) and (84) and (85) yields:

(
t2 Q̈ + Q̇ + ζ 2

n Q
)
K1(r , ζn) � −C1

[
bmu̇1 + Ṡ + t3

(
bmü1 + S̈

)][(∂K2(r , ξm)

∂r

)
+ D

(
K2(r , ξm)

r

)]
(86)

(
γ 2 S̈ + ξ2mS

)
K2(r , ξm) � −C2

βA

[
anθ1 + Q + t1

(
an θ̇1 + Q̇

)][∂K1(r , ζn)

∂r
+
1

r
(1 − D)K1(r , ζn)

]
(87)

Using the orthogonal property of Bessel functions we have:
∫ b

a
r K1(r , ζn)K1

(
r , ζp

)
dr � Nnδnp (88)

∫ b

a
r K2(r , ξm)K2

(
r , ξp

)
dr � Mmδmp (89)

where δ is the Kronecker delta and:

Nn � π2

2

ζ 2
n {J′0(ζna)}2

{J′0(ζna)}2 − {J0(ζnb)}2 (90)

Mm � π2ξ2me
2
2

2{(Jν(ξma))2}(h22 + ξ2m[1 − ( ν
ξmb

)2]) − e22
(91)
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e2 is defined in Eq. (76). Multiplying Eqs. (86) and (87) by r K1(r , ζn) and r K2(r , ξm) respectively, integrating
between a and b, and then using the orthogonality relations, leads to:

t2 Q̈ + Q̇ + ζ 2
n Q �

⎧⎨
⎩−

C1
∫ b
ar K1(r , ζn)

[(
∂K2(r ,ξm)

∂r

)
+ D

(
K2(r ,ξm)

r

)]
dr

Nn

⎫⎬
⎭
(
bmu̇1 + Ṡ + t3

(
bmü1 + S̈

))
(92)

S̈ +

(
ξm

γ

)2

S � C2

βA

⎧⎨
⎩−

∫ b
ar K2(r , ξm)

[
∂K1(r ,ζn)

∂r + 1
r (1 − D)K1(r , ζn)

]
dr

Mm

⎫⎬
⎭
[
anθ1 + Q + t1

(
an θ̇1 + Q̇

)]

(93)

The following parameters are defined for convenience:

U1 �
⎧⎨
⎩−

∫ b
ar K1(r , ζn)

[(
∂K2(r ,ξm)

∂r

)
+ D

(
K2(r ,ξm)

r

)]
dr

Nn

⎫⎬
⎭ (94)

U2 � C2

γ 2βA

⎧⎨
⎩−

∫ b
ar K2(r , ξm)

[
∂K1(r ,ζn)

∂r + 1
r (1 − D)K1(r , ζn)

]
dr

Mm

⎫⎬
⎭ (95)

Now, Eqs. (92) and (93) can be written in the following forms:

t2 Q̈ + Q̇ + ζ 2
n Q � C1U1

((
bmu̇1 + Ṡ

)
+ t3

(
bmü1 + S̈

))
(96)

S̈ +

(
ξm

γ

)2

S � U2

((
anθ1 + Q

)
+ t1

(
an θ̇1 + Q̇

))
(97)

By substituting Eq. (54) and (55) into (84), the appropriate form for the initial conditions of the problem
can be obtained as:

Q(0)K1(r , ζn) � F1(r) (98)

Q̇(0)K1(r , ζn) � F2(r) (99)

Applying the orthogonality relation, Eq. (88), to Eqs. (98) and (99) leads to:

Q(0) �
∫ b
ar K1(r , ζn)F1(r)dr

Nn
(100)

Q̇(0) �
∫ b
ar K1(r , ζn)F2(r)dr

Nn
(101)

The initial conditions for the nonhomogeneous part of the displacement equation, i.e. S(t), can be obtained
in the same manner:

S(0) �
∫ b
ar K2(r , ξm)F3(r)dr

Mm
(102)

Ṡ(0) �
∫ b
ar K2(r , ξm)F4(r)dr

Mm
(103)

It can be seen that Eqs. (96) and (97) are coupled, but they can be uncoupled by performing some mathe-
matical operations [38]. Differentiating Eqs. (96) and (97) with respect to time leads to:

t2
...
Q + Q̈ + ζ 2

n Q̇ � C1U1
((
bm ¨̄u1 + S̈

)
+ t3

(
bm ¨̄u1 + ...

S
))

(104)

...
S +

(
ξm

γ

)2

Ṡ � U2

((
an θ̇1 + Q̇

)
+ t1

(
an θ̈1 + Q̈

))
(105)

t2Q
(4) +

...
Q + ζ 2

n Q̈ � C1U1

((
bm

...

ū1 +
...
S
)
+ t3

(
bmū

(4)
1 + S(4)

))
(106)
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S(4) +

(
ξm

γ

)2

S̈ � U2

((
an

¨̄θ1 + Q̈
)
+ t1

(
an

...

θ̄1 +
...
Q

))
(107)

Substituting Q̈and
...
Q from Eqs. (96) and (97) in the Eq. (107) results in:

S(4) +

(
ξm

γ

)2

S̈ �U2

{
an θ̈1 +

1

t2
C1U1

[(
bmu̇1 + Ṡ

)
+ t3

(
bmü1 + S̈

)]− 1

t2
Q̇ − 1

t2
ζ 2
n Q

+t1

(
an
...
θ 1 +

1

t2
C1U1

[(
bmü1 + S̈

)
+ t3

(
bm

...
u 1 +

...
S
)]− 1

t2
Q̈ − 1

t2
ζ 2
n Q̇

)}
(108)

By ordering the above equation and separating Q and Q̇terms we will have:

S(4) +

(
ξm

γ

)2

S̈ �U2

{
an θ̈1 +

1

t2
C1U1

[(
bmu̇1 + Ṡ

)
+ t3

(
bmü1 + S̈

)]

+t1

(
an
...
θ 1 +

1

t2
C1U1

[(
bmü1 + S̈

)
+ t3

(
bm

...
u 1 +

...
S
)])− 1

t2

(
Q̇ + t1 Q̈

)− ζ 2
n

t2

(
Q + t1 Q̇

)}

(109)

Now, by substituting Q + t1 Q̇and Q̇ + t1 Q̈from Eqs. (97), and (105), into Eq. (109) we have:

t2S
(4) + [1 − C1U1U2t1t3]

...
S +

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

]
S̈

+

[(
ξm

γ

)2

− C1U1U2

]
Ṡ +

(
ξm

γ

)2

ζ 2
n S

� U2

[
an
(
t2θ̈1 + θ̇1 + ζ 2

n θ1

)
+ ant1

(
t2
...
θ 1 + θ̈1 + ζ 2

n θ̇1

)
+ C1U1bm

(
u̇1 + t3ü1

)
+ t1C1U1bm

(
ü1 + t3

...
u 1
)]

(110)

As is seen, the above equation is independent of Q and can be solved individually. Substituting S(4)from
Eq. (107) into Eq. (106) yields:

t2Q
(4) +

...
Q + ζ 2

n Q̈ �C1U1

{
bm

...
u 1 +U2

[(
an θ̇1 + Q̇

)
+ t1

(
an θ̈1 + Q̈

)]

+t3
(
bmu

(4)
1 +U2

[(
an θ̈1 + Q̈

)
+ t1

(
an
...
θ 1 +

...
Q
)])

−
(

ξm

γ

)2(
Ṡ + t3 S̈

)}
(111)

Now, by substituting Ṡ + t3 S̈from Eq. (96) into Eq. (111) we have:

t2Q
(4) + [1 − C1U1U2t1t3]

...
Q +

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

]
Q̈

+

[(
ξm

γ

)2

− C1U1U2

]
Q̇ +

(
ξm

γ

)2

ζ 2
n Q

� C1U1

{
bm

(
...
u 1 +

(
ξm

γ

)2

u̇1

)
+ t3bm

(
u(4)
1 +

(
ξm

γ

)2

ü1

)
+U2an

[(
θ̇1 + t1θ̈1

)
+ t3

(
θ̈1 + t1

...
θ 1

)]}

(112)

Substituting A1(t)and A2(t)from Eqs. (77) and (78) into Eqs. (110) and (112) results in:

t2
d4S

dt4
+ [1 − C1U1U2t1t3]

d3S

dt3
+

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

]
d2S

dt2



4874 H. Sharifi

+

[(
ξm

γ

)2

− C1U1U2

]
dS

dt
+

(
ξm

γ

)2

ζ 2
n S

� U2
{
an
[
A1(t) + t1 Ȧ1(t)

]
+ C1U1bm

[(
u̇1 + t1ü1

)
+ t3

(
ü1 + t1

...
u 1
)]}

(113)

t2
d4Q

dt4
+ [1 − C1U1U2t1t3]

d3Q

dt3
+

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

]
d2Q

dt2

+

[(
ξm

γ

)2

− C1U1U2

]
dQ

dt
+

(
ξm

γ

)2

ζ 2
n Q

� C1U1

{
bm
(
Ȧ2(t) + t3 Ä2(t)

)
+U2an

[(
θ̇1 + t1θ̈1

)
+ t3

(
θ̈1 + t1

...
θ 1

)]}
(114)

As is seen, Eqs. (113) and (114) are ordinary differential equations, and Q(t , ζn) and S(t , ξm) can be
obtained by solving these equations. The solutions of the Eqs. (113) and (114), depend on the initial conditions
of the problem; therefore, final solutions for Q(t) and S(t) are presented in the numerical example and
discussion section. Now, the solutions for both parts of θ(r , t) and u(r , t) are obtained and the closed-form
relations for temperature and displacement are summation of these parts:

θ(r , t) �
∞∑
n�1

anθ1(t)K1(r , ζn) +
∞∑

m�1

∞∑
n�1

Q(t)K1(r , ζn) (115)

u(r , t) �
∞∑

m�1

bmu1(t)K2(r , ξm) +
∞∑

m�1

∞∑
n�1

S(t)K2(r , ξm) (116)

It is important to note that the presented method in this work can be employed to address a wide range of
problems associated with different types of boundary conditions, including Cauchy, Neumann and Dirichlet,
for both the heat conduction equation and the equation of motion.

4 Numerical example and discussion

To investigate the magneto–thermoelastic response of the orthotropic cylinder subjected to a thermal shock
and a magnetic field, the following material properties are considered:

a � 1 m, b � 2 m, T0 � 298.15

k � 0.5 W/mK, ρ � 2707 kg/m3, c � 263
J

kg K
E11 � 19.8 GPa, E22 � 48.3 GPa, E33 � 19.8 GPa, G12 � 8.9 GPa

G23 � 8.9 GPa, G31 � 6.19 GPa, ν12 � 0.27, ν23 � 0.27, ν31 � 0.3

α11 � 15 × 10−6 1/K , α22 � 23 × 10−6 1/K , α33 � 15 × 10−6 1/K

ε0 � 8.854 × 10−12 F/m, μ0 � 4π × 10−7 H/m

The inner boundary of the orthotropic cylinder is constrained and subjected to a constant heat flux, while
the outer boundary is traction-free with its temperature remaining constant. The thermal and the mechanical
boundary conditions for this problem are:

−∂θ

∂r
|r�a � qin (117)

θ(b, t) � 0 (118)

u(a, t) � 0 (119)

σrr (b, t) � ∂u

∂r
|r�b + h2u(b, t) � 0 (120)
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Also, the thermal and mechanical initial conditions are:

θ(r , 0) � 0 (121)

θ̇ (r , 0) � 0 (122)

u(r , 0) � 0 (123)

u̇(r , 0) � 0 (124)

Thus, we have:

Q(0) � 0 (125)

Q̇(0) � 0 (126)

S(0) � 0 (127)

Ṡ(0) � 0 (128)

Using the thermal boundary conditions and Eq. (77) leads to:

A1(t) � 2J0(ζnb)

πζnJ′0(ζna)
qin (129)

θ1(ζn , t) � 4

�

J0(ζnb)

πζnJ′0(ζna)

t∫
0

qin(τ )e
−1
2t2

(t−τ)sin

(
(t − τ)

�

2t2

)
dτ (130)

Using the mechanical boundary conditions and Eq. (26) we will have:

B2 � 0 (131)

A2(t) � 0 (132)

Substituting Eq. (132) into Eq. (81) gives:

u1(ξm , t) � 0 (133)

Substituting Eqs. (130) and (133) into Eqs. (82) and (83) gives:

θ1(r , t) �
∞∑
n�1

an
4

�

J0(ζnb)

πζnJ′0(ζna)

2qin
�
(
�2 + 1

)
(

�t2 − t2 exp

(
− t

2t2

)[
sin

(
�t

2t2

)
+ � cos

(
�t

2t2

)])
K1(r , ζn)

(134)

u1(r , t) � 0 (135)

Therefore, Eqs. (113) and (114) give the following equations:

(136)

t2
d4S

dt4
+ [1 − C1U1U2t1t3]

d3S

dt3
+

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − Ct1U1U2

]
d2S

dt2

+

[(
ξm

γ

)2

− C1U1U2

]
dS

dt
+

(
ξm

γ

)2

ζ 2
n S � U2

[
an

2J0 (ζnb)

πζnJ′0 (ζna)

]

(137)

t2
d4Q

dt4
+ [1 − C1U1U2t1t3]

d3Q

dt3
+

[
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

]
d2Q

dt2

+

[(
ξm

γ

)2

− C1U1U2

]
dQ

dt
+

(
ξm

γ

)2

ζ 2
n Q � C1U1

{
U2an

[(
θ̇1 + t1θ̈1

)
+ t3

(
θ̈1 + t1

...

θ
1

)]}
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Terms θ̇1, θ̈1 and
...

θ
1
can be calculated by differentiating Eq. (130). The solution of Eq. (136) can be obtained

in the following form:

S(t) � 2qinU2anJ0(ζnb)

π
(

ξm
γ

)2
ζ 3
n J

′
0(ζna)

+
4∑

i�1

ci e
αi t (138)

Q(t) can be calculated using S(t) and Eqs. (96), (97), (104) and (105) in the following form:

Q(t) � Z1
d3S

dt3
+ Z2

d2S

dt2
+ Z3

dS

dt
+ Z4S − t2 − t1

t21 ζ 2
n + t2 − t1

anθ1 (139)

where:

Z1 � − t1t2
U2
(
t21 ζ 2

n + t2 − t1
) (140)

Z2 � −−t21C1U1U2t3 − t2 + t1
U2
(
t21 ζ 2

n + t2 − t1
) (141)

Z3 � −
t1t2

(
ξm
γ

)2 − t21C1U1U2

U2
(
t21 ζ 2

n + t2 − t1
) (142)

Z4 � −
−(t2 − t1)

(
ξm
γ

)2
U2
(
t21 ζ 2

n + t2 − t1
) (143)

Substituting Eq. (138) into Eq. (139) leads to:

Q(t) � Z4
2qinU2anJ0(ζnb)

π
(

ξm
γ

)2
ζ 3
n J

′
0(ζna)

− t2 − t1
t21 ζ 2

n + t2 − t1
anθ1 +

4∑
i�1

(
Z1α

3
i + Z2α

2
i + Z3αi + Z4

)
ci e

αi t (144)

where αi ’s are the roots of following characteristic equation:

(145)

t2x
4 + (1 − C1U1U2t1t3) x

3 +

(
t2

(
ξm

γ

)2

+ ζ 2
n − C1t3U1U2 − C1t1U1U2

)
x2

+

((
ξm

γ

)2

− C1U1U2

)
x +

(
ξm

γ

)2

ζ 2
n � 0

Also, the ci can be obtained using Eqs. (125) to (128).

⎛
⎜⎝
c1
c2
c3
c4

⎞
⎟⎠ �

⎛
⎜⎝

1 1 1 1
α1 α2 α3 α4
Y1 Y2 Y3 Y4

α1Y1 α2Y2 α3Y3 α4Y4

⎞
⎟⎠

−1⎛
⎜⎝

R1
0
R2
0

⎞
⎟⎠ (146)

where:

Y1 � Z1α
3
1 + Z2α

2
1 + Z3α1 + Z4 (147)

Y2 � Z1α
3
2 + Z2α

2
2 + Z3α2 + Z4 (148)

Y3 � Z1α
3
3 + Z2α

2
3 + Z3α3 + Z4 (149)

Y4 � Z1α
3
4 + Z2α

2
4 + Z3α4 + Z4 (150)
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Fig. 2 Comparison between the results of the current study and the GDQ results presented byKiani and Eslami [34] for the history
of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress at the mid-radius of the isotropic
stationary disk based on the Lord–Shulman theory. t2 � 0, t2 � t3 � 0.64, qi � 3 and C1 � 0.0082594

and:

R1 � − 2qinU2anJ0(ζnb)

π
(

ξm
γ

)2
ζ 3
n J

′
0(ζna)

, R2 � − (t2 − t1)(
t21 ζ 2

n + t2 − t1
) 2qinanJ0(ζnb)

πζ 3
n J

′
0(ζna)

(151)

To validate the accuracy of the presented solution in the current work, the special case of an isotropic disk
subjected to a thermal shock based on the Lord–Shulman was considered [34]. The isotropic cylinders are
specific form of the orthotropic ones where the material properties are same in all directions. Furthermore,
the presented solution in this work was developed based on the elastic constants and it can be utilized to
study the response of the disks by employing plane stress relations in Eq. (3). Figure 2 presents the history
of nondimensional temperature, nondimensional radial displacement, nondimensional radial stress and nondi-
mensional hoop stress in an isotropic disk based on the Lord–Shulman theory at r � 1.5. For these plots,
t2 � 0, t2 � t3 � 0.64, qi � 3 and C1 � 0.0082594 were considered. It can be seen that reducing the current
problem to the special case of the isotropic material leads to good agreement with the presented results by
Kiani and Eslami [34], using the GDQ method.

Figure 3 shows the through-thickness distribution of the nondimensional temperature, nondimensional
radial displacement, nondimensional radial and hoop stresses and nondimensional induced magnetic and
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electric fields for the orthotropic cylinder based on the Lord–Shulman theory at t � 0.5. As seen in Fig. 3a,
applying a magnetic field with higher intensity does not change the distribution of the temperature. Although
applying the magnetic field does not change the velocity of the temperature wave, considering Eqs. (16) and
(17), it is evident that the effect of applying magnetic fields appears in the displacement equation. This change
in the displacement field reflects in the heat conduction equation through the coupling term, C1. Since the
coupling term for the orthotropic cylinder is smaller than the isotropic one (Cisotropic � 0.0082 compared to
Corthotropic � 0.0036), the effect of applying the magnetic field cannot be detected in the figures related to
the temperature distribution.

As it is depicted in Fig. 3b, increasing the intensity of the magnetic field reduces the magnitude of the
displacement. The velocity of the displacement wave can be calculated using the following formula:

Ve �
√

βA

αA
�

√√√√√ 1 +
μ0H2

0
c11

1 +
ε0μ

2
0H

2
0

ρ

(152)

As is seen, while for the H0 � 1
4π ∗107 the velocity of the propagated elastic wave equals 1.000014, for the

case of H0 � 1
4π ∗ 109 it increases to 1.133792. This indicates that the elastic wave reaches radial positions at

earlier times for higher intensities of the applied magnetic field. This phenomenon can be observed in Fig. 3c,
d where nondimensional radial and hoop stresses were plotted at t � 0.5. At this moment, the peak values
for the lower intensity of the magnetic field are behind those related to the higher intensity. As indicated by
Eqs. (33) and (34), induced magnetic and electrical fields are functions of the displacement, therefore and as
illustrated in Fig. 2e, f, both variables decrease for the higher value of the applied magnetic field.

Figure 4 depicts the history of nondimensional temperature, radial displacement, radial stress and hoop
stress for different radial positions. As is seen in Fig. 4a, a sudden change happens in the temperature at initial
moments of applying thermal shock which is a consequence of considering finite speed for the temperature
wave. The velocity of the propagated temperature wave can be obtained using the following equation:

Vt �
√

1

t2
� 1.00 (153)

The effects of the boundary conditions on the propagation and the reflection of the stress wave can be
seen in Fig. 4c, d. The generated dilatation wave at the inner surface of the cylinder propagates forward into
the medium and upon reaching the outer surface, it reflects back into the medium in the opposite direction,
adhering to the traction-free boundary condition (Cauchy boundary condition) imposed on the outer surface of
the cylinder. Conversely, displacement-type boundary condition (Dirichlet boundary condition), on the inner
boundary leads to the reflection in the same direction. It is important to note that, due to lumped assumption in
the flexural components such as beams, plates and shells, the temperature and stress wave fronts do not appear
in these components by applying thermal shocks [3].

Figure 5 illustrates the through-thickness distributions of nondimensional temperature, displacement, radial
and hoop stresses and magnetic and electric fields for different times based on the Lord–Shulman theory. As
it can be seen in Fig. 5a, at r � 1, temperature wave initiates at about 0.4 and goes to zero at mid radius of the
cylinder which indicates that wave front is at r � 1.5 at Time� 0.5. Additionally, at Time� 1, the temperature
wave front reaches r � 2, which is consistent with the considered velocity (t2 � t3 � 1) for the temperature
wave. Figure 5b shows that the constrained boundary condition on the inner surface of the cylinder leads to
outward expansion. As it was indicated in Eq. (120), the outer surface of the cylinder is traction-free, and this
can be seen in Fig. 5c, where the radial stress is zero at r � 2 for different times.

The elastic wave fronts for the radial and hoop stresses can be observed in Fig. 5c, d. For example, at Time
� 0.5, the elastic wave is at r � 1.5, and before this moment, both stress components are zero. Similarly, at
Time � 1.5, the reflected wave from the outer boundary can be observed re-entering the cylinder, but with a
reversed sign. Similarly, as depicted in Fig. 5e, f, induced magnetic and electric waves reach all radial positions
concurrently with the elastic wave.

Figure 6 illustrates the history of nondimensional temperature, radial displacement, radial and hoop stresses
based on the Green–Lindsay theory. As is seen in Fig. 6a, as time passes, steep jump in the temperature
disappears, and the temperature becomes steady at the mid-radius of the cylinder after Time � 4, which is the
result of the increasing the temperature of the medium. In addition, the steep jump in the stress components
histories at the initial moments of applying thermal shock is clearly shown in these figures. Considering Eqs.
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Fig. 3 Through-thickness distribution of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress
e) induced magnetic field f) induced electric field at t � 0.5 for the orthotropic cylinder based on the Lord–Shulman theory.
t1 � 0, t2 � t3 � 1, qi � 1
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Fig. 4 History of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress for the orthotropic
cylinder based on the Lord–Shulman theory. t1 � 0, t2 � t3 � 1, qi � 1

(11) and (12), the temperature gradient term exists in both radial and hoop stress components and a steep
jump can be seen when the thermal wave reaches any radial position. The effect of boundary conditions on
the reflection of the propagated elastic wave is clearly shown in Fig. 6c, d, where the traction-free boundary
condition at the outer surface changes the sign of the reflected wave, while the constrained boundary condition
at the inner surface reflects the wave with the same sign. As it can be seen in the figures, the radial and hoop
stresses are compressive at initial moments and by passing the time both change to the tensile due to the
traction-free boundary condition on the outer boundary.

By comparing Figs. 4a and 6a, it can be noted that the histories of the nondimensional temperature are
similar for both theories but with different peaks. This difference is due to considering different values for the
relaxation times in the Lord–Shulman and Green–Lindsay models. Increasing the value of the relaxation time
results in a reduction in the velocity of the temperature wave, which requires more time for the temperature
wave to reach its peak point. From the figures, by decreasing the relaxation time from 1.00 to 0.64 (the velocity
of thermal wave increases from 1.00 to 1.25), the amplitude of steep jump decreases.

Figure 7 shows through-thickness variation of the nondimensional temperature, displacement, radial and
hoop stresses, and induced magnetic and electric fields. The stress wave front at different times can be detected
in this figure. As is seen in Fig. 7a, at Time � 0.5 the temperature wave front is at r � 1.625, and the
thermoelastic wave front can be observed on Fig. 7b–d. As mentioned earlier, applying the magnetic field
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Fig. 5 Through-thickness distribution of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress
e) induced magnetic field f) induced electric field at different times for the orthotropic cylinder based on the Lord–Shulman
theory. t1 � 0, t2 � t3 � 1, qi � 1
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Fig. 6 History of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress for the orthotropic
cylinder based on the Green–Lindsay theory. t1 � t2 � 0.64, t3 � 0, qi � 1

increases the velocity of the thermoelastic wave propagation to 1.133792, and this moves the positions of steep
jumps forward. Similar to the results from the Lord–Shulman theory, the induced magnetic and electric fields
exhibit behaviors that parallel the stress wave, and as is seen in Fig. 7, the jumps occur simultaneously at every
radial position. Furthermore, the propagation and reflection of the induced magnetic and electric waves can
be observed in Fig. 7e, f. While the initiated wave from the inner surface of the cylinder has a negative sign,
the waves reflect back into the medium with a positive sign due to the traction-free boundary condition on the
outer surface of the cylinder. The time at which the wave front reaches the outer surface of the cylinder for the
first time can be calculated as follows:

t∗ � b − a

Ve
� 1

1.133792
� 0.881995 (154)

Figures 8 and 9 illustrate the effect of considering orthotropic material properties on the nondimensional
radial and hoop stress components. For the employed material properties in this work D � 0.9509. For the
isotropic materials, D � 1 and leads to the elimination of the sixth term on the left-hand side of the Eq. (34),
and consolidation of the last two terms on the left-hand side of the Eq. (33). To exhibit the effect of the
considering orthotropic material properties, two different cases were considered. In the first case, D � 0.9509
and ν � 1.4439, which is related to the original material properties, and in the second case, D � 0.4025
and ν � 0.6926, where all material properties in 1 and 2 directions were exchanged, except for the thermal
expansion coefficients.
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Fig. 7 Through-thickness distribution of nondimensional a) temperature b) radial displacement c) radial stress and d) hoop stress
e) induced magnetic field f) induced electric field at different times for the orthotropic cylinder based on the Green–Lindsay
theory. t1 � t2 � 0.64, t3 � 0, qi � 1
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Fig. 8 History of nondimensional a) radial stress andb) hoop stress at themid-radius of the orthotropic cylinder the Lord–Shulman
theory. t1 � 0, t2 � t3 � 1, qi � 1

Fig. 9 History of nondimensional a) radial stress and b) hoop stress at the mid-radius of the orthotropic cylinder based on the
Green–Lindsay theory. t1 � t2 � 0.64, t3 � 0, qi � 1

As is depicted in the Fig. 8a, b, decreasing the D and ν coefficients leads to an increase in the radial stress
and a decrease in the hoop stress, which is expected when material properties in r and θ were exchanged.
Figure 9 shows the results for the mentioned cases based on the Green–Lindsay theory. While similar changes
can be observed in Fig. 9b, in Fig. 9a, the amplitude of the radial stress does not change considerably, which
can be attributed to the significant impact of the rate of temperature change over time in the Green–Lindsay
theory.

5 Conclusion

In this paper, the equations of generalized coupled magneto–thermoelasticity problem in an orthotropic hollow
cylinder, based on the Lord–Shulman and Green–Lindsay theories, were presented and solved using analytical
methods. The cylinder was subjected to a thermal shock in the form of a heat flux on its inner surface and a
constant temperature on the outer surface. The mechanical boundary conditions of the problem for the outer
and inner surfaces of the cylinder were the traction-free and constrained, respectively. Additionally, a constant
magnetic field in the form of a body force was applied to the orthotropic cylinder. Following the presentation
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of a closed-form solution for the problem, the effects of the amplitude of the applied magnetic field on the
distribution of temperature, displacement, stress components and induced magnetic and electric fields were
illustrated in figures. The effects of considering orthotropic material properties for the cylinder on the history
of the radial stress and hoop stress components were demonstrated in the figures. To validate the results of the
presented solution, the problem of generalized thermoelasticity based on the Lord–Shulman theory in a disk
subjected to a thermal shock, was considered, and the results were compared with those obtained by Kiani and
Eslami [34], where a significant consistency was noted.
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