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Abstract The objective of this investigation is to propose a thermoelasticity model for analyzing the propa-
gation of thermoelastic waves in a composite hollow circular cylinder with an LEMV/CFRP interface layer.
The model incorporates a modified nonlocal couple stress theory and addresses the challenges associated with
higher order time derivatives. The derivation results in three partial differential equations for the modified
nonlocal couple stress of the cylinder in axisymmetric mode. Applying linear elasticity theory, the equations
are solved to obtain frequency equations for the external surface of the cylinder under traction-free conditions,
while ensuring continuity at the boundaries. The study explores the influence of variations in wave number and
thickness on the frequency, temperature, and displacements within the field. To assess the impact of different
thermoelasticity theories and nonlocal coupled stress parameters, the research utilizes tables and graphs for
comparison and estimation. From the numerical evaluation, it is revealed that the impact of modified nonlocal
couple stress parameter shows substantial effects on the physical quantities.

1 Introduction

The Nonlocal theory and the modified couple stress theory represent distinct approaches aimed at elucidating
the size-dependent behaviors of materials, particularly in micro/nanostructures. The Nonlocal theory empha-
sizes the incorporation of long-range interatomic cohesive forces, whereas the modified couple stress theory
introduces an equilibrium requirement for moments of couples. This results in notable advantages, including
a symmetric couple stress tensor and a singular material length scale parameter. These stipulations enable the
strain energy function to be solely dependent on the strain and the symmetric component of the stress tensor.
Consequently, among various theories considering stiffness enhancement, such as strain gradient, modified
strain gradient, couple stress, and modified couple stress theories, the modified couple stress theory emerges
as noteworthy.

Alireza Babaei and Arash Rahmani [1] conducted a study on the vibration analysis of a rotating gyro-
scope subjected to thermal stress using the displacement field via modified coupled stress method. Their
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research involved vibration procedure of a Timoshenko microbeam, considering temperature dependency and
a parameter representing a length scale beyond classical measures [2]. Farajollah Zare Jouneghani et al. [3]
used Ritz formulation to investigate the elasticity of non-uniform composite laminated beams due to modified
couple stress interaction. Many studies delve into various aspects of microscale and nanoscale mechanics,
employing the modified couple stress theory to analyze the behavior of composite microplates, microbeams,
carbon nanotubes, and fiber-metal laminates. The analyses presented contribute to the understanding of size-
dependent phenomena and couple stress mechanical properties at these scales, offering insights into the design
and optimization of advanced materials and structures [4–7]. Kumar et al.[8] analyzed photo-thermal exci-
tation in semiconducting mediums within the framework of the dual-phase lag theory, considering nonlocal
effects. In Zenkour’s other studies [9], the author discussed the refined two-temperature multiphase lags
theory for the thermo-mechanical response of microbeams, as well as a multiphase-lag model of coupled
thermoelasticity. Mohammad Jamshidi and Jafar Ghazanfarian [10] conducted a dual-phase lag analysis of a
CNT–MoS2–ZrO2–SiO2–Si nano-transistor and arteriole within a multilayered skin. Kumar et al. [11] inves-
tigated the significance of memory-dependent derivative approach in analyzing thermoelastic damping in
micromechanical resonators. Zhang et al. [12] investigated Adjustable characteristics of propagating waves
in one-dimensional arrays made up of tubular structures, encompassing compression to rarefaction. Ramagiri
Manjula [13] conducted research on torsional elastic waves in a thermoelastic cylinder with voids. Dual-phase
lag thermoelastic damping in nonlocal nanobeams was improved by Borjalilou et al. [14]. Finally, Zhai Fang-
Man and Li-Qun Cao [15] scrutinized the parallel algorithm in multistate for the heat conduction equation with
dual-phase lag in composite materials. In a separate study, Pourasghar and Chen [16] utilized the dual-phase
lag to test heat propagation. Gao et al. [17] employed the element-wise differential method utilizing local
least-squares techniques. To solve heat transport equations in composite materials, Zhou et al. [18] developed
Green’s functions in three dimensional anisotropic bimaterial for transient heat transport. Thermoelasticity
was explored by Roy Choudhuri [19] through the three-phase lag thermoelastic equation, while Namayandeh
et al. [20] analyzed thermal stress propagation in anisotropic and isotropic cylindrical structures. Tiwari and
Mukhopadhyay [21]analyzed harmonic plane wave propagation in fractional order thermoelasticity, focusing
on the fractional order heat conduction equation. Tiwari and Abouelregal [22] studied thermo-viscoelastic
transversely isotropic rotating hollow cylinders using a three-phase lag thermoelastic model and fractional
Kelvin–Voigt type approach. Tiwari et al. [23] explored memory response in generalized thermoelastic medi-
ums within the context of dual-phase lag thermoelasticity with nonlocal effect.

Biswas and Abo-Dahab [24] studied the interactions of magneto-electro-thermoelasticity within initially
stressed orthotropic materials using the type II Green-Naghdi model. Tiwari et al. [25] studied thermoelastic
vibrations of nanobeams subjected to varying axial loads and ramp type heating, applying the Moore–Gib-
son–Thompson generalized theory of thermoelasticity. Zhu et al. [26] examined a dynamic system operating
within a two-dimensional time slice and multiple phases for the monitoring of batch processes, while Oth-
man and Abbas [27] examined the thermal shock phenomenon in a homogeneously isotropic hollow cylinder
considering energy leakage. In recent investigations, researchers have concentrated on the thermal vibration
analysis of diverse geometrical structures, including panel, triangle micro wire porous micro-tubes and carbon
nanostructures, exhibiting different mechanical characteristics [28–31]. These studies employed the modified
couple stress theory [32, 33]. Kumar andMukhopadhyay [34] conducted an analysis of thermoelastic damping
inmicro plate resonators with size-dependent characteristics, employing both themodified couple stress theory
and the heat transport with three-phase lag. Hu et al. [35] employed numerical methods to study functionally
graded curved Timoshenko microbeams, integrating isogeometric Analysis (IGA) and the modified couple
stress theory. Additionally, Jomehzadeh et al. [36] explored the vibrations influenced by size variations in
microplates based on the couple stress in new form.

The current thermoelasticity model focuses on analyzing the propagation of thermoelastic waves in a
composite hollow circular cylinder with an LEMV/CFRP interface layer. It utilizes a modified nonlocal couple
stress theory and higher order time derivatives to derive the governing equations. These equations are then
solved using linear elasticity theory to obtain frequency equations for the external surface of the cylinder under
traction-free conditions, while ensuring continuity conditions at the boundaries. The study investigates how
variations in wave number and thickness impact the frequency, temperature, and displacements in the field.
To assess the effects of different thermoelasticity theories and nonlocal coupled stress parameters, tables and
graphs are employed for comparison and estimation.
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2 Formulation of the problem

Following[37], the governing equations of thermoelastic media using a novel refined size-dependent couple
stress theory without body related forces are given by.
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where σ0 is the electrical conductivity, m(� ωete) is the Hall parameter, ωe is the electronic frequency, te is
the electron collision time, e is the charge of an electron, and ne is the number of density of electrons.

Here, we examine a thermally elastic body with homogeneity and transverse isotropy, initially at a uniform
temperature T◦, while considering the influence of nonlocal couple stress. The analysis employs a cylindrical
polar coordinate system (r, θ , z) characterized by symmetry about the z-axis.
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The heat transport equation is taken as [38]
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The phase lag of the heat flux and temperature gradient denoted as τθ and τq are defined. The parameter N
signifies the refined generalized theory requirements.

For Eqs. (1), (2) and (3), the solution is as [37]
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(
Ul
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T l(r , z, t) �
(
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Here, i � √−1, k is the wave number, ω is the frequency; Ul , Wl , , T l are all displacement potentials,
electric conduction and thermal change. By introducing the dimensionless quantities such as,
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Loading Eq. (4) in to the Eqs. (1)–(3) yields.
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The system of Eqs. (5) to (7) results in a non-trivial solution.
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After decoupling the Eq. (8) in to biquadrate form, the symmetric mode solutions are
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3 Solution for linear elastic materials with voids

The displacement equations of motion and equation of equilibrated inertia for an isotropic LEMV are [37]
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u, v, w represents displacements components along r , θ , and z directions,α, β, ξ , ω and k are LEMV
material constants characterizing the core in the equilibrated inertial state, ρ is the density, and λ, μ are the
lame constants, and ℵ is the new kinematical variable associated with another material without voids. The
stress in the LEMV core materials is
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Equation (11) is rewritten as:
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Hence, the solution of Eq. (12) is,
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The CFRP solution is reached through ℵ� 0 and λ � c12, μ � (c11−c12)
2 .

4 Boundary conditions at the interface and equations for frequency

The preliminary conditions at the interface are
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The frequency equation is formulated:
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Table 1 Changes in CFRP layer by different non-local parameter

Wave number Non dimensional frequency

Non-local parameter ∈ � 0 Non-local parameter ∈ � 0.03

CTE LS GN CTE LS GN

0.2 1.2763 1.4098 1.5811 1.6340 1.7794 1.9197
0.4 1.3711 1.6033 1.7618 1.7721 1.9152 2.0552
0.6 1.4101 1.5822 1.7047 1.8210 1.9743 2.1250
0.8 1.5829 1.7055 1.8217 1.9088 2.0504 2.1918
1 1.7037 1.8202 1.9729 1.9755 2.1261 2.2431

5 Particular cases

I. If τ0 � τθ � τq � 0 and δ � 1, then, Eq. (3) results coupled thermoelasticity (CTE) theory with hall
current.

ii. If τq , τθ → 0, δ � 1 and τ0 > 0, then Eq. (3) results Lord–Shulman (LS) theory with hall current.
iii. If τq , τθ → 0, δ � 0 and τ0 � 1, then Eq. (3) results Green–Naghdi (GN III) theory with hall current.
iv. If τ0 > τθ ≥ 0 and δ � 1, then Eq. (3) results Simple-Phase Lag (SPL) theory with hall current.
v. If τq � τ0 > τθ ≥ 0 and δ � 1, N ≥ 1, then Eq. (3) results Refined-Phase Lags (RPL) theory with hall

current.

6 Numerical computation

For numerical calculations, we consider copper as the transversely isotropic material. The physical data for a
single crystal of copper are provided by: [37]

C11 � 18.78 × 1010 Kgm−1s−2, C12 � 8.76 × 1010 Kgm−1s−2, C13 � 8.0 × 1010 Kgm−1s−2,
C33 � 17.2 × 1010 Kgm−1s−2, C44 � 5.06 × 1010 Kgm−1s−2, Cv � 0.6331 × 103 JKg−1K−1, β1 �
2.98× 10−5K−1, β3 � 2.4× 10−5K−1, T0 � 293K, ρ � 8.954× 103 Kgm−3, K1 � 0.433× 103 Wm1K−1,
K3 � 0.433 × 103 Wm1K−1, G � 0.

The graphs of the physical quantities are plotted with a fixed wave number (0–1) and thickness (0–2).
Tables 1 and 2 compare the non-dimensional frequency values obtained from various thermoelasticity theories
for LEMV/CFRP cylinders of different thermal expansion coefficients with and without influence of non-local
couple stress parameter. The tables show that the non-dimensional frequency increases with an amplified
values of wave number for all thermoelasticity theories. However, the frequency values slightly vary within
these models. Tables 3 and 4 show the radial, axial, and temperature changes of LEMV and CFRP layered
cylinders with stress-free conditions for various thermoelasticity theories against increasing values of wave
number with and without influence of non-local couple stress parameter. The tables reveal that the radial and
axial distributions follow a growing trend as the wave number increases, while the temperature distribution of
the composite hollow cylinders decreases with an increasing wave number. However, significant changes are
observed in different thermoelasticity theories. Based on this analysis, thermoelastic hollow LEMV cylinders
perform better with the multiphase lagging model in both cases of with and without influence of non-local
couple stress parameter. The current results relating to the multilayered composite cylinder using non-local
parameter in the case of vanishing non-local parameter, the results of thermal distributions in the multilayered
composite cylinder are concord with the results of thermal distributions in the hollow cylinder is obtained by
Zenkour [38] (Table 5).

Figures 1 and 2 represent effects of radial and axial displacements against growing values of wavenumber
with influence of various thermoelastic theories. From this, both axial and radial displacementsmaintain unique
nature for starting values of wave number, but for higher values, its little variation observed. In Fig. 3, effects
of temperature distribution against increasing values of wavenumber with influence of various thermoelastic
theories and it shows that temperature distribution maintain decreasing nature against growing values of wave
number. In Fig. 4, variations of couple stress against increasing values of wavenumber with influence of various
thermoelastic theories and it maintains oscillatory nature for growing values of wave number. The hall current
effect against wave number with various thermoelastic theories is represented in Fig. 5; from this observation,
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Table 2 Changes in LEMV layer by different non-local parameter

Wave number Non dimensional frequency

Non-local parameter ∈ � 0 Non-local parameter ∈ � 0.03

CTE LS GN CTE LS GN

0.2 1.7794 1.9197 2.0593 2.2010 2.3451 2.4907
0.4 1.9743 2.1250 2.2421 2.3663 2.5269 2.6634
0.6 1.9152 2.0552 2.1966 2.3405 2.4863 2.6329
0.8 2.1261 2.2431 2.3675 2.5282 2.6644 2.7798
1 2.0504 2.1918 2.3355 2.4813 2.6282 2.7755

Table 3 Changes in radial, axial and temperature in LEMV composite with ∈ � 0.03

Wave number Radial, axial and temperature change

CTE LS GN

0.2
U 0.1000 0.2000 0.3000
W 0.1139 0.2277 0.3415
T 0.1290 0.3433 0.4572
0.4
U 0.3435 0.4576 0.5715
W 0.5712 0.6840 0.6851
T 0.6409 0.5692 0.9097
0.6
U 0.4000 0.5000 0.6000
W 0.4553 0.7973 0.7978
T 0.6844 0.6846 0.7983
0.8
U 0.6852 0.7986 0.9117
W 0.7000 0.8000 0.9000
T 1.0214 1.1321 1.2413
1
U 1.0244 1.1365 1.2475
W 1.2434 1.3509 1.4550
T 1.3481 1.4511 1.5480

Table 4 Changes in radial, axial and temperature in CFRP composite with ∈ � 0.03

Wave number Radial, axial and temperature change

CTE LS GN

0.2
U 0.1196 0.2428 0.3663
W 0.4896 0.6127 0.7356
T 0.8586 0.9818 1.1056
0.4
U 0.1201 0.2471 0.3741
W 0.5001 0.6251 0.7492
T 0.8727 0.9962 1.1209
0.6
U 0.6127 0.7356 0.8586
W 0.9818 1.1056 1.2306
T 1.3575 1.5325 1.7169
0.8
U 0.6251 0.7492 0.8727
W 1.7962 1.1209 1.2475
T 1.3763 1.5070 1.6399
1
U 1.3763 1.8070 1.6399
W 1.8629 1.9954 1.2533
T 1.4205 1.5934 1.7730
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Table 5 Comparison of dimensionless temperature distribution

Thermoelasticity theories Zenkour [38] Present study

Temperature distribution CTE 0.5576 0.5493
L-S 0.4693 0.4681
G-N 0.2544 0.2495

Fig. 1 Plot of radial displacement on wave number across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 2 Plot of axial distributaion on wave number across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 3 Plot of temperature distribution on wave number across different thermoelastic theories in composite LEMV hollow
cylinders

hall current maintains different nature for MPL model for lower values of wave number, but for higher values,
it maintains unique nature in all models.

Figures 6 and 7 characterize effects of radial and axial stress against growing values of thickness with
influence of various thermoelastic theories. From this, radial stress keeps increasing nature for increasing
values of thickness, but axial stress preserves decreasing nature for lower values of thickness, and for higher
values, it keeps similar nature in all thermoelastic theories. In Fig. 8, effects of temperature distribution against
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Fig. 4 Plot of couple stress on wave number across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 5 Plot of Hall current on wave number across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 6 Plot of radial stress on wave number across different thermoelastic theories in composite LEMV hollow cylinders
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Fig. 7 Plot of axial stress on thickness across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 8 Plot of temperature distribution on thickness across different thermoelastic theories in composite LEMV hollow cylinders

Fig. 9 Plot of couple stress on thickness across different thermoelastic theories in composite LEMV hollow cylinders
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Fig.10 Plot of Hall current on thickness across different thermoelastic theories in composite LEMV hollow cylinders

increasing values of thickness with influence of various thermoelastic theories and it shows that temperature
distribution maintain decreasing nature against growing values of thickness. In Fig. 9, variations of couple
stress against increasing values of thickness with influence of various thermoelastic theories and it maintains
oscillatory nature for growing values of thickness at the same time couple stress preserve slight variation
in MPL model. The hall current effect against thickness with various thermoelastic theories is represented
in Fig. 10; from this observation, hall current maintains different nature for MPL model compare to other
thermoelastic theories.

7 Conclusion

This article conducts a study on the wave propagation of a composite circular hollow cylinder composed of
LEMV and CFRP. The investigation employs modified nonlocal couple stress and multiphase-lag thermoe-
lasticity theories to analyze the behavior of the hollow cylinder. To achieve this, a set of three coupled partial
differential equations defines the equations of motion and heat conduction, which are solved exactly. By com-
paring different thermoelasticity theories, the study explores the influence of the wavenumber and thickness on
the characteristics of wave propagation. Among the investigated theories, the multiphase-lag thermoelasticity
theory yielded the most precise outcomes, particularly when assessing the influence of nonlocal couple stress.
Furthermore, the study rooted into the effects of adjusting themodified nonlocal couple stress parameter, which
was observed to greatly affect the frequency and distribution of displacements. These discoveries hold con-
siderable importance in comprehending the nonlocal dynamic response of transversely isotropic thermoelastic
cylinders, which have broad applications across diverse industries.
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