
Acta Mech 235, 4575–4605 (2024)
https://doi.org/10.1007/s00707-024-03952-9

ORIGINAL PAPER

Ali Akbar Jahanitabar · Vahid Lotfi

Formulation and efficient implementation of coupled
anisotropic damage-plasticity model for plain concrete

Received: 8 December 2023 / Revised: 30 March 2024 / Accepted: 9 April 2024 / Published online: 23 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024

Abstract The formulation and finite element implementation of an efficient anisotropic damage-plasticity
model is proposed to simulate the nonlinear behavior of plain concrete at small strains. Themodel’s formulation
is presented first; then, the implementation strategy is described. A stress-based yield criterion and two damage
criteria are used to determine the nominal stress tensor. Using two damage tensors automatically accounts for
the stiffness recovery in transition from tension to compression and vice versa. Some numerical issues are
addressed, and the remedy is proposed. The deficiencies of existing anisotropic damage-plasticity models for
plain concrete are also identified and discussed. Different alternatives for the general formulation of damage
procedure are presented and compared. Three methods are introduced for calculation of damage hardening
parameters and compared in terms of efficiency. The extension of the model to viscoplastic behavior is carried
out using the frequently-used Duvaut–Lions viscoplasticity theory. Moreover, the formulation is extended
to include the large crack in monotonic and cyclic loading, which improves the response of material under
large values of strain. The model is included in an in-house finite element software previously developed by
the authors. It is validated, and its efficiency is evaluated by comparing the software results with a set of
experimental tests, such as monotonic uniaxial and biaxial tests, cyclic uniaxial tests, and some structural
single-mode and mixed-mode tests.

List of symbols

c± Isotropic hardening functions
E Damaged elastic rigidity tensor
E Undamaged elastic rigidity tensor
f Plastic yield surface
f +0 , f −

0 , fb0 Initial yield strengths in uniaxial tension and compression and biaxial compression
FP Plastic potential function
g± Damage yield surfaces
G Effective shear moduli
G±

f Fracture energy
H Heaviside step function
I 1 First invariant of the effective stress tensor
J 2 Second invariant of deviatoric effective stress tensor
K Effective bulk moduli
K± Damage hardening functions
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K±
0 Damage initiation threshold

l∗ Characteristic length scale
M−1 Inverse of the damage effect tensor
n( j), σ̂ ( j) jth eigenvector and eigenvalue of the stress tensor
P± Stress projection tensors
Q, b, h, B±, q± Material constants
r Weight function
s Deviatoric stress tensor
Y± Damage driving forces
αμ Interpolation factor
�t Characteristic time increment
δ Kronecker delta
ε Nominal strain tensor
εe, ε p Elastic and plastic strain
ε
±p
eq Equivalent plastic strain

ε̃ p Intermediate plastic strain
εvp Viscoplastic strain tensor
κ± Plastic hardening parameters
λ̇P , λ̇d

±
Plastic and damage multipliers

μ Viscosity parameter
σ Nominal stress tensor
σ Effective stress tensor
̂σ Principal effective stress
σ tr Trial effective stress
σ̃ Intermediate effective stress
ϕ± Anisotropic damage tensors
ϕ±
eq Equivalent damage parameter

ϕeq, v Viscous equivalent damage variable
ϕcr Large crack threshold
�̇ Rate quantity

Abbreviations

IDPM Isotropic damage-plasticity model
ADPM Anisotropic damage-plasticity model
CMSD Crack mouth sliding displacement

1 Introduction

Experiments show that when concrete is subjected to tensile and compressive loading, the increasing strain
consists of an inelastic portion that does not recover in unloading. The recoverable part of strain can be formu-
lated using the theory of elasticity, while the irrecoverable part can be described by plasticity theory. On the
other hand, concrete is filled with microcavities and microcracks in the microscale. The degradation in strength
and stiffness of material caused by these microdefects is called concrete damage, and its evolution is a result
of nucleation, growth, and coalescence of microflaws. Furthermore, by increasing the strain, these irreversible
microcracks join together and form localized macrocracks in the material. The well-known continuum damage
mechanics has recently been introduced to simulate concrete damage and stiffness degradation.

The nonlinear behavior and strain softening of concrete are mainly the results of these irreversible strain
and stiffness degradation effects. Numerical reproduction of this nonlinear behavior of concrete has received
considerable attention in the literature. However, predicting the post-peak behavior of quasi-brittle materials is
a challenging task. A successful numerical model should be able to represent the most important characteristics
of concrete material, namely irreversible deformations, inelastic volumetric expansion andmaterial crushing in
compression, growth of microcavities and microcracks in tension, large crack formation, stiffness degradation,
and stiffness recovery in cyclic loadings. Although the present study focused only on plain concrete, it is
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noteworthy that some of the mechanical characteristics that govern the behavior of plain concrete become
much less significant in reinforced concrete. Plain concrete is inherently brittle and has a low tensile strength
compared to its compressive strength, making it very weak in tension. Reinforced concrete, on the other
hand, exhibits different behavior due to the presence of steel bars that carry the tensile loads and increase
the ductility of material. The tensile strength of steel bars improves the composite material’s ability to resist
cracking under tensile and bending loads. Consequently, the fiber reinforcements are commonly used in the
construction industry to improve the ductility and tensile performance of concrete. However, analyzing the
behavior of reinforced concrete is a more complex problem than analyzing plain concrete behavior and is
beyond the scope of this study.

The theory of plasticity has been extensively adopted by researchers, up to now, in modeling the nonlinear
behavior of plain concrete [1–5]. Plasticitymodels are generally capable of addressing irreversible deformation
in concrete. However, the important property of stiffness degradation cannot be included in classical continuum
plasticity. In contrast, the continuumdamagemodels are able to successfully reproduce the stiffness degradation
of concrete. However, they cannot simulate irreversible deformations observed in experiments. They are also
limited to tensile and low confined compression stress in most cases. Continuum damage mechanics has been
widely used in recent years to predict material failure [6–28].

Considering the shortcomings of plasticity and damage models, researchers combined these two models
to develop powerful plastic damage models, which can overcome the mentioned drawbacks and describe
essential features of concrete material. These models are mainly based on isotropic hardening plasticity and
either isotropic or anisotropic damagemodels. The isotropic damage-plasticitymodels (IDPM) usually employ
one or two variables to describe the influence of damage initiation and growth. These scalar variables represent
the average microdefects and indicate overall degradation in the material. In recent years, the IDPM models
have been extensively adopted in the literature [29–50].

The IDPM models assume damage evolution to be isotropic, which is not physically meaningful for
concrete material that exhibits anisotropic behavior. This is because the microdefects in concrete are highly
oriented. Cracks, in particular, have an orientation-dependent nature and grow perpendicular to the maximum
tensile stress direction. In terms of formulation, the damage evolution is a function of stress, which is a tensor
quantity and orientation dependent. Therefore, the development of an anisotropic damage model for concrete
is essential. The coupled plasticity-microplane damage models and the anisotropic damage-plasticity models
(ADPMs) have been developed in recent years to reflect the orientation-dependent nature of damage in the
analysis.

The ADPM models use the damage tensors instead of scalar variables to describe material degradation.
Hence, the effect of anisotropy can bewell addressed in thesemodels andmore accurate results can be achieved,
but the constitutive relations would be much more complex.

Park et al. [51] and Voyiadjis et al. [52] present the theoretical and numerical review of continuum damage
mechanics and plasticity in the context of finite elements. They also included an extensive review of multiscale
modeling in concrete, in which multiple models on different length scales are combined [53]. Cicekli et al. [54]
proposed an ADPM model with two damage tensors for positive and negative parts of damage to predict the
anisotropic behavior of plain concrete. They used a decoupled algorithm for calculation of effective stress and
damage evolution. However, their local constitutive relations result in ill-posed initial boundary value problem
for material softening and cannot guarantee the uniqueness of the solution. Moreover, the verification of the
study is limited to a single element under uniaxial and biaxial monotonic loading. Voyiadjis et al. [55] and
Voyiadjis et al. [56] also presented elasto-plastic-anisotropic damage formulations for concrete. They used the
elastic strain energy equivalence hypothesis to transform from the effective to the nominal configuration. Abu
Al-Rub and Voyiadjis [57] presented a nonlocal gradient-enhanced ADPM for plain concrete. They introduced
two internal length scales as localization limiters of damage in tension and compression. Voyiadjis et al.
[58] proposed an ADPM for quasi-brittle materials using the hypotheses of elastic and plastic strain energy
equivalence.

Despite the remarkable studies on the ADPM, its limitations and shortcomings prevent its application on
complex structures. Daneshyar and Ghaemian [59] compared three methods of IDPM, ADPM, and coupled
microplane damage and plasticity model for simulating damage-induced anisotropy in plain concrete. They
concluded that ADPM is unable to predict acceptable results in multiaxial loadings, and IDPM suffers from
lack of accuracy. They addressed some drawbacks of ADPM and demonstrated that damage growth in different
orientations is not an independent procedure with this model. Moreover, an unrealistic distribution of damage
emerges and the maximum damage orientations remain unchanged during the analysis. They also performed
some numerical tests with multidimensional loadings, which resulted in the ADPM’s curve deviating from
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the experimental one. Hence, they proposed the microplane-based damage formulation to overcome the short-
comings of existing models. However, using the microplane approach presents additional challenges in terms
of computational cost [60] because of the large number of microplanes to be integrated on the surface of each
integration point sphere in every element.

The aim of this study is threefold: first, to investigate and highlight the deficiencies of previous ADPMs
for plain concrete and propose the appropriate remedy; second, to develop an efficient ADPM to overcome
the mentioned limitations and shortcomings; and third, to present the finite element implementation strategy
in detail. The proposed ADPM is derived under the assumption of small strains. A decoupled algorithm is
used in the proposed model to combine the plasticity and damage procedures. An effective stress-based yield
criterion and non-associative flow rule are used in the plasticity part. A fourth-order damage effect tensor is
used to transform the effective (undamaged) stress to the nominal (damaged) stress. The effective stress tensor
is decomposed into positive and negative parts to represent the unilateral effect. Consequently, two independent
damage criteria and two damage tensors are defined. The spectral decomposition automatically considers the
stiffness recovery in the transition frompositive to negative stress and vice versa. The formulation is generalized
to include large crack opening and closing. Hence, the formulation of large crack, presented by Lee and Fenves
[61] for IDPM, is extended here to ADPM and embedded in the model. Moreover, the rate dependency is
embedded in the model using the viscous model of Duvaut–Lions. In addition, the implementation methods
are described in detail. Some numerical issues are discussed, and deficiencies of existing ADPMs are also
revealed. Threemethods are presented for the computation of damage hardening parameters and comparedwith
respect to efficiency. Inspired by previous studies, three alternatives are also introduced and compared for the
general formulation of the anisotropic damage model. An in-house finite element program is developed based
on the proposed model. Using this simulation program, the paper investigates the efficiency and experimental
verification of the model through different benchmark problems such as monotonic and cyclic uniaxial tests,
monotonic biaxial test, and mixed-mode multidimensional structural tests.

The remainder of this paper is organized as follows: The study will begin by presenting the formulation of
damage, decomposition of stress tensor, and plastic and damage yield criteria in Sect. 2. Different options for
the general formulation of anisotropic damage are also discussed and compared in this part. Section 3 presents
the implementation methods, including the modifications corresponding to large cracking and viscosity. Then,
methods for calculation of plastic and damage hardening parameters are described, and the relations for plastic
and damage multipliers are presented. Section 4 presents the validation results for a number of benchmark
problems and Sect. 5 presents the conclusions.

2 Formulation

In this section, the main components of anisotropic damage and plasticity formulations are presented. A
decoupled algorithm, including two steps of plasticity and damage, is used to update the nominal stress tensor.
Both steps are formulated in the effective stress space. At the beginning of the plasticity step, the effective stress
tensor is decomposed into positive and negative parts to consider the unilateral effect of concrete. Moreover,
the transition from effective to nominal configuration is performed at the end of the damage step. The model
is developed for three-dimensional space, and its theoretical basis is presented in the following.

2.1 A review on anisotropic damage

The relation between the nominal and the effective stress tensors can be expressed as:

σi j � M−1
i jklσ kl (1)

where M−1
i jkl is the inverse of the fourth-order damage effect tensor, which represents the effect of material

damage and transforms the effective stress to the nominal stress, according to the history of damage. The
strain equivalence or strain energy equivalence hypothesis can be used to derive the transformation relations.
However, the strain equivalence hypothesis is adopted herein for simplicity in finite element implementation.
This theory assumes that strains in the damaged and undamaged states are identical:

εi j � εei j + ε
p
i j � εei j + ε

p
i j � εi j (2)
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Table 1 Available relations for M−1/M and the proposed relation of this study

1 [54, 57, 67] M−1
i jkl � 1

2

[

(δi j − ϕi j )δkl + δi j (δkl − ϕkl )
]

2 [55, 56] Mi jkl � 1
2

[

(δk j − ϕk j )−1δil + δk j (δil − ϕil )−1
]

3 [68–70] M−1
i jkl � 1

2

[

(δik − ϕik )δ jl + δik (δ jl − ϕ jl )
]

4 [59] Mikjl � 1
2

[

(δik − ϕik )−1δ jl + (δ jk − ϕ jk )−1δil
]

5 [66] M−1
i jkl � 1

2

[

(δim − ϕim )(δ jm − ϕ jm )δkl + δi j (δkm − ϕkm )(δlm − ϕlm )
]

6 Utilized relation M−1
i jkl � 1

4

[

(δik − ϕik )δ jl + (δ jl − ϕ jl )δik + (δil − ϕil )δ jk + (δ jk − ϕ jk )δil
]

ϕi j in Table 1 is the anisotropic damage tensor.

The generalized Hooke’s law is used to relate the effective stress tensor to the elastic strain tensor in the
undamaged configuration:

σ i j � Ei jklε
e
kl � Ei jkl

(

εkl − ε
p
kl

)

(3)

where Ei jkl is the elastic rigidity tensor of the undamaged material which, for isotropic linear elastic materials,
can be defined as follows:

Ei jkl � 2GI devi jkl + K δi jδkl , I
dev
i jkl � δikδ jl − 1

3
δi jδkl (4)

where G and K are the effective shear and bulk moduli, respectively. Furthermore, the nominal stress tensor
can be defined as:

σi j � Ei jklε
e
kl (5)

where Ei jkl is the fourth-order rigidity tensor of the damaged material and can be defined by employing Eqs.
(1), (3) and (5):

Ei jkl � M−1
i j pq E pqkl . (6)

2.2 Fourth-order damage effect tensor M

One of the most important concerns in continuum damage formulation is employing a proper M−1 (or M),
which accurately relates all components of the effective stress tensor to the nominal stress through Eq. (1).
Depending on the form ofM−1, the nominal stress tensor may be not symmetric after transformation in Eq. (1).
Therefore, it is essential to employ an appropriateM−1 that guarantees the symmetry of stress tensor after this
transformation [51, 55, 62, 63]. Several relations are proposed forM−1 (orM in some references) in previous
studies [54, 55, 59, 62–66]. Table 1 summarizes the available relations as well as the utilized relation in this
paper. The shortcomings and drawbacks of different relations are demonstrated and discussed in the following.

2.2.1 First and fifth relation

i f ϕi j � 0 then M−1
i jkl � δi jδkl

⇒ σi j � δi jδklσ kl � δi jσ kk �
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠(σ 11 + σ 22 + σ 33)

Hence, in a uniaxial compression test in the z direction, when the damage process is not started, the damage
effect tensor turns the uniaxial experiment to a triaxial test. In this case, the effective and nominal stress tensors
can be determined from the above as follows:
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2.2.2 Second relation

M−1
i jkl (ϕ � 0) � Ii jkl

M1313 � 1

2

[

(δ13 − ϕ13)
−1δ13 + δ13(δ13 − ϕ13)

−1] � 0

M1331 � 1

2

[

(δ33 − ϕ33)
−1δ11 + δ33(δ11 − ϕ11)

−1] � 0.5
[

(1 − ϕ33)
−1 + (1 − ϕ11)

−1]

⇒ M1313 �� M1331.

2.2.3 Third relation

M−1
i jkl (ϕ � 0) � Ii jkl

M−1
1313 � 1

2
[(δ11 − ϕ11)δ33 + δ11(δ33 − ϕ33)] � 0.5[(1 − ϕ11) + (1 − ϕ33)]

M−1
1331 � 1

2
[(δ13 − ϕ13)δ31 + δ13(δ31 − ϕ31)] � 0

⇒ M−1
1313 �� M−1

1331.

2.2.4 Fourth relation

M−1
i jkl (ϕ � 0) � I si jkl

M1313 � 1

2

[

(δ13 − ϕ13)
−1δ13 + δ13(δ13 − ϕ13)

−1] � 0

M1331 � 1

2

[

(δ13 − ϕ13)
−1δ31 + δ11(δ33 − ϕ33)

−1] � 0.5(1 − ϕ33)
−1

⇒ M1313 �� M1331.

2.2.5 Utilized relation

M−1
i jkl (ϕ � 0) � I si jkl

M−1
i jkl � 1

4

[

(δik − ϕik)δ jl + (δ jl − ϕ jl )δik + (δil − ϕil )δ jk + (δ jk − ϕ jk)δil
]

M−1
i jlk � 1

4

[

(δil − ϕil )δ jk + (δ jk − ϕ jk)δil + (δik − ϕik)δ jl + (δ jl − ϕ jl )δik
]

M−1
kli j � 1

4

[

(δki − ϕki )δl j + (δl j − ϕl j )δki + (δk j − ϕk j )δli + (δli − ϕli )δk j
]

⇒ M−1
i jkl � M−1

i jlk � M−1
kli j .

The proposed relation can be expressed as a 6×6 matrix:

M−1
i jkl �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1 − ϕ11) 0 0 −ϕ12 0 −ϕ13

0 (1 − ϕ22) 0 −ϕ21 −ϕ23 0
0 0 (1 − ϕ33) 0 −ϕ32 −ϕ31

−ϕ12/2 −ϕ21/2 0 [(1 − ϕ11) + (1 − ϕ22)]/2 −ϕ13/2 −ϕ23/2
0 −ϕ23/2 −ϕ32/2 −ϕ13/2 [(1 − ϕ22) + (1 − ϕ33)]/2 −ϕ21/2

−ϕ13/2 0 −ϕ31/2 −ϕ23/2 −ϕ21/2 [(1 − ϕ11) + (1 − ϕ33)]/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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2.2.6 Discussion

When the damage process is not started, or the damage parameters are very close to zero, the nominal and
effective stress in the material are expected to be equal. However, the above calculations show that the first and
fifth damage effect tensors change the undamaged stress in the transition fromeffective to nominal configuration
and turn the uniaxial experiment to an equi-triaxial test, which leads to unacceptable results. The second and
fourth tensors are not equal (i.e.,M1331 is different in second and fourth relations) and onemay be hesitant about
selecting them. Moreover, the second, third, and fourth damage effect tensors possess major symmetry but do
not have minor symmetry property. Nevertheless, because of symmetry of the stress tensor, the asymmetry of
the damage effect tensor may not affect the results of Eq. (1).

Hence, considering the deficiencies of available damage effect tensors, an improved relation is used in the
ADPM of this paper, which guarantees both the minor and major symmetry properties.

2.3 Spectral decomposition of the stress tensor

Due to the existence of microcracks, the concrete is more brittle in tension, and the stiffness of damaged
concrete differs for tensile and compressive loads. The change in material stiffness is due to the crack closing
and reopening in transition from positive stress state, in direction perpendicular to crack surface, to negative
stress state and vice versa. This distinct behavior in tension and compression is called the unilateral effect.
Therefore, the stress tensor is decomposed into positive and negative parts, which perfectly consider concrete’s
unilateral effect:

σi j � σ +
i j + σ−

i j , σ i j � σ +
i j + σ−

i j (7)

Here, σ±
i j is calculated as follows:

σ +
kl � P+

klpqσ pq

σ−
kl � [Iklpq − P+

klpq ]σ pq � P−
klpqσ pq (8)

where P±
klpq is the set of stress projection tensors such that:

P+
klpq �

3
∑

j�1

H
(

σ̂ ( j)
)

n( j)k n( j)l n( j)p n( j)q , P−
klpq � Iklpq − P+

klpq (9)

where H
(

σ̂ ( j)
)

is the Heaviside step function. This is equal to one if σ̂ ( j)>0 and zero otherwise. Also, n( j)

and σ̂ ( j) are the jth eigenvector and eigenvalue of the stress tensor, respectively. For anisotropic damage, the
inverse of the damage effect tensor is easily defined as:

M−1
i j pq � M−1+

i jkl P
+
klpq + M−1−

i jkl P−
klpq (10)

By multiplying σ i j in both sides of Eq. (10) and using Eq. (1), the nominal stress tensor is obtained as
follows:

σi j � M−1+
i jkl P

+
klpqσ pq + M−1−

i jkl P−
klpqσ pq � M−1+

i jkl σ
+
kl + M−1−

i jkl σ−
kl (11)

where M−1
i jkl in decomposed configuration (M−1±

i jkl ) is a function of positive/negative damage variable:

M−1±
i jkl � 1

4

[

(δik − ϕ±
ik)δ jl + (δ jl − ϕ±

jl )δik + (δil − ϕ±
il )δ jk + (δ jk − ϕ±

jk)δil
]

(12)

Finally, it is worth mentioning that:

M−1
i jkl �� M−1+

i jkl + M−1−
i jkl

ϕi j �� ϕ+
i j + ϕ−

i j . (13)
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2.4 Plastic and damage yield surfaces

A stress-based yield criterion is employed here in the effective configuration to separate the elastic and plastic
regions and define the onset of irreversible strains. Hence, the yield function, initially introduced by Lubliner
et al. [29] and modified by Lee and Fenves [30], is adopted here. A non-associated flow rule is also used to
describe the increment of plastic strain after yielding. Hence, two different functions are considered here for
the yield criterion and the plastic potential functions, the parameters of which were derived from experimental
tests.

f �
√

3J 2 + α I 1 + β(ε±p
eq )H (σ̂max)σ̂max − (1 − α)c−(ε−p

eq ) � 0 (14)

where I 1 is the first invariant of the effective stress tensor, J 2 is the second invariant of the deviatoric effective
stress tensor, σ̂max is the maximum principal effective stress, and ε

±p
eq is the equivalent plastic strain.

Because of the unilateral effect, the behavior of concrete is different in tension and compression in a
uniaxial stress state. This can also be observed in a general stress state, where the behavior of concrete in
every principal direction depends on whether the stress in that direction is positive or negative. Therefore,
the yield criterion has to consider both distinct behaviors. Therefore, H (σ̂max) is used to separate tensile and
compressive yield functions.

The parameters α and β can be calculated as follows:

α � ( fb0/ f
−
0 ) − 1

2( fb0/ f
−
0 ) − 1

, β � (1 − α)
c−(ε−p

eq )

c+(ε+peq )
− (1 + α) (15)

where f +0 , f
−
0 and fb0 are initial yield strengths under uniaxial tension and compression and biaxial compres-

sion, respectively. Furthermore, c± in Eq. (15) is the isotropic hardening function defined here by the following
relations:

c− � f −
0 + Q

[

1 − exp(−bε−p
eq )

]

, c+ � f +0 + hε+peq (16)

where Q, b and h are material constants, which can be determined from the material effective stress–strain
diagram. The classic Drucker–Prager criterion is used here as the plastic potential function:

FP �
√

3J 2 + αP I 1 (17)

A non-associated plastic flow rule is employed here to properly define the volume expansion of concrete
under compression. Hence, the plastic strain increment is defined as:

ε̇
p
i j � λ̇P ∂FP

∂σ i j
(18)

where λ̇P is the plastic multiplier.
Two anisotropic damage functions in positive and negative configurations are employed here [54, 71]:

g± �
√

1

2
Y±
i j Li jklY

±
kl − K±(

ϕ±
eq

)

≤ 0 (19)

where Y±
i j is the positive/negative damage driving force, which governs the damage criterion evolution and

can be expressed by the following relation:

Y±
rs � −1

2
E

−1
i jabσ ab

∂M±−1

i j pq

∂ϕ±
rs

σ±
pq (20)

K±(ϕ±
eq) in Eq. (19) is the damage hardening function, ϕ±

eq is the equivalent damage parameter, and Li jkl
is a fourth-order tensor such that:

Li jkl � 2ηδi jδkl + (1 − η)
(

δikδ jl + δilδ jk
)

(21)
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The evolution of anisotropic damage parameters is calculated using the damage flow rule:

ϕ̇±
i j � λ̇d

± ∂g±

∂Y±
i j

(22)

in which λ̇d
±
is the damage multiplier. ϕ±

eq in relation (19) is an accumulative scalar parameter introducing
isotropic damage hardening, which is equal to:

ϕ±
eq �

∫ t

0

∣

∣

∣ϕ̇
±
eq

∣

∣

∣dt (23)

where the rate of equivalent damage variable is:

ϕ̇±
eq �

√

ϕ̇±
i j ϕ̇

±
i j � βλ̇d

±
, β �

√

L±
mnklY

±
kl L

±
mnpqY

±
pq

2Y±
abL

±
abcdY

±
cd

. (24)

2.5 Damage hardening function

This subsection aims to compare the performance of two different alternatives for the damage hardening
function in Eq. (19). The first alternative proposes the following exponential function for K±, as used in many
previous studies [54–57, 59, 66]:

K± � K±
0

[

1 − 1

B± ln
(

1 − ϕ±
eq

)

]

(25)

where K±
0 is the damage initiation threshold, which implies the area under the linear region of material

stress–strain diagram, bounded by origin and f ±
0 .

Considering Eq. (25), ϕ±
eq can be expressed as:

ϕ−
eq � 1 − exp

[

B−
(

1 − K−

K−
0

)]

ϕ+
eq � 1 − K +

0

K + exp

[

B+
(

1 − K +

K +
0

)]

(26)

The term K +
0 /K + is added in ϕ+

eq to control the excessive damage growth in tensile loading. The evolution
of damage hardening functions can be defined by taking the derivatives of Eq. (25):

K̇− � K−
0

B− exp

[

−B−
(

1 − K−

K−
0

)]

ϕ̇−
eq

K̇ + � K +

B+ +
K +
0

K +

exp

[

−B+
(

1 − K +

K +
0

)]

ϕ̇+
eq (27)

Considering Eq. (19), one can substitute K± with
√

(1/2)Y±
i j Li jklY

±
kl in the mentioned relations. Also, B±

is a material parameter which is defined as follows [2, 54, 67]:

B± �
[

G±
f E

l∗ f ±2
0

− 1

2

]−1

≥ 0 (28)

where G±
f is the fracture energy and l∗ is the characteristic length scale determined as the cube root of the

tributary volume at each Gauss point.
The second alternative for K± is a power relation proposed by Abu Al-Rub and Kim [66]:

K± � K±
0

[

1 +

(

1

B± ϕ±
eq

) 1
q±

]

(29)
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where q± is a material constant. Abu Al-Rub and Kim [66] compared the exponential and power relations and
indicated that the results of the power relation, even by q± � 1, agree better with experiments. The tensile
equivalent damage variable is slightly modified here in order to obtain better predictions in multiaxial loadings:

ϕ+
eq � B+

(

K +
0 × α

K +

)(

K +

K +
0

− 1

)q+

, α � trace

(

∂g+

∂Y+

)

ϕ−
eq � B−

(

K−

K−
0

− 1

)q−

(30)

Moreover, the evolution of damage hardening functions can be calculated by taking the derivatives of
Eq. (29):

K̇ + � K +

B+
(

q+ − 1 +
K +
0

K +

)

[

K +

K +
0

− 1

]1−q+

ϕ̇+
eq

K̇− � K−
0

B−q−

[

K−

K−
0

− 1

]1−q−

ϕ̇−
eq (31)

2.5.1 Comparison

In order to evaluate the effectiveness of exponential and power damage hardening functions, the experimental
test of Kupfer et al. [72] is numerically simulated, and the results of the mentioned formulations are compared
and discussed here. Therefore, using the displacement control loading mode, an eight-node single element
with eight Gauss integration points is monotonically subjected to uniaxial and biaxial compressive loading.
Table 2 presents the material parameters. Figure 1 also shows the stress–strain and damage–strain curves of
both alternatives. In uniaxial loading, the results show a good agreement with experimental data for both
alternatives.

In contrast, the model using the exponential relation in biaxial loading cannot predict the experimental
result, and the nominal stress deviates from the experimental curve in the softening region. To further clarify
the mentioned deficiency, the presented alternatives are compared in larger amounts of equivalent damage. For
this purpose, Q is increased to 150, and the biaxial test is performed again using the exponential and power
relations. The nominal stress–strain and damage–strain diagrams are shown in Fig. 2. The damage results of
each case, at the end of analysis, are also listed in Table 3.

The main reason for the disparity between the results is that the equivalent damage in Eq. (25) has a
mathematical upper bound (i.e., 0 ≤ ϕ±

eq ≤ 1). Therefore, in an equi-biaxial loading in directions 1 and 2, the
sum of damage squares in loading directions is limited to 1:

ϕ̇eq �
√

ϕ̇2
11 + ϕ̇2

22, ϕ̇11 � ϕ̇22

0 ≤ ϕeq ≤ 1 ⇒ 0 ≤ ϕ2
11 + ϕ2

22 ≤ 1 (32)

Thus, the damage parameters are bounded to 0.707 in every loading direction, which is physically mean-
ingless. This is because, in an equi-biaxial loading, (∂g±/∂Y±)11 and (∂g±/∂Y±)22 in Eq. (22) are equal to
0.707.

For more clarification, consider a three-phase uniaxial test on a single element, in which the element is
loaded in directions 1, 2, and 3, respectively. In the first phase ϕeq is increased to 0.8; therefore, ϕ11 reaches
0.8. Then in the second phase, ϕeq increases to its maximum value, forced by exponential relation, (i.e., 1),
and consequently, ϕ22 reaches 0.2 (i.e., 0 ≤ ϕ22 ≤ 0.2). In the third phase, the uniaxial loading continues in

Table 2 Material properties

ν E (MPa) f −
0 (MPa) Q (MPa) b K−

0 B− q−

0.2 29,000 15 70 810 0.013 0.2 0.7
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Fig. 1 Numerical results of uniaxial and biaxial tests compared with Kupfer et al. [72]: a uniaxial stress–strain curves, b biaxial
stress–strain curves, c uniaxial damage–strain curve, d biaxial damage–strain curve

Fig. 2 The results of biaxial test with power and exponential damage laws for different amounts of Q; a stress–strain curves,
b damage–strain curves

direction 3, but as the equivalent damage has reached its upper bound, ϕ33 remains equal to zero. This damage
freeze means that the damage growth in different orientations is not an independent procedure, which leads to
discrepant results.

Furthermore,whenϕeq unrealistically reaches its upper bound in a biaxial test and all the damage parameters
reach a constant value (i.e., 0.707), M−1 will therefore be a nonzero constant tensor. This means σ increases
with σ , which is in contrast to the decreasing stress in the softening region observed in experiments. This is
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Table 3 The damage characteristics at the end of each test

Test no. Damage hardening function Q ϕeq ϕi j ∂g/∂y

1 Exponential 70 0.927 0 0 0 0 0 0
0 0.656 0 0 0.707 0
0 0 0.656 0 0 0.707

2 Exponential 80 0.963 0 0 0 0 0 0
0 0.681 0 0 0.707 0
0 0 0.681 0 0 0.707

3 Exponential 120 0.998 0 0 0 0 0 0
0 0.706 0 0 0.707 0
0 0 0.706 0 0 0.707

4 Exponential 150 1.000 0 0 0 0 0 0
0 0.707 0 0 0.707 0
0 0 0.707 0 0 0.707

5 Power 70 1.211 0 0 0 0 0 0
0 0.856 0 0 0.707 0
0 0 0.856 0 0 0.707

6 Power 80 1.419 0 0 0 0 0 0
0 1.000 0 0 0.707 0
0 0 1.000 0 0 0.707

shown in Fig. 2. Daneshyar and Ghaemian [59] also observed this artificial stiffness in the results of notched
beam under cyclic loading.

In order to treat the deficiencies of exponential relation, the power relation is employed in the ADPM of
present study. It is worth noting that ϕeq in the power relation (Eq. 29) has no mathematical upper bound and
grows up to the point where all the components of damage tensor reach their respective physical upper bounds
(0 ≤ ϕ±

eq, 0 ≤ ϕ±
i j ≤ 1).

The main findings of this subsection can be summarized as follows:

• Using exponential relation in multiaxial test: 1. results in physically unacceptable limits for damage param-
eters, 2. causes the damage tensor to freeze, 3. violates the damage parameter independency in different
orientations, 4. yields artificial stiffness in stress–strain curve, and consequently leads tomeaningless results.

• In the case of using power relation, the upper bound of damage parameters in loading directions is 1. Hence,
mathematically, the equivalent damage is not a limiting parameter and increases until all damage parameters
reach 1.

• The problems raised in exponential relation are observed in multiaxial loading tests.
• Mentioned problems get intensified by increasing Q.

2.6 Comparison of 3 alternatives for damage formulation

This subsection aims to evaluate the model performance with different combinations of available options for
continuum damage relations (i.e., damage effect tensor and damage driving force). To this end, three options
are considered and compared here for the formulation of the damage model. These proposed alternatives are
listed in Table 4.

It is worth mentioning that the second method is proposed by Abu Al-Rub and Kim [66]. The monotonic
uniaxial and biaxial compressive test of Kupfer et al. [72] is adopted to compare the performance of presented
alternatives. For this purpose, a single element is subjected to a monotonic uniaxial and equi-biaxial (i.e.,
ε1 � ε2) compression through the displacement control loading mode. The utilized material properties are
presented in Table 5. The difference in damage constants is because of the difference in damage formulation of
the different alternatives. The material constants are the same in both uniaxial and biaxial tests. Figure 3 shows
the numerical results generated by different alternatives along with the experimental curve. In the uniaxial
test, the results of all options show a perfect agreement with experimental data. In contrast, in the biaxial test,
the first and second options fail to predict the material response. The third method, nevertheless, successfully
predicts the test results in both uniaxial and biaxial loading states. Hence, the third alternative is adopted for
the damage formulation of the proposed ADPM model.



Formulation and efficient implementation of coupled anisotropic 4587

Table 4 Proposed alternatives for the formulation of the damage model

Alternative Details

1 Y±
i j � σ±

i j , K± � K±
0

[

1 +
(

ϕ±
eq/B

±
)1/q±]

M−1
i jkl � 1

2

[

(δim − ϕim )(δ jm − ϕ jm )δkl + δi j (δkm − ϕkm )(δlm − ϕlm )
]

Damage hardening parameter: Method 3*
2 Y±

rs � − 1
2 E

−1
i jabσ ab

∂M±−1
i j pq

∂ϕ±
rs

σ±
pq , K± � K±

0

[

1 +
(

ϕ±
eq/B

±
)1/q±]

M−1
i jkl � 1

2

[

(δim − ϕim )(δ jm − ϕ jm )δkl + δi j (δkm − ϕkm )(δlm − ϕlm )
]

Damage hardening parameter: Method 1*
3 Y±

rs � − 1
2 E

−1
i jabσ ab

∂M±−1
i j pq

∂ϕ±
rs

σ±
pq , K± � K±

0

[

1 +
(

ϕ±
eq/B

±
)1/q±]

M−1
i jkl � 1

4

[

(δik − ϕik )δ jl + (δ jl − ϕ jl )δik + (δil − ϕil )δ jk + (δ jk − ϕ jk )δil
]

Damage hardening parameter: Method 3*

*Damage hardening parameter calculation methods are described in sub-Sect. 3.4

Table 5 Material properties

Alternative ν E(MPa) f −
0 (MPa) Q(MPa) b K−

0 B− q−

1 0.2 29,000 15 70 810 22.5 0.16 1.29
2 0.2 29,000 15 70 810 0.02 0.055 1.4
3 0.2 29,000 15 70 810 0.013 0.2 0.7

Fig. 3 Comparison of stress–strain curves of three proposed alternatives with compressive test of Kupfer et al. [72]: a uniaxial
loading, b biaxial loading

3 Numerical implementation

There are two methods in the literature for stress updating in an ADPMmodel: the coupled formulation for the
anisotropic damage and plasticity [55, 56] and the decoupled approach [54, 66]. Zhu et al. [73] compared the
coupled and decoupled approaches with isotropic damage and found that the decoupled algorithm provides
better convergence and a satisfactory numerical accuracy. Hence, the decoupled method is adopted in this
study. In this regard, a two-step algorithm is used which, in the first step, updates the effective stress and, in
the second step, updates the damage tensor and the nominal stress.

In the first step, a conventional return mapping algorithm is adopted, in which σ and ε p are updated using
an elastic predictor plastic corrector method. Accordingly, the trial effective stress, at step n + 1, is updated as
follows:

σ tr
n+1 � E0

(

εn+1 − ε
p
n
)

(33)
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If the trial stress locates beyond the yield surface (i.e., F
(

σ tr
n+1, ε

±p
eq, n

)

> 0), it should be updated in an

iterative approach to determine a new admissible state. The consistency condition is also used to guarantee
that the predicted stress lies on the yield surface at the end of the plastic step.

i f F
(

σ tr
n+1, ε

±p
eq,n

)

> 0 then σ n+1 � σ tr
n+1 − E0�ε p � σ n + �σ e − E0�λP ∂F p

∂σ
(34)

In the damage step, the transformation of the effective stress to the nominal stress is performed in accordance
with the history of damage. The decomposition of effective stress tensor into positive and negative parts is
performed at the beginning of the damage step. Hence, two damage criteria, two damage tensors, and two
damage effect tensors are adopted for positive and negative stress states.

The damage criterion is used to determine the damage yielding condition for effective stress state so that if
g+ > 0 or g− > 0, it is inferred that the tensile or compressive damage evolution has occurred in the material.
Therefore, the damage tensor and the inverse of damage effect tensor must be updated using the effective stress
of the current step and the damage tensor of the previous step. In contrast, g+ ≤ 0 or g− ≤ 0 show no growth
in the material damage. Finally, the updated nominal stress, at the end of the damage step, is used to calculate
the unbalanced force vector in the nonlinear analysis.

It is worth noting that in order to expedite the convergence rate in global iterations of the Newton–Raphson
technique, the stiffness matrix of all elements must be updated in each iteration.

3.1 Continuum large cracking modification

In the classic plastic damage models, under tensile loading, by increasing the deformations and, subsequently,
the strains in material, the elastic and plastic strains increase continuously, which leads to meaningless predic-
tions. In brittle materials like concrete, the microcracks coalesce and form a macrocrack after an adequately
large deformation. At this point, the material’s behavior is similar to a discrete large crack, and the irreversible
part of deformation remains constant by increasing the total deformation. Hence, in the numerical formulation,
the evolution of irreversible tensile deformations (i.e., plastic strains) must be stopped at a distinct level of
tensile damage. Accordingly, in the present study, the evolution of plastic strain is stopped if ϕ

eq
n+1 ≥ ϕcr ,

where ϕcr is the large crack threshold. In this regard, the plastic strain rate can be expressed as:

ε̇ p � (1 − r) ˙̃ε p
(35)

where ε̃ p and σ̃ are intermediate plastic strain and intermediate effective stress, respectively. Moreover, the

scalar variable r � r
( ˆ̃σ

)

is a weight function (i.e., 0 ≤ r ≤ 1)

r (σ̂ ) �
(

3
∑

i�1

〈 ˆ̃σi
〉

)

/

(

3
∑

i�1

∣

∣

∣

ˆ̃σi
∣

∣

∣

)

(36)

where σ̃ at step n + 1 is equal to:

σ̃ n+1 � E0
(

ε̃n+1 − ε̃
p
n+1

)

(37)

where

ε̃n+1 � (

1 − Dcr
n

)

εn+1 (38)

The variable Dcr is introduced to make the evaluated intermediate effective stress in Eq. (37) return back
onto the yield surface, such that (In the following κ± is used instead of ε

±p
eq for simplicity):

F
((

1 − Dcr )σ , κ
) � 0 (39)

Therefore, Dcr is expressed as:

Dcr
n+1 � max

{

Dcr
n , 1 − cc

(

ε−ep
)

f (σ n+1, κ)

}

(40)

The inverse of damage effect tensor is redefined considering large crack modification as follows:

M−1 � (1 − Dcr )M−1 (41)

Figure 4 describes the algorithm for updating the effective and nominal stresses, adjusted for large cracking.
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Fig. 4 The stress update algorithm with large cracking modification for an integration point

3.2 Viscoplastic formulation

Concrete behavior under cyclic loading is highly dependent on the loading rate. Consequently, when using
rate-independent constitutive laws to simulate post-peak softening and stiffness degradation of concrete, con-
vergence issues may arise and the model’s response will be dependent on mesh and time increment. Hence, the
uniqueness of the response is not guaranteed. On the other hand, using rate-dependent extension of the model
can partially overcome the aforementioned numerical stability problems. Employing viscoplastic regulariza-
tion improves the rate of convergence of the model [74] and reduces the dependency on mesh refinement and
alignment [30]. The Duvaut–Lions model is employed here, whereby the plastic strain, effective stress, and
equivalent damage variables are regularized to incorporate viscosity. Therefore, the evolution of viscoplastic
strain tensor ε̇vp is expressed as follows:

ε̇vp � 1

μ

(

ε p − εvp
)

(42)

where μ is the viscosity parameter and represents the relaxation time of the viscoplastic model. The finite
increment of viscous strain tensor is calculated through Eq. (42):

�εvp � (

1 − αμ

)(

ε
p
n+1 − ε

vp
n

)

(43)

where αμ is the interpolation factor:

αμ � μ/�t

1 + μ/�t
(44)

where �t is the characteristic time increment. As ε
vp
n+1 � ε

vp
n + �εvp, one can obtain the following relation

for viscoplastic strain tensor:

ε
vp
n+1 � (

1 − αμ

)

ε
p
n+1 + αμε

vp
n (45)
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Fig. 5 The stress update algorithm at each integration point with large cracking and rate-dependency modifications

Additionally, the updated viscous equivalent damage variable can be calculated as follows:

ϕ
eq,v
n+1 � (

1 − αμ

)

ϕ
eq
n+1 + αμϕ

eq,v
n (46)

Figure 5 describes the implemented algorithm to update effective and nominal stress at each integration
point, adjusted for large cracking and rate dependency.

3.3 Plastic hardening parameters

The tensile and compressive plastic hardening parameters can be expressed similar to Eq. (23):

κ �
(

κ+

κ−

)

, κ± �
∫ t

0
κ̇±dt (47)

where the rate of κ is defined as:

κ̇ � h(σ̂ , κ) : ˆ̇ε p � λ̇Ph :
∂F p

∂σ̂
, h �

⎛

⎝

r
(

σ̂ i j

)

0

0 −
(

1 − r
(

σ̂ i j

))

⎞

⎠ (48)
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Fig. 6 The Iterative algorithm for the calculation of hardening parameters

Lee and Fenves [75] presented a formulation for the calculation of κ±. They rewrote Eq. (48) in a discrete
form as follows:

κn+1 � κn + �λPH(σ̂ n+1, κn+1) (49)

Since Eq. (49) is a nonlinear function of κ , the calculation of κn+1, σ̂ n+1 and λ̇P requires an iterative
solution (referred to as local iteration). For this purpose, the Newton–Raphson procedure is used in this paper.
The residual of Eq. (49) can be defined as follows:

Q(κn+1, σ̂ n+1, λ̇
P ) � −κn+1 + κn + �λPH(σ̂ n+1, κn+1) (50)

The algorithm estimates κn+1 in every iteration:

κ
j+1
n+1 � κ

j
n+1 + �κ (51)

The overview of the used local iteration algorithm is presented in Fig. 6:

3.4 Damage hardening parameters

In order to determine the damage effect tensor, one needs to calculate the damage tensors and equivalent damage
parameters. The damage hardening parameters ϕ±

eq have to be calculated so that the tensile and compressive

damage driving forcesY±
i j remain on the damage surface in Eq. (19). This is very similar to calculation of plastic

hardening parameters ε±P
eq in Eq. (14). In the damage part, the damage yield criterion is used to recognize the

damage initiation and growth, such that g± ≥ 0 shows the tensile/compressive damage growth in the material.
Hence, one needs to employ a computationally efficient algorithm to obtain damage hardening parameters.
Some studies in the literature propose an iterative method similar to the algorithm used to calculate the plastic
hardening parameters. However, a different approach is proposed here, which is more efficient in terms of
computational cost. In the following, three different methods, including the proposed method in this study and
those in the literature, are described and compared:

3.4.1 Method 1

In the first method, the damage tensors can be obtained once the damage multipliers λ̇d
±
are calculated through

the damage consistency condition [54–57, 66]. In this respect, Eqs. (22) and (24) can be used to obtain positive
and negative damage tensors and equivalent damage parameters, respectively. However, since λ̇d

±
is a function

of ϕ±
eq and ϕ±

i j , an iterative solution is needed to calculate λ̇d
±
. A cumbersome iterative solution is required

since the damage strain energy release rate Y±
i j is a function of the fourth-order damage effect tensor M±

i jkl

[59]. Therefore, a local iteration is presented here to determine ϕ±
eq, ϕ

±
i j and λ̇d

±
in the first method.
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Table 6 Material properties

ν E(MPa) f −
0 (MPa) Q(MPa) b K−

0 B− q−

0.2 32,000 12 55.5 1100 0.005 0.105 0.78

Fig. 7 Comparison of predicted stress–strain curves of three presented methods, based on uniaxial compressive test of Karsan
and Jirsa [76]

3.4.2 Method 2

Similar to the first method, the damagemultiplier has to be determined here to calculate the damage parameters
using Eqs. (22) and (24). The significant difference is that in the second method, λ̇d

±
is updated using ϕ±

eq and

ϕ±
i j of the previous step, and no iterative procedure is used.

3.4.3 Method 3

The first method tries to determine λ̇d
±
in an iterative procedure. This is similar to the returnmapping algorithm

used to determine λ̇p±
and σ±

i j in the plasticity part. However, there is an important difference between the
plasticity and damage parts of the decoupled solution proposed in this paper. In the local iteration used in
the plasticity part, ε±p

eq and σ±
i j are updated simultaneously in every iteration. In contrast, in the damage yield

criterion,σ±
i j and, consequently,Y

±
i j are constant and only the damage hardening parameters have to be updated.

Hence, one may directly use the damage function to update ϕ±
eq without iteration. Therefore, in this method,

the equivalent damage parameters are determined using Eq. (30). The main advantage of this approach is that
the time-consuming iterative solution and the cumbersome calculation procedure of λ̇d

±
are avoided.

3.4.4 Comparison

In order to compare the performance of the considered methods, the monotonic uniaxial compressive test of
Karsan and Jirsa [76] is adopted here. In this test, a single element is subjected to monotonic compression
through a displacement control loading mode. The properties of concrete material are presented in Table 6.
Figure 7 shows the nominal stress–strain curves, predicted by the proposed methods, along with the exper-
imental curve. All three methods are completely successful in predicting the material’s response, and their
results are in close agreement with the experimental data. The main difference between these methods is in
their execution time. The execution time of the first, second and third methods is 01′:58′′, 00′:45′′ and 00′:16′′,
respectively. This shows that the third method decreases the computational cost by 637% compared to the first
method and guarantees higher convergence rate. Hence, the first and second methods are not cost-effective.
It is essential to point out that in a nonlinear analysis with a complicated model consisting of hundreds of
elements under a dynamic load (with hundreds of time steps), this execution time may be more significant.
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Table 7 Material properties used for the compressive test of Zhang [77]

ν E(MPa) f −
0 (MPa) Q(MPa) b K−

0 B− q−

0.2 38,000 40 36 1800 0.0265 0.4 1.24

Table 8 Material properties used for the tensile test of Zhang [77]

ν E(MPa) f +0 (MPa) h K +
0 B+ q+

0.2 34,000 3.39 4500 0.00017 2.1 0.47

Fig. 8 Numerical results of monotonic uniaxial compression compared with Zhang [77]: a stress–strain curves, b numerical
damage–strain curve (in loading direction)

4 Experimental validation

The ADPM model is developed and implemented in an in-house finite element program, whereby the perfor-
mance of the model is evaluated. The verification is performed first using four single-element experimental
tests, including both monotonic and cyclic forms of compressive and tensile tests, followed by a full cyclic
test. Next, the model is examined by three structural tests, including four-point bending and shear tests and an
L-shaped concrete panel. For each case, the material parameters are presented.

4.1 Single-element tests

The verification of single-element tests is presented in the following. In all tests of this subsection, a 3D eight-
node element with eight Gauss integration points is analyzed using the displacement control loading mode.
Given the simplicity of mesh and loading for these tests, they are implemented in a rate-independent mode.

4.1.1 Monotonic uniaxial compressive and tensile tests

In order to examine the model’s capabilities under compressive and tensile loadings, the monotonic uniaxial
compressive and tensile tests of Zhang [77] are adopted here. The material properties of the single elements
are listed in Tables 7 and 8. The effective stress–strain, nominal stress–strain, and damage–strain curves are
illustrated in Fig. 8 for compressive and Fig. 9 for tensile test. The predicted results are in good agreement
with the experimental data and perfectly demonstrate the softening behavior of concrete.

4.1.2 Cyclic uniaxial compressive and tensile tests

The compressive test of Karsan and Jirsa [76] and the tensile test of Taylor [78] are employed to assess the
proposed model under cyclic loadings. In this regard, the single element undergoes uniaxial cyclic compres-
sive/tensile loading. The material properties of concrete specimens are listed in Tables 9 and 10. The cyclic
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Fig. 9 Numerical results of monotonic uniaxial tensile test compared with Zhang [77]: a Stress–strain curves, b numerical
damage–strain curve

Table 9 Material properties used for the compressive test of Karsan and Jirsa [76]

ν E(MPa) f −
0 (MPa) Q(MPa) b K−

0 B− q−

0.2 31,000 15 66 820 0.009 0.2 0.67

Table 10 Material properties used for the tensile test of Taylor [78]

ν E(MPa) f +0 (MPa) h K +
0 B+ q+

0.2 31,000 3.4 1500 0.000188 1.88 0.41

nominal stress–strain curves and the damage evolution diagram are plotted in Fig. 10 for compressive and
Fig. 11 for tensile test. The results perfectly illustrate the ability of the model to simulate the reduction of
unloading stiffness and irreversible deformations.

4.1.3 Full cyclic loading

A full cyclic uniaxial test is simulated through displacement control mode to evaluate the performance of
the model under full cyclic loading. In this regard, the prescribed strain is defined in a way that the damage
increases and the element undergoes nonlinear deformation in every positive and negative loading state.

The main goal of this test is to investigate the element’s response to the change in the load state from tensile
to compressive and vice versa. Moreover, in this test, the rate dependency and large cracking are activated.
Hence, three values ofμ/�t equal to 0, 1, and 3 are considered to show the influence of viscosity. Furthermore,
the large cracking is started after ϕeq reaches 0.9 (i.e., ϕcr � 0.9). Figure 12 shows the stress–strain diagram
of the element with three full loading cycles. This diagram shows an independent behavior in the tensile and
compressive zones. Furthermore, the result indicates that after the elastic unloading process, by changing
the load status from tension to compression, the tensile damage deactivates as the tensile cracks close and,
as expected, the stiffness recovery is realized. The curves’ differences in softening and hardening regions
demonstrate the effect of rate dependency on the element response. The results clearly show the effectiveness
of the model in addressing irreversible deformations, stiffness degradation, and large cracking.

4.2 Structural validations

4.2.1 Four-point bending test

Asimply supported concrete beamwith a single notch undermonotonic four-point loading is simulated to study
the model’s performance in mode-I fracture. The beam is discretized with eight-node brick elements with eight
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Fig. 10 Numerical results of cyclic uniaxial compressive test compared with Karsan and Jirsa [76]: a stress–strain curves,
b comparison of nominal and effective stresses, c damage–strain curve

Table 11 Material properties

ν E(MPa) f +0 (MPa) h K +
0 B+ q+

0.2 38,000 2.9 600 0.0001 1.6 0.9

integration points. Due to the symmetric conditions, only half of the global structure is modeled. Figure 13
illustrates the beam’s geometry, boundary conditions, and loading arrangement. The material properties of
concrete are also listed in Table 11. Figure 14 presents the load versus midspan deflection curves corresponding
to the numerical and experimental tests. The exaggerated deformed shape of beam, including the employed
mesh, is also illustrated in Fig. 15 in which the stretched elements show the crack pattern in the beam. The
numerical results are compared with the experimental results of Hordijk [79]. The predicted load–deflection
curve closely matches the curve obtained by experiment. The crack pattern is also in perfect agreement with
the experimental result and shows the damage localization.

4.2.2 L-shaped concrete panel

The test performed by Winkler et al. [80] on an L-shaped concrete panel is adopted as the second structural
test. The aim of this test is, first, to evaluate the accuracy and convergence of the solution and, second, to
examine the model’s capabilities under dynamic loading conditions. Figure 16 illustrates the geometry and
boundary condition of the model. The material parameters are also presented in Table 12. The simulated panel
is analyzed with six different number of steps (62, 70, 86, 110, 120, and 125) to investigate the convergence of
the algorithm. Figure 17 shows the force–displacement curves for the numerical and experimental solutions.
Similar results are achieved from different analyses, which indicates robust convergence of the solution.
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Fig. 11 Numerical results of cyclic uniaxial tensile test compared with Taylor [78]: a nominal stress–strain curves, b comparison
of nominal and effective stresses, c damage–strain curve

Fig. 12 Numerical stress–strain diagrams of full cyclic test in different viscosity ratios including large cracking possibility

Fig. 13 Dimensions, boundary conditions, and loading arrangement of four-point bending test (unit: mm)
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Fig. 14 Numerical solution of four-point bending test compared with experimental result of Hordijk [79]

Fig. 15 Finite element mesh, deformed shape, and crack pattern of the simulated beam

Fig. 16 The dimensions and boundary conditions of L-shaped concrete panel (unit: mm)

Table 12 Material properties

ν E(MPa) f +0 (MPa) h K +
0 B+ q+

0.2 23,000 2.7 600 0.000145 2.3 0.91

Finally, the panel is subjected to cyclic loading. The numerical and experimental force–displacement curves
are plotted in Fig. 18, and the predicted crack trajectory and finite element mesh are illustrated in Fig. 19. Both
the force–displacement curve and the crack pattern of the panel are in good agreement with the experimental
data, which confirms the effectiveness of the model under cyclic loadings.

4.2.3 Four-point shear test

The four-point shear test of Arrea and Ingraffea [81] is adopted here to evaluate the abilities of the model
under mixed-mode fracture. In this test, two point-loads (i.e., P1/P2 � 0.13) are applied to a notched beam
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Fig. 17 Numerical solution of L-shaped concrete panel for five different number of steps

Fig. 18 Numerical solution of L-shaped concrete panel compared with experimental results of Winkler et al. [80]

Fig. 19 Finite element mesh, deformed shape, and tensile crack pattern at the end of the analysis

through the indirect displacement control loading mode. The controlling parameter of loading is the relative
vertical displacement of two notch sides, denoted as the “crack mouth sliding displacement” (CMSD), with
an increment of 0.001 mm.

Figure 20 illustrates the beam’s dimensions, load conditions, and boundary conditions. Table 13 also
presents the material parameters of the beam. The simulated beam includes 357 eight-node solid elements
with eight integration points. The numerical and experimental force-CMSD curves are shown in Fig. 21. The
predicted curve agrees well with the experimental results. In order to predict a more accurate crack trajectory,
a second model with a finer mesh discretization is simulated and analyzed. The predicted deformed shapes
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Fig. 20 Dimensions, boundary conditions, and experimental crack pattern of four-point shear test (unit: mm)

Table 13 Material properties

ν E(MPa) f +0 (MPa) h K +
0 B+ q+

0.18 29,000 2.8 2000 0.00016 1.8 0.85

Fig. 21 Numerical solution of four-point shear test compared with experimental results of Arrea and Ingraffea [81]

Fig. 22 Numerically predicted deformed shapes and crack trajectories for two finite element mesh types; a coarse mesh, b fine
mesh

and crack trajectories are depicted in Fig. 22. In this test, a combination of fracture modes I and II with a
curved crack path is anticipated. In both models, a curved crack starts from the tip of the notch and moves
toward the nearest load application point. The crack trajectories of both models are in great agreement with
experimental data, which confirms the abilities of the model to predict mixed-mode fracture with complicated
crack patterns.
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5 Summary and conclusions

In this paper, the formulation and finite element implementation techniques of a new ADPM model are
presented for plain concrete, and the deficiencies of previous models are highlighted. A decoupled algorithm is
used in the model to combine two powerful models of anisotropic damage and plasticity. The existing damage
effect tensors in the literature are compared with respect to symmetry. The results reveal that some damage
effect tensors unrealistically turn the uniaxial experiment to an equi-triaxial test in transition from effective to
nominal configuration, and other examined tensors lead to unacceptable results or suffer from lack of minor
symmetry. Hence, an improved relation that guarantees both the minor and major symmetry properties is
used in the ADPM of this paper. In addition, two relations for damage hardening function (i.e., power and
exponential relations) are presented and compared. Results of the model using the power relation closely
match experimental data for both uniaxial and biaxial loadings, whereas the exponential relation, widely used
in literature, fails to predict the experimental curve in the biaxial test, and its numerically obtained stress
deviates from the experimental stress in the softening region.

Inspired by available models, three options are suggested and compared for the general formulation of the
anisotropic damage model. Performance of the presented options is compared through uniaxial and biaxial
experiments. The deficiencies of the first and second alternatives are demonstrated, and the third alternative is
adopted for the damage formulation of the proposed ADPM model.

The formulation is extended to capture large crack opening and closing after the material point has experi-
enced a threshold level of tensile damage.Moreover, the viscoplastic model of Duvaut–Lions is used to account
for rate-dependent behavior of concrete. The numerical implementation of themodel is also described in detail.
In order to adopt a computationally efficient algorithm for calculation of damage hardening parameters, three
computational methods are introduced and compared, including the methods used in literature and a new
method proposed here. The methods are compared in terms of computational cost and experimental validation.
The results clearly indicate that using the iterative algorithm for damage hardening parameters is unnecessary,
and the proposed method is much more efficient than the iterative solutions presented in the literature.

The proposed ADPM model is implemented in an in-house finite element code. The numerical results
obtained by the developed program are compared to those of experimental tests to investigate the efficiency of
the model. Some benchmark problems, including single-element and structural tests in monotonic and cyclic
loadings, are selected in this respect. The generated results perfectly agree with those obtained by experiments
in all cases.
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Appendix A: The plastic multiplier

The plastic multiplier is determined using the plastic consistency condition:

ḟ � ∂ f

∂σ i j
σ̇ i j +

∂ f

∂σ̂max
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σmax +

∂ f

∂ε
−p
eq
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eq +

∂ f
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eq
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eq � 0 (A1)

Using Eqs. (14), (18) and (A1), and after some manipulations, λ̇P can be obtained as follows:
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In the above equation, the derivative of the plastic yield function with respect to effective stress ∂ f
∂σ i j

can
be obtained as follows:

∂ f
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+
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J 2
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2

si j
√

3J 2
+ αδi j (A3)

Using Eqs. (14) and (15), the following relation can be obtained for the derivatives of yield criterion with
respect to equivalent plastic strains:

∂ f
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±p
eq
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(A4)

where ∂ f /∂ε
±p
eq can be determined from Eq. (14):
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The derivative of plastic potential function with respect to effective stress tensor is defined using Eq. (17):

∂FP

∂σ i j
� 3

2

si j
√

3J 2
+ αPδi j (A6)

Appendix B: The damage multipliers

Similar to the plastic multiplier, the damage multipliers can be determined using the damage consistency
condition:

ġ± � ∂g±

∂Y±
mn

Ẏ±
mn +

∂g±

∂K±
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∂ϕ±
eq
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eq � 0 (B1)

Using Eqs. (B1) and (24), λ̇d
±
can be obtained as follows:
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where the increment of damage driving forces can be expressed as follows:
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Hence,
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where ∂g±
∂Y±

i j
and ∂g±

∂K± can be obtained as follows:
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Fig. 23 The iterative algorithm for the calculation of �λd
±
and ϕ±

eq

By taking the derivatives of Eq. (29) with respect to ϕ±
eq the following relation can be obtained:
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According to Eq. (12),
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Since based on Eq. (12), ∂2M±−1

i j pq/∂ϕ2±
rs � 0, hence, ∂Y±
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kl can be calculated using Eq. (20) and strain
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Additionally,
∂Y±

i j

∂σ±
kl
can be obtained as follows:
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Since ∂K±
∂ϕ±

eq
in Eq. (B4) is a function of ϕ±

eq and subsequently �λd
±
is a function of ϕ±

eq and ϕ±
i j , an iterative

solution scheme is needed to calculate �λd
±
. This iterative algorithm is described in Fig. 23.
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