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Abstract In this paper, we investigate the damped nonlinear vibration of cracked functionally graded (FG)
graphene platelets (GPLs)-reinforced composite (FG-GPLRC) dielectric beam. The effective material prop-
erties of the composites are evaluated by effective medium theory (EMT) and rule of mixture. Governing
equations incorporating damping and dielectric properties are derived from an energy method with the frame-
work of Timoshenko beam theory and nonlinear von Kármán strain–displacement relationship. Stress intensity
factor (SIF) of cracked FG-GPLRC beam at the crack tip is obtained via finite element method (FEM). Dif-
ferential quadrature (DQ) and direct iterated methods are utilized to discretize and solve the nonlinear system.
Accuracy and convergence of the model and the solution are verified. An extensive numerical study is per-
formed to examine the effects of crack location and depth, damping and attributes of GPL and the applied
electric field on the nonlinear vibration behavior of the cracked FG-GPLRC beam. It is found that the frequency
ratios of cracked FG-GPLRC beams are more sensitive to the applied electric field when the crack with larger
depth is located close to the mid-span. The cracked FG-GPLRC beams with FG distribution profiles exhibit
better stability.

1 Introduction

The exceptional physical and mechanical attributes of graphene and its derivatives have attracted significant
interest in the advancement of high-performance and multifunctional composite materials and structures [1].
Zhao et al. [2] found that the addition of 1.8 vol% of graphene to polyvinyl alcohol (PVA) resulted in a
considerable enhancement of the tensile strength and Young’s modulus, with an increase of 150% and nearly
10 times, respectively. By utilizing atomistic modeling, Rahman and Haque [3] and Sun et al. [4] also observed
a significant improvement in the elastic properties of graphene-reinforced composites. Apart from enhancing
the mechanical performance of composites, graphene fillers can also improve their electrical and dielectric
properties simultaneously [5, 6]. Cui et al. [7] measured the dielectric permittivity of graphene nanoplatelet
(GPL)/polyvinylidene fluoride (PVDF) composites and reported a peak dielectric constant of 2080 at 1000 Hz
with the addition of 12.5 vol% graphene. Experiment conducted byMehmood et al. [8] indicated a considerable
improvement in the dielectric properties of GPLs/Ni-Co-Nd spinel composites with the incorporation of 2.5
wt% of GPLs.

In addition to examining the material properties, it has been discovered that the incorporation of graphene
into composite structures can lead to remarkable enhancements in their structural behaviors [9–14]. Over the
past few years, the concept of functionally graded graphene nanoplatelet-reinforced composites (FG-GPLRC)
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has emerged as a means to optimize the efficacy of graphene fillers [15], and a large number of works have
reported the structural behavior of FG-GPLRC. Yang et al. [16, 17] found a significant increase in both the
critical buckling load and the post-buckling of FG-GPLRC beam by adding a small quantity of GPL. Feng
et al. [18, 19] explored the nonlinear free vibration and nonlinear bending of FG-GPLRC beams and found
that placing more GPLs near the top and bottom surfaces of the beam are the most effective ways to strengthen
stiffness.Basedon thefirst-order shear deformation theory,Malekzadeh et al. [20] investigated the free vibration
of FG-GPLRC annular plates which embedded in piezoelectric layers. Nguyen et al. [21] carried out a study
on the static and dynamic responses of FG-GPLRC plates based on refined plate theory and NURBS-based
isogeometric analysis. Ma et al. [22] analyzed the free vibration of FG-GPLRC piezoelectric plates with
the plate theory incorporating a modified interlaminar shear stress field. Nikrad et al. [23] investigated the
nonlinear thermal stability responses of FG-GPLRC laminated plates with embedded circular and elliptical
delamination. Karami et al. [24] carried out an analysis on the forced resonant vibration of FG-GPLRC doubly
curved shells within the framework of third-order shear deformation shell theory. Ye et al. [25] presented a
study on the nonlinear forced vibration of FG-GPLRC cylindrical shells by implementing Galerkin method. In
recent years, the composites can exhibit negative Poisson’s ratio characteristics when the graphene is designed
to be graphene origami, which has great influences on the vibration characteristics of FG beam structures.
Zhao et al. [26–28] investigated the nonlinear bending and vibration of FG graphene origami-enabled auxetic
metamaterial beams. Murari et al. [29, 30] presented the nonlinear vibration and post-buckling analyses of FG
graphene origami-enabled metamaterial beams in fluid.

The aforementioned FG-GPLRC structures are often operating in complex environments, including the
subjection to different dynamic loadings in various engineering applications, and it is challenging to completely
avoid the occurrence of structural damage. The presence of cracks in an engineering structure may significantly
reduce the local stiffness and strength of the structure and affect structural performance accordingly [31, 32].
Several studies have been devoted to the structural behavior analysis of crackedFG-GPLRCbeam. For example,
Song et al. [33] examined the characteristics of linear free vibration and elastic buckling behaviors of FG-
GPLRC beams with a single edge crack and located on an elastic foundation. Kou et al. [34] investigated the
free vibration of FG-GPLRC beamswith open edged cracks via a meshfree boundary-domain integral equation
method. Tam et al. [35] employed the finite element method (FEM) to analyze the nonlinear bending behaviors
of three types of FG-GPLRC beams with an open edge crack. Mao et al. [36] analyzed free vibration of
edge-cracked FG-GPLRC piezoelectric beam by applying Ritz procedure and Newmark average acceleration
method.

Despite the numerous studies have been conducted on cracked FG-GPLRC structures, the work is solely
focused on mechanical properties, with no consideration of the electrical properties of FG-GPLRC. As previ-
ously stated, GPL fillers can significantly enhance the physical property of composites, such as the electrical
conductivity and the dielectric permittivity. Such physical properties of FG-GPLRC can be utilized for sens-
ing, monitoring and actively tuning the impact of cracks on the structural performance. However, to the best
of the authors’ knowledge, the effects of such physical properties on the structural behaviors of the cracked
FG-GPLRC beams have not been investigated.

In this work, the nonlinear vibration of cracked FG-GPLRC beam with dielectric properties and damping
is numerically investigated. Figure 1 exhibits the diagram of cracked FG-GPLRC beam, with L, b and h being
the length, width, and height, respectively. Assuming that the crack is perpendicular to the upper surface of
the FG-GPLRC laminated beam, and the crack depth and location are represented by a and L1, respectively.
W (x, t) represents the displacement of the middle plane of the beam and V is the applied voltage. To enable
active tuning and structural behavior monitoring using the applied electric field, compliant electrodes in the
form of a thin layer of silver paste are applied to both the top and bottom surfaces of the beam. The effective
material properties of the composites are determined by EMT and rule of mixture. Governing equations are
established based on Timoshenko beam theory and nonlinear von Kármán strain–displacement relationship.
Utilizing differential quadrature (DQ) and direct iterative methods, the governing equations are numerically
solved. Comprehensive numerical results demonstrate that FG-GPLRC structures with dielectric properties
can achieve self-sensing and structural health monitoring capabilities for the damage detection and safety
assessment.

2 Effective Properties of FG-GPLRC

Figure 2 illustrates five different distribution profiles, namely profiles U, X, O, A and V, in the present study.
Profile U denotes the uniform distribution of GPL throughout the thickness, while profiles X and O exhibit a
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Fig. 1 Schematic of FG-GPLRC dielectric beam with an edge crack subjected to electrical field and mechanical excitation

Fig. 2 Five GPL distribution profiles a U; b X; c O; d A; e V

linear increase and decrease of GPL concentration from the midplane toward the top and bottom surfaces of the
beam, respectively. In the case of profiles A and V, the GPL concentration uniformly increases and decreases
from the top to the bottom of the beam, respectively.

The volume fraction of GPLs in each individual layer, denoted as ϕk , is computed as follows

U : ϕk � ϕavg

X : ϕk � Z − 2 − (Z − 2|Z + 1 − 2k|)Sg
Z − 2

ϕavg

O : ϕk � Z − 2 + (Z − 2|Z + 1 − 2k|)Sg
Z − 2

ϕavg

A : ϕk � Z − 1 + (2k − Z − 1)Sg
Z − 1

ϕavg

V : ϕk � Z − 1 − (2k − Z − 1)Sg
Z − 1

ϕavg

(1)

where Z denotes the total number of layers, the scaling factorSg is given by (ϕmax–ϕmin)/(ϕmax + ϕmin), where
ϕmax and ϕmin are the maximum and minimum volume fraction of GPLs. ϕavg is the average volume fraction
of the FG-GPLRC, which can be defined by the total weight fraction of GPLs (f GPL).

Considering that this work covers not only the mechanical properties of the composite but also its electrical
properties, EMT [37] is employed to obtain the elastic modulus and dielectric permittivity of the composites
for structural analysis.

The material properties of the composite GPLRC can be determined by [37, 38]

(1 − ϕk)
Lm − Lek

Lm +
(
1
/
3
)
(Lm − Lek)

+
1

3
ϕk

3∑

r�1

Lr − Lek

Lek + Srr (Lr − Lek)
� 0 (2)
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where L represents the moduli tensor, which can be elastic modulus of the mechanical property and complex
electrical conductivity of the physical property. The subscript “e” stands for effective medium, and Srr is the
r.th component of Eshelby tensor of the filler, expressed as [39]

⎧
⎪⎨

⎪⎩

S11 � S22 � α

2
(
1 − α2

)3/ 2

[
arccosα − α

(
1 − α2)1/ 2

]

S33 � 1 − 2S11

(3)

where α � tGPL/DGPL with tGPL and DGPL being the thickness and diameter of the GPL, respectively.
For the mechanical properties of GPLRC, Eq. (2) can be represented as

(1 − ϕk)
Em − Eek

Em +
(
1
/
3
)
(Em − Eek)

+
1

3
ϕk

3∑

r�1

Er − Eek

Eek + Srr (Er − Eek)
� 0 (4)

where Ee denotes the effective elastic modulus of composite. An interphase coating the filler is introduced to
address the imperfect bonding between GPL and matrix. Hence, Er is replaced by the ones of the coated filler
E (c)
r , i.e.,

E (c)
r � E (int)

0

⎡

⎣1 +
(1−ϕint)

(
Er−E(int)

0

)

ϕintSrr

(
Er−E(int)

0

)
+E(int)

0

⎤

⎦ r � 1, 2, 3 (5)

where E (int)
0 denotes the elastic modulus of the interphase and ϕint is the volume fraction of the interphase.

For the electrical properties of GPLRC, the moduli tensors can be replaced by the complex electrical
conductivity, and then Eq. (2) becomes

(1 − ϕk)
σ ∗
m − σ ∗

ek

σ ∗
m +

(
1
/
3
)(

σ ∗
m − σ ∗

ek

) +
1

3
ϕk

3∑

r�1

σ ∗
r − σ ∗

ek

σ ∗
ek + Srr

(
σ ∗
r − σ ∗

ek

) � 0 (6)

where σ* m, σ* e and σ* r represent the complex electrical conductivity of the matrix, the composites and the
rth component of the filler, respectively. The complex electrical conductivity σ * can be further expressed as σ *

� σ + 2π if ACε, where f AC is the AC frequency (in Hz) and ε is the dielectric permittivity of the composites.
Similarly, with the consideration of the interphase, the electrical conductivity and the dielectric permittivity

of GPLs are modified as [37, 38]
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ (c)
r � σ

(int)
0

⎡

⎣1 +
(1 − ϕint)

(
σr − σ

(int)
0

)

ϕintSrr
(
σr − σ

(int)
0

)
+ σ

(int)
0

⎤

⎦

ε(c)
r � ε

(int)
0

⎡

⎣1 +
(1 − ϕint)

(
εr − ε

(int)
0

)

ϕintSrr
(
εr − ε

(int)
0

)
+ ε

(int)
0

⎤

⎦

r � 1, 2, 3 (7)

where σ (int) 0 and ε(int) 0 represent the electrical conductivity and dielectric permittivity of interphase,
respectively.

Considering the interfacial electron hopping, Maxwell–Wagner–Sillars (MWS) polarization [40, 41] and
the AC frequency facilitated effects [37, 42], σ (int) 0 and ε(int) 0 in Eq. (7) are modified as the ones in [37].

The rule of mixture is used to estimate Poisson’s ratio and density, i.e.,
{

νek � (1 − ϕk)νm + ϕkν f

ρek � (1 − ϕk)ρm + ϕkρ f
(8)

where νm and νf are, respectively, the Poisson’s ratio of matrix and filler, ρm and ρf are, respectively, the mass
density of matrix and filler.
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Fig. 3 Schematic of the rotational spring model

3 Governing equations

3.1 Equivalent spring model

Considering an open edge crack that is perpendicular to the surface of the FG-GPLRC beam, it can be modeled
by a massless elastic rotational spring with KT being the spring stiffness as shown in Fig. 3.

The Griffith energy balance shows that the elastic work done by the bending moment is used to generate a
new crack surface [43], i.e.,

1

2
Mdψ12 � Gda (9)

where M is the bending moment at the crack and ψ12 is the relative angle of rotation of the two parts of the
spring connection. G represents the energy release rate, which can be expressed as

G � (
1 − ν2

)πξ2a

E
(10)

where ξ stands for the tensile stress of the infinite plate, E and ν represent the elastic modulus and Poisson’s
ratio of the material, respectively. By introducing the stress intensity factor (SIF) K I, Eq. (10) becomes

G � (
1 − ν2

)K 2
I

E
(11)

Substituting Eq. (11) and dψ12 � MdC into Eq. (9), we can have

1 − ν2

E
K 2
I � M2

2

dC

da
(12)

where C denotes the spring flexibility. For finite structures, the SIF is determined by the following equation

KI � 6M
√

πa

h2
F(a) (13)

Substituting Eq. (13) into Eq. (12) followed by integration, we have

C � 72π

h4

[
ϑ∑

k�1

∫ Zt(k)

Zb(k)

1 − ν2

E
aF2(a)da +

∫ a

Zt(ϑ)

(
1 − ν2

)

E
aF2(a)da

]

(14)

where ϑ denotes the layer number that crack penetrates through and spring stiffness is defined as KT � 1/C.

3.2 Constitutive equation

The displacement field of the composite beam in the segment i can be expressed by using the Timoshenko
beam theory as

{
ũi (xi , z, t) � ui (xi , t) − zψi (xi , t)
w̃i (xi , z, t) � wi (xi , t)

i � 1, 2 (15)

where ui(xi,t) and wi(xi,t) represent the displacements of the beam in axial and transverse directions, respec-
tively, ψ i(xi,t) is the rotation angle of the middle plane of the beam and t represents time.
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Utilizing von Kármán nonlinear strain–displacement relation, the strains are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εi xx � ∂ ũi
∂xi

+
1

2

(
∂w̃i

∂xi

)2

� ∂ui
∂xi

+
1

2

(
∂wi

∂xi

)2

− z
∂ψi

∂xi

γi xz � ∂ ũi
∂z

+
∂w̃i

∂xi
� −ψi +

∂wi

∂xi

(16)

In the present work, Kelvin–Voigt model will be used to consider the internal damping. The Kelvin–Voigt
model consists of a spring and a damper in parallel. Then the constitutive relationship between stress and strain
in the i.th layer of the composite becomes [44]

⎧
⎪⎪⎨

⎪⎪⎩

σ̃i xxk � Eek

1 − ν2ek
(εi xx + ε0 + β1ε̇i xx ) − σE

k

τ̃i xzk � Eek

2(1 + νek)
(γi xz + β2γ̇i xz)

(17)

where β1 and β2 denote the tensile and shear proportionality constants of the internal damping, respectively,
ε0 denotes the pre-strain in the longitudinal direction of the beam. σE

k denotes the electrostatic stress, which
can be determined as

σE
k � V 2

k

h2k
εek (18)

where εek represents the effective dielectric permittivity of the kth layer of the composite beam.
The axial force, bending moment and shear force of the beam are expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nix �
Z∑

k�1

∫ Ht(k)

Hb(k)

σ̃i xxkdz � A11ε0 + A11

[
∂ui
∂xi

+
1

2

(
∂wi

∂xi

)2
]

− B11
∂ψi

∂xi
+ β1A11

(
∂ u̇i
∂xi

+
∂wi

∂xi

∂ẇi

∂xi

)
− β1B11

∂ψ̇i

∂xi
− NE

i11

Mix �
Z∑

k�1

∫ Ht(k)

Hb(k)

σ̃i xxk zdz � B11ε0 + B11

[
∂ui
∂xi

+
1

2

(
∂wi

∂xi

)2
]

− D11
∂ψi

∂xi
+ β1B11

(
∂ u̇i
∂xi

+
∂wi

∂xi

∂ẇi

∂xi

)
− β1D11

∂ψ̇i

∂xi
− ME

i11

Qix �
Z∑

k�1

∫ Ht(k)

Hb(k)

ks τ̃i xzkdz � A55

(
−ψi +

∂wi

∂xi

)
+ β2A55

(
−ψ̇i +

∂ẇi

∂xi

)

(19)

where Hb(k) and H t(k) denote the coordinates of the bottom and top of the kth layer, respectively. A11, B11, D11
and A55 represent stiffness coefficients. NE i11 and ME i11 are, respectively, the electrostatic axial force and
bending moment, determined as

{A11, B11, D11} �
Z∑

k�1

∫ Ht(k)

Hb(k)

Eek

1 − ν2ek

{
1, z, z2

}
dz

A55 �
Z∑

k�1

∫ Ht(k)

Hb(k)

ks Eek

2(1 + νek)
dz

{
NE
i11,M

E
i11

} �
Z∑

k�1

∫ Ht(k)

Hb(k)

V 2
ik

H2
k

εeik{1, z}dz

(20)

where ks � 5/6 is the shear correction factor pertaining to the composite beam considered in present work.
While estimating the electrical properties, the FG-GPLRC beam can be regarded as a resistive series model

[45], from which the voltage Vk can be calculated for each layer. The electrical conductivity and resistance
are related as

σe � l

RS
(21)
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Fig. 4 Schematic of equivalent resistance model of FG-GPLRC beam with an edge crack

where l, S and R denote the length between the electrodes, the electrode area and the resistance, respectively,
σ e represents the conductivity of the material. Then, the resistance of the kth layer in the series system is

Rk � Hk

σek L
(22)

where Hk represents the thickness of each individual layer of functionally graded structure. In this study, it is
assumed that each layer has the same thickness, i.e., Hk � h/Z. According to Ampere’s law, one can have

I � U

R
� V

Roverall
� V

∑Z
k�1

1
Rk

(23)

Then the voltage across each resistor can be expressed as

Vk � I Rk � VhRk

ZL
∑Z

k�1 σek
� Vh2

Z2L2

1

σek
∑Z

k�1 σek
(24)

The cracked FG-GPLRC beam can be equivalent to the configuration illustrated in Fig. 4. When subjected
to the applied electric field, the multilayer structure can be simulated as a parallel system comprising two
resistances that are connected in series. Therefore, the voltage across each resistor can be obtained from Eqs.
(21)–(24) as

Vik � Vh2

Z2L2
i

1

σiek
∑Z

k�1 σiek
(25)

3.3 Energy integrals

The virtual strain energy of the FG-GPLRC beam can be written as

δ�U �
2∑

i�1

∫ Li

0

Z∑

k�1

∫ Ht(k)

Hb(k)

(σ̃i xxkδεi xx + τ̃i xzkδγi xz)dzdxi + δ

[
1

2
KT(�ψ)2

]

� −
2∑

i�1

∫ Li

0

∂Nix

∂xi
δuidxi −

2∑

i�1

∫ Li

0

[
∂

∂xi

(
Nix

∂wi

∂xi

)
+

∂Qix

∂xi

]
δwi dxi

+
2∑

i�1

∫ Li

0

(
∂Mix

∂xi
− Qix

)
δψi dxi (26)

The virtual kinetic energy of the beam can be determined as

δ�T � 1

2
δ

2∑

i�1

∫ Li

0

Ni∑

k�1

∫ Ht(k)

Hb(k)

ρek

[(
∂ ũi
∂t

)2

+

(
∂w̃i

∂t

)2

+

(
z
∂ψi

∂t

)2
]

dzdxi
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�
2∑

i�1

∫ Li

0

[
I1

(
∂ui
∂t

∂δui
∂t

+
∂wi

∂t

∂δwi

∂t

)
− I2

(
∂ψi

∂t

∂δui
∂t

+
∂ui
∂t

∂δψi

∂t

)
+ 2I3

∂ψi

∂t

∂δψi

∂t

]
dxi (27)

where I1, I2 and I3 are inertial coefficients, i.e.,

{I1, I2, I3} �
Z∑

k�1

∫ Ht(k)

Hb(k)

ρek
{
1, z, z2

}
dz (28)

Employing Hamilton’s principle, we have
∫ t

0
(δ�T − δ�U )dt � 0 (29)

and then the governing equations for the vibration of the beam are
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Nix

∂xi
� I1

∂2ui
∂t2

− I2
∂2ψi

∂t2

∂
(
Nix

∂wi
∂xi

)

∂xi
+

∂Qix

∂xi
� I1

∂2wi

∂t2
∂Mix

∂xi
− Qix � I2

∂2ui
∂t2

− 2I3
∂2ψi

∂t2

i � 1, 2 (30)

Substituting Eq. (19) into Eq. (30), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11

(
∂2ui
∂x2i

+
∂wi

∂xi

∂2wi

∂x2i

)

− B11
∂2ψi

∂x2i
+ β1A11

(
∂2u̇i
∂x2i

+
∂ẇi

∂xi

∂2wi

∂x2i
+

∂wi

∂xi

∂2ẇi

∂x2i

)

− β1B11
∂2ψ̇i

∂x2i
� I1

∂2ui
∂t2

− I2
∂2ψi

∂t2

A11ε0
∂2wi

∂x2i
+ A11

[
∂2ui
∂x2i

∂wi

∂xi
+

∂2wi

∂x2i

∂ui
∂xi

+
3

2

(
∂wi

∂xi

)2 ∂2wi

∂x2i

]

− B11

(
∂2ψi

∂x2i

∂wi

∂xi
+

∂2wi

∂x2i

∂ψi

∂xi

)

− NE
11

∂2wi

∂x2i

+β1A11

[
∂2u̇i
∂x2i

∂wi

∂xi
+

∂2wi

∂x2i

∂ u̇i
∂xi

+ 2
∂wi

∂xi

∂2wi

∂x2i

∂ẇi

∂xi
+

(
∂wi

∂xi

)2 ∂2ẇi

∂x2i

]

− β1B11

(
∂2ψ̇i

∂x2i

∂wi

∂xi
+

∂2wi

∂x2i

∂ψ̇i

∂xi

)

+A55

(

− ∂ψi

∂xi
+

∂2wi

∂x2i

)

+ β2A55

(

− ∂ψ̇i

∂xi
+

∂2ẇi

∂x2i

)

� I1
∂2wi

∂t2

B11

(
∂2ui
∂x2i

+
∂wi

∂xi

∂2wi

∂x2i

)

− D11
∂2ψi

∂x2i
+ β1B11

(
∂2u̇i
∂x2i

+
∂ẇi

∂xi

∂2wi

∂x2i
+

∂wi

∂xi

∂2ẇi

∂x2i

)

−β1D11
∂2ψi

∂x2i
− A55

(
−ψi +

∂wi

∂xi

)
− β2A55

(
−ψ̇i +

∂ẇi

∂xi

)
� I2

∂2ui
∂t2

− 2I3
∂2ψi

∂t2

(31)

For considered boundary conditions, i.e., clamped (C) end and hinged (H) end, we have

ui � 0,wi � 0,ψi � 0 (C end) (32)

and

ui � 0,wi � 0,Mi � 0 (H end) (33)

It is necessary to reintegrate the above two parts into a unified solution. Thus, the matching conditions at
the crack need to be considered along with the boundary conditions, and we have

⎧
⎪⎪⎨

⎪⎪⎩

u1N1 � u21,w1N1 � w21, N1x � N2x

N1x
∂w1

∂x1
+ Q1x � N2x

∂w2

∂x2
+ Q2x

M1x � M2x � KT(ψ1 − ψ2)

(34)
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4 Solution

To normalize the governing equations, the following definitions are introduced

Xi � xi
Li

,Ui � ui
h
,Wi � wi

h
,�i � ψi , ηi � Li

h
, κ � L

h

A110 � Em

1 − ν2m
h, I10 � ρmh, {i1, i2, i3} �

{
I1
I10

,
I2
I10h

,
I3

I10h2

}

{
a11, a55, b11, d11, N

E
11,M

E
11, KT

}
�
{

A11

A110
,
A55

A110
,

B11

A110h
,

D11

A110h2
,
NE
11

A110
,
ME

11

A110h
,

KT

A110h

}

T � t

L

√
A110

I10
, {c1, c2} �

{
β1

L

√
A110

I10
,
β2

L

√
A110

I10

}

(35)

Substituting Eq. (35) into Eq. (31), the dimensionless governing equation is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11

(
∂2Ui

∂X2
i

+
1

ηi

∂Wi

∂Xi

∂2Wi

∂X2
i

)

− b11
∂2�i

∂X2
i

+ c1a11

(
∂2U̇i

∂X2
i

+
1

ηi

∂Ẇi

∂Xi

∂2Wi

∂X2
i

+
1

ηi

∂Wi

∂Xi

∂2Ẇi

∂X2
i

)

− c1b11
∂2�̇i

∂X2
i

� i1
η2i

κ2

∂2Ui

∂T 2 − i2
η2i

κ2

∂2�i

∂T 2

a11ε0
∂2Wi

∂X2
i

+ a11

[
1

ηi

∂2Ui

∂X2
i

∂Wi

∂Xi
+

1

ηi

∂2Wi

∂X2
i

∂Ui

∂Xi
+

3

2η2i

(
∂Wi

∂Xi

)2
∂2Wi

∂X2
i

]

− b11
ηi

(
∂2�i

∂X2
i

∂Wi

∂Xi
+

∂2Wi

∂X2
i

∂�i

∂Xi

)

− N
E
11

∂2Wi

∂X2
i

+c1a11

[
1

ηi

∂2U̇i

∂X2
i

∂Wi

∂Xi
+

1

ηi

∂2Wi

∂X2
i

∂U̇i

∂Xi
+

2

η2i

∂Wi

∂Xi

∂2Wi

∂X2
i

∂Ẇi

∂Xi
+

1

η2i

(
∂Wi

∂Xi

)2
∂2Ẇi

∂X2
i

]

− c1b11
ηi

(
∂2�̇i

∂X2
i

∂Wi

∂Xi
+

∂2Wi

∂X2
i

∂�̇i

∂Xi

)

+a55

(

−ηi
∂�i

∂Xi
+

∂2Wi

∂X2
i

)

+ c2a55

(

−ηi
∂�̇i

∂Xi
+

∂2Ẇi

∂X2
i

)

� i1
η2i

κ2

∂2Wi

∂T 2

b11

(
∂2Ui

∂X2
i

+
1

ηi

∂Wi

∂Xi

∂2Wi

∂X2
i

)

− d11
∂2�i

∂X2
i

+ c1b11

(
∂2U̇i

∂X2
i

+
1

ηi

∂Ẇi

∂Xi

∂2Wi

∂X2
i

+
1

ηi

∂Wi

∂Xi

∂2Ẇi

∂X2
i

)

−c1d11
∂2�̇i

∂X2
i

− a55η
2
i

(
−ψi +

1

ηi

∂Wi

∂Xi

)
− c2a55η

2
i

(
−�̇i +

1

ηi

∂Ẇi

∂Xi

)
� i2

η2i

κ2

∂2Ui

∂T 2 − 2i3
η2i

κ2

∂2�i

∂T 2

(36)

The dimensionless governing equations will be discretized using DQ method for numerical solution, and
the resulting expressions for the displacements and their derivatives are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{Ui (Xi , T ),Wi (Xi , T ),�i (Xi , T )} �
Ni∑

n�1

lin(Xi ){Uin(T ),Win(T ),�in(T )}

∂ς

∂Xς
i

{Ui (Xi , T ),Wi (Xi , T ),�i (Xi , T )}
∣
∣∣
∣∣
Xi�Xi j

�
Ni∑

n�1

λ
(ς)
i jn{Uin(T ),Win(T ),�in(T )}

(37)

where Ni denotes the total number of grid points along the longitudinal direction of the beam, {Uin,Win, Ψ in}
is the displacement vector when Xi � Xij, and lin(Xi) and λ

(ς)
i jn are, respectively, the Lagrange interpolating

polynomial and its corresponding weighting coefficients of the j.th derivative when Xi � Xij. The distribution
of the grid points is given as [46]

Xi j � 1
2

{
1 − cos

[
π( j−1)
Ni−1

]}
j � 1, 2, · · · , Ni (38)
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Substituting Eqs. (34) and (37) into Eq. (36) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1N1 � U21,W1N1 � W21

a11

⎡

⎣ 1

η1

N1∑

n�1

λ
(1)
1N1n

U1n +
1

2η21

(
N1∑

n�1

λ
(1)
1N1n

W1n

)2⎤

⎦ − b11
η1

N1∑

n�1

λ
(1)
1N1n

�1n

+c1a11

(
1

η1

N1∑

n�1

λ
(1)
1N1n

U̇1n +
1

η21

N1∑

n�1

λ
(1)
1N1n

W1n

N1∑

n�1

λ
(1)
1N1n

Ẇ1n

)

− c1b11
η1

N1∑

n�1

λ
(1)
1N1n

�̇1n

� a11

⎡

⎣ 1

η2

N2∑

n�1

λ
(1)
21nU2n +

1

2η22

(
N2∑

n�1

λ
(1)
21nW2n

)2⎤

⎦ − b11
η2

N2∑

n�1

λ
(1)
21n�2n

+c1a11

(
1

η2

N2∑

n�1

λ
(1)
21nU̇2n +

1

η22

N2∑

n�1

λ
(1)
21nW2n

N2∑

n�1

λ
(1)
21n Ẇ2n

)

− c1b11
η2

N2∑

n�1

λ
(1)
21n�̇2n

⎧
⎨

⎩
a11ε0 − N̄E

11

η1
+
a11
η21

⎡

⎣
N1∑

n�1

λ
(1)
1N1n

U1n +
1

2η1

(
N1∑

n�1

λ
(1)
1N1n

W1n

)2⎤

⎦ +
c1a11
η21

(
N1∑

n�1

λ
(1)
1N1n

U̇1n +
1

η1

N1∑

n�1

λ
(1)
1N1n

W1n

N1∑

n�1

λ
(1)
1N1n

Ẇ1n

)⎫⎬

⎭

N1∑

n�1

λ
(1)
1N1n

W1n

−
[
b11
η21

N1∑

n�1

λ
(1)
1N1n

�1n +
c1b11
η21

N1∑

n�1

λ
(1)
1N1n

�1n

]
N1∑

n�1

λ
(1)
1N1n

W1n + a55

(

−�1N1 +
1

η1

N1∑

n�1

λ
(1)
1N1n

W1n

)

+ c2a55

(

−�̇1N1 +
1

η1

N1∑

n�1

λ
(1)
1N1n

Ẇ1n

)

�
⎧
⎨

⎩
a11ε0 − N̄E

11

η2
+
a11
η22

⎡

⎣
N2∑

n�1

λ
(1)
21nU2n +

1

2η2

(
N2∑

n�1

λ
(1)
21nW2n

)2⎤

⎦ +
c1a11
η22

(
N2∑

n�1

λ
(1)
21nU̇2n +

1

η2

N2∑

n�1

λ
(1)
21nW2n

N2∑

n�1

λ
(1)
21n Ẇ2n

)⎫⎬

⎭

N2∑

n�1

λ
(1)
21nW2n

−
[
b11
η22

N2∑

n�1

λ
(1)
21n�2n +

c1b11
η22

N2∑

n�1

λ
(1)
21n�̇2n

]
N2∑

n�1

λ
(1)
21nW2n + a55

(

−�21 +
1

η2

N2∑

n�1

λ
(1)
21nW2n

)

+ c2a55

(

−�̇21 +
1

η2

N2∑

n�1

λ
(1)
21n Ẇ2n

)

b11ε0 +
b11
η1

⎡

⎣
N1∑

n�1

λ
(1)
1N1n

U1n +
1

2η1

(
N1∑

n�1

λ
(1)
1N1n

W1n

)2⎤

⎦ +
c1b11
η1

(
N1∑

n�1

λ
(1)
1N1n

U̇1n +
1

η1

N1∑

n�1

λ
(1)
1N1n

W1n

N1∑

n�1

λ
(1)
1N1n

Ẇ1n

)

− d11
η1

N1∑

n�1

λ
(1)
1N1n

�1n − c1d11
η1

N1∑

n�1

λ
(1)
1N1n

�̇1n − M̄E
11 � K̄T

(
�21 − �1N1

)

b11ε0 +
b11
η2

⎡

⎣
N2∑

n�1

λ
(1)
21nU2n +

1

2η2

(
N2∑

n�1

λ
(1)
21nW2n

)2⎤

⎦ +
c1b11
η2

(
N2∑

n�1

λ
(1)
21nU̇2n +

1

η2

N2∑

n�1

λ
(1)
21nW2n

N2∑

n�1

λ
(1)
21n Ẇ2n

)

− d11
η2

N2∑

n�1

λ
(1)
21n�2n − c1d11

η2

N2∑

n�1

λ
(1)
21n�̇2n − M̄E

11 − M̄T
11 � K̄T

(
ψ21 − ψ1N1

)

(39)

Correspondingly, the boundary condition becomes

Ui j � 0,Wi j � 0,�i j � 0 (C end) (40)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui j � 0,Wi j � 0

b11ε0 + b11

⎡

⎢
⎣

1

ηi

Ni∑

n�1

λ
(1)
i jnUin +

1

2

1

η2i

⎛

⎝
Ni∑

n�1

λ
(1)
i jnWin

⎞

⎠

2
⎤

⎥
⎦ − d11

1

ηi

Ni∑

n�1

λ
(1)
i jn�in

+c1b11

⎛

⎝ 1

ηi

Ni∑

n�1

λ
(1)
i jnU̇in +

1

η2i

Ni∑

n�1

λ
(1)
i jnWin

Ni∑

n�1

λ
(1)
i jn Ẇin

⎞

⎠ − c1d11
1

ηi

Ni∑

n�1

λ
(1)
i jn�̇in − M

E
11 � 0

(H end)

(41)

Equation (39) can be further written as

Mi d̈i + [CiL + CiNLd(di )]ḋi +
[
KiL +KiNL(di ) + CiNLv

(
ḋi
)]
di � 0 (42)
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where

Mi � η2i

κ2

⎡

⎣
−i1I 0 i2I
0 −i1I 0
i2I 0 −2i3I

⎤

⎦ (43)

CiL �
⎡

⎢
⎣
c1a11λ

(2)
i 0 −c1b11λ

(2)
i

0 c1a55λ
(2)
i −c1ηiα55λ

(1)
i

−c1b11λ
(2)
i c1ηiα55λ

(1)
i −c1d11λ

(2)
i − c1η2i α55 I

⎤

⎥
⎦ (44)

CiNLd(di ) �

⎡

⎢
⎢
⎣

0 C12
iNLd 0

C21
iNLd C22

iNLd C23
iNLd

0 C32
iNLd 0

⎤

⎥
⎥
⎦ (45)

KiL �
⎡

⎢
⎣

a11λ
(2)
i 0 −b11λ

(2)
i

0
(
a11ε0 − N

E
11

)
λ

(2)
i + a55λ

(2)
i −ηi a55λ

(1)
i

−b11λ
(2)
i ηi a55λ

(1)
i d11λ

(2)
i − η2i a55I

⎤

⎥
⎦ (46)

KiNL(di ) �

⎡

⎢⎢
⎣

0 K12
iNL 0

K21
iNL K22

iNL(1) +K22
iNL(2) K23

iNL

0 K32
iNL 0

⎤

⎥⎥
⎦ (47)

and

CiNLv
(
ḋi
) �

⎡

⎣
0 C12

iNLv 0
0 C22

iNLv(1) + C22
iNLv(2) 0

0 C32
iNLv 0

⎤

⎦ (48)

where I denotes the identity matrix. The expressions for K12 iNL, K21 iNL, K22 iNL(1), K22 iNL(2), K23
iNL and K32 iNL are listed in appendix A, C12 iNLv, C22 iNLv(1), C22 iNLv(2) and C32 iNLv are listed in
appendix B, and C12 iNLd, C21 iNLd, C22 iNLd, C23 iNLd and C32 iNLd are listed in appendix C.

By rearranging the field equations within the structure of the generalized eigenvalue problem, Eq. (42) can
be transformed into

[
0 −I

KiL +KiNL(d) + CiNL - v
(
ḋ
)

CiL + CiNL - d(d)

]
q �

[−I 0
0 −Mi

]
q̇ (49)

where q�[
d, ḋ

]T
denotes the state vector of the system.

Applying state-space transformation and direct iterative method, the nonlinear frequency can be obtained
as following:

Step 1. Neglecting nonlinear stiffness and damping matrices, a linear eigenvalue problem is obtained,
whose linear eigenvalues λD_L and eigenvectors ψD_L are extracted as initial values.

Step 2. Scale the eigenvectors until the amplitude corresponding to the eigenvectors is equal to themaximum
dimensionless amplitudeWmax.

Step 3. The obtained eigenvectors are substituted into the nonlinear stiffness matrix and damping matrix,
which yields new nonlinear eigenvalues λD_NL and eigenvectors ψD_NL from Eq. (49).

Step 4. Repeating steps 2 to 3 until the eigenvalues λD_NL converge.
The eigenvalues λ as involved in steps 1 and 3 can be expressed in complex form as

λ � χ ± iωD (50)

where the real part χ is the parameter related to the damping ratio and the imaginary part ωD denotes the
damped natural frequency. Particularly, ωD denotes the linear damped natural frequency ωD_L in step 1 while
it denotes the nonlinear damped natural frequency ωD_NL in step 3.
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Fig. 5 ABAQUS model of FG-GPLRC beam with edge crack under pure bending moment

5 Results and discussion

Unless specifically stated, the following parameters will be adopted in the subsequent numerical calculations
[5, 37]:

1. The dimensions of the beam are L � 1×10−2 m and h � 5×10−4 m, respectively. The depth and location
of the crack are a/h � 0.5 and L1/L � 0.5, respectively;

2. The dimensionless initial amplitude is Wmax � 0.5, and the initial pre-strain is ε0 � 0.0001;
3. The average weight fraction of GPLs isf GPL � 1.5%, and the concentration gradient scaling factor Sg is

set to 0.1. The thickness of the GPL is tGPL � 5×10−8 m, and the aspect ratio of GPL is assumed to
beDGPL/tGPL � 300;

4. For the PVDF matrix, the mass density is ρm � 1780 kg/m3, the Poisson’s ratio is νm � 0.35, the
elastic modulus is Em � 1.44 GPa, the electrical conductivity is σm � 3.5×10−9 S/m, and the dielectric
permittivity is εm � 5×8.85×10−12 F/m;

5. The parameters used for GPL filler are ρf � 2200 kg/m3, νf � 0.175, E1 � E2 � 1.01 TPa, E3 � 101 TPa,
σ 1 � σ 2 � 8.32×104 S/m, σ 3 � 83.2 S/m, ε1 � ε2 � 1.3275×10−10 F/m and ε3 � 8.894×10−11 F/m;

5.1 Calculation of stress intensity factor (SIF) by ABAQUS

Among the three basic models for cracking, i.e., opening (type I), sliding (type II) and tearing (type III), type
I is the most commonly employed in practical engineering. In this section, the SIF of type I crack is calculated
using the J-Contour integral in ABAQUS software, and the establishedmodel and grid distribution are depicted
in Fig. 5. To simulate the tensile state of the crack plane, a pair of directional bending moments measuring
10 N·m is applied at both ends of the beam. The grid consists of 2710 CPS4 quadrilateral elements, with the
requirement to define singular elements around the crack tip.

The analysis of the dimensionless SIF of cracked FG-GPLRC beam is conducted by the finite element
software. This analysis involves various factors, such as aspect ratio andweight fraction ofGPL, FGdistribution
profiles, scaling factor and crack depth. The detailed results are presented in Appendix D.

5.2 Convergence study and validation

Table 1 presents the convergence of the total number of layers (Z) with different FG distribution profiles and
crack depths. The applied voltage is fixed as VDC � 20 V. It can be seen that the results converge gradually as
Z increases and exhibit a negligible difference when the number of layers is larger than 10 regardless of the
FG distribution profiles and crack depth. To balance accuracy and computational efficiency, 10 layers will be
used for subsequent analysis.

The convergence of the number of grid points in two segments of cracked FG-GPLRC beam is studied in
Table 2. It is found that when the number of grid points in both parts is more than 11, the results converge.
Therefore, N1 � N2 � 11 will be used for subsequent calculation.

To validate the proposedmodel that incorporates the Kelvin–Voigt damping, Fig. 6 exhibits the comparison
between the existing results and previously reported ones for the first the frequencies of the first three modes
[44]. The involvedmaterial properties and geometric dimensions are set to be the same values as in the reference
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Table 1 Convergence study on total number of layers (N1 � N2 � 13)

Profile Z a/h � 0.1 a/h � 0.2 a/h � 0.3 a/h � 0.4 a/h � 0.5

X 4 0.47898 0.47347 0.46448 0.44596 0.41902
6 0.47736 0.47196 0.46269 0.44501 0.41845
8 0.47653 0.47102 0.46156 0.44367 0.41656
10 0.47574 0.47025 0.46065 0.44298 0.41597
20 0.47493 0.46941 0.45956 0.44219 0.41532
30 0.47467 0.46915 0.45923 0.44197 0.41516

O 4 0.45711 0.45028 0.44168 0.42703 0.40206
6 0.45828 0.45217 0.44337 0.42825 0.40305
8 0.45906 0.45350 0.44436 0.42914 0.40361
10 0.45955 0.45461 0.44508 0.42961 0.40389
20 0.46013 0.45521 0.44591 0.43011 0.40423
30 0.46032 0.45539 0.44607 0.43027 0.40435

A 4 0.46813 0.46377 0.45527 0.43909 0.41285
6 0.46761 0.46304 0.45476 0.43831 0.41207
8 0.46752 0.46283 0.45413 0.43794 0.41168
10 0.46749 0.46278 0.45399 0.43781 0.41152
20 0.46746 0.46272 0.45381 0.43766 0.41134
30 0.46745 0.46271 0.45375 0.43762 0.41127

V 4 0.46637 0.46064 0.44989 0.43307 0.40665
6 0.46692 0.46113 0.45047 0.43374 0.40734
8 0.46703 0.46129 0.45078 0.43406 0.40769
10 0.46704 0.46131 0.45092 0.43413 0.40776
20 0.46705 0.46132 0.45108 0.43421 0.40784
30 0.46706 0.46132 0.45113 0.43423 0.40787

Table 2 Convergence study on the number of grid points of the beam (Z � 10)

N1 N2 3 5 7 9 11 13 15

3 2.39618 1.05349 1.03290 1.03302 1.03302 1.03302 1.03302
5 1.05349 0.39673 0.40638 0.40611 0.40611 0.40611 0.40611
7 1.03291 0.40638 0.41653 0.41625 0.41625 0.41625 0.41625
9 1.03302 0.40611 0.41625 0.41596 0.41596 0.41596 0.41596
11 1.03302 0.40611 0.41625 0.41596 0.41596 0.41596 0.41596
13 1.03302 0.40611 0.41625 0.41596 0.41596 0.41596 0.41596
15 1.03302 0.40611 0.41625 0.41596 0.41596 0.41596 0.41596

and a cantilever beam structure is employed with β1 � β2 � β. The comparison demonstrates that the existing
results are in good agreement with the previously reported ones.

Table 3 tabulates the comparison of fundamental frequency ratios (ωD_L/ωD_L0) of the cracked FG-GPLRC
beamswith different distributionprofiles,whereωD_L andωD_L0 denote the fundamental frequencies of cracked
and intact beams, respectively. The parameters involved are h � 0.12 m, a/h � 0.3, L/h � 10 and f GPL � 0.6
wt%. As can be seen from the table, our results agree well with the existing ones.

The effect of crack location on the fundamental frequency ratio of the FG-GPLRC beam with profile X
is investigated in Fig. 7. The crack depth is a/h � 0.2. The present results are in excellent agreement with
the ones in previous study once again. It is worth noting that when the crack is at the end of the H boundary,
the crack has limited effect on the frequency. In contrast, when the crack is close to the C boundary end, the
frequency is weakened significantly. When there is symmetric boundary condition, the crack located at the
mid-span of the beam reduces the frequency the most.

5.3 Parametric study

Figure 8 presents the effect of location of crack on frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC beam.
It is obvious that the fundamental frequency ratio is related to the crack location. When the crack location is
closed to L1/L � 0.2 or 0.8, the frequency ratio of the cracked beam does not change with the crack depth.
This is due to the eigenvectors of the free vibration of the intact FG-GPLRC beam reaching the extreme
rotational displacements in these two sections. As expected, when the crack depth increases, the cracked beam
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Fig. 6 Comparison of the frequencies of the Kelvin–Voigt damping model

Table 3 Comparison of frequency ratio of cracked FG-GPLRC beam

L1/L Profile U Profile O Profile X Profile A Profile V

Present Ref 33 Present Ref 33 Present Ref 33 Present Ref 33 Present Ref 33

0.1 0.9603 0.9638 0.9554 0.9705 0.9596 0.9557 0.9682 0.9722 0.9513 0.9590
0.2 0.9985 0.9968 0.9983 0.9989 0.9985 0.9983 0.9988 0.9990 0.9981 0.9984
0.3 0.9877 0.9889 0.9858 0.9913 0.9874 0.9457 0.9905 0.9918 0.9841 0.9872
0.4 0.9562 0.9607 0.9498 0.9690 0.9553 0.9498 0.9661 0.9709 0.9440 0.9547
0.5 0.9415 0.9474 0.9331 0.9584 0.9403 0.9332 0.9545 0.9610 0.9256 0.9395

becomes more vulnerable as evidenced by the decrease in the frequency ratio. In addition, it can be observed
that the frequency ratio of the cracked FG-GPLRC beam decreases as the applied voltage increases, especially
when the crack location is closer to the mid-span, suggesting that cracks in the mid-span region have a more
significant effect on the stiffness of the beams.

Figure 9 investigates the dependency of the fundamental frequency ratio of cracked FG-GPLRC beam on
the scaling factor considering four distribution profiles. It is evident that the frequency ratios of the beams with
profiles O and A always increase with the increase of the scaling factor, regardless of the voltage applied. In

Fig. 7 Comparison of frequency ratio of cracked FG-GPLRC beam with different boundary conditions
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Fig. 8 Effect of location of crack on fundamental frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC beam a VDC � 20 V;
b VDC � 40 V

Fig. 9 Effect of scaling factor on fundamental frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC beam

contrast, it is quite different for the beam with profiles X and V. For example, when there is no applied voltage,
the frequency ratio exhibits a decrease as the scaling factor increases. For profile X, when a voltage of 40 V is
applied, the frequency ratio first increases with the scaling factor and then starts to decrease and converge to
the case without voltage. Slightly different from the variation of profile X, the frequency ratio of the beam with
profile V first decreases with the scaling factor. Then the frequency ratio undergoes a similar trend as profile X.
The above observation can be explained by the competing effects of the scaling factor and the applied voltage
on the stiffness of the cracked FG-GPLRC beam subjected to different FG distribution profiles.

Figure 10 demonstrates the variation of the fundamental frequency ratio of the cracked FG-GPLRC beam
with DC voltages and AC frequencies. In Fig. 10a, the frequency ratio of the cracked FG-GPLRC beam
decreases as the voltage increases,which is particularly pronounced in the beamwith profileU.This observation
suggests that the utilization of FG distribution profiles enables the cracked FG-GPLRC beams to bemore stable
subjected to electrostatic stresses. As seen from Fig. 10b, the frequency ratio of the cracked FG-GPLRC beam
with profileU ismore significantly affected byAC frequency than the other four distribution profiles, especially
when the AC frequency is around 103 Hz. Based on the above phenomena, the cracked FG-GPLRC beam with
dielectric properties demonstrates the capability of self-sensing and structural health monitoring.

The influence of the GPL aspect ratio on the frequency ratio of the cracked FG-GPLRC beam is studied in
Fig. 11, which involves different Kelvin–Voigt damping coefficients. Seen From Fig. 11a, the frequency ratio
curves with different damping coefficients intersect at the same point with the increase of the GPL aspect ratio,
and this intersection point moves as the GPL aspect ratio increases or the voltage decreases. The intersection
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Fig. 10 Effects of a applied voltage and b AC frequency on fundamental frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC
beam

Fig. 11 Effect of GPL aspect ratio on fundamental frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC beam a Profile X;
b VDC � 20 V

point observed in Fig. 11a also shifts by changing the functionally graded distribution as observed in Fig. 11b.
In addition, the frequency ratio increases first and then decreases with the increase of GPL aspect ratio for
relatively large damping coefficients, i.e., β � 1.5×10–5 s. This can be attributed to the increased stiffness of
the structure due to the increase of GPL aspect ratio. For larger aspect ratio, the beam becomes more sensitive
to the applied voltage, surpassing the enhancing effect induced by the increase in GPL aspect ratio.

Figure 12 displays the effect of the Kelvin–Voigt damping coefficient on the frequency ratio of the cracked
FG-GPLRC beam with different DC voltages and GPL concentrations. It is apparent that an increase in the
damping coefficient leads to accelerated increase in the frequency ratio and decrease in the sensitivity of the
cracked FG-GPLRC beam to voltage. Similar to the findings presented in Fig. 11, the curves representing
different GPL concentrations at the same voltage have intersecting points as the damping coefficient increases.
Furthermore, an increasing voltage enables the convergence point to shift toward the upper right direction.

Figure 13 depicts the effect of the crack location on nonlinear frequency ratio ωD_NL/ωD_L of the cracked
FG-GPLRC beam. The frequency ratio, which is symmetric with respect to the crack location, increases as the
crack depth increases, indicating an increasing nonlinearity of the cracked FG-GPLRC beam. Furthermore,
when the applied voltage increases, a noticeable rise in the frequency ratio of the cracked FG-GPLRC is
observed, particularly in the case of FG-GPLRC beams with deeper cracks, suggesting that the cracked FG-
GPLRC beams with lower stiffness are more susceptible to voltage regulation.

Figure 14 plots the effect of dimensionless initial amplitude on frequency ratio of the cracked FG-GPLRC
beam. The frequency ratio increases as the dimensionless amplitude increases as expected, indicating an
increasing nonlinearity of the system. It is worth noting that altering the shear damping coefficient β2 has
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Fig. 12 Effect of Kelvin–Voigt damping on fundamental frequency ratio ωD_L/ωD_L0 of cracked FG-GPLRC beam

Fig. 13 Effect of crack location on nonlinear frequency ratioωD_NL/ωD_L of cracked FG-GPLRC beam a VDC � 0 V; bVDC
� 20 V; c VDC � 40 V; d VDC � 80 V

limited effect on the nonlinearity of the cracked FG-GPLRC beam, while the increase of the tensile damping
coefficient β1 results in the decreased frequency ratio and nonlinearity. The above observation demonstrates
the tensile damping coefficient exhibits a stronger energy dissipation effect on the nonlinear vibration of the
cracked FG-GPLRC beam than the shear damping coefficient.



2792 H. Ban et al.

Fig. 14 Effect of dimensionless initial amplitude on nonlinear frequency ratio ωD_NL/ωD_L of cracked FG-GPLRC beam

Fig. 15 Effect of GPL concentration on nonlinear frequency ratio ωD_NL/ωD_L of cracked FG-GPLRC beam

Figure 15 demonstrates the effect of GPL concentration on frequency ratio of the cracked FG-GPLRC
beam. When there is no applied voltage, the frequency ratio decreases with the increase of GPL concentration,
and larger damping coefficient leads to smaller frequency ratio. With the application of applied voltage, a
notable increase in the frequency ratios is observed as the GPL concentration surpasses a specific threshold,
i.e., f GPL � 0.9%. Moreover, the frequency ratios of the cracked beams with different damping coefficients
intersect at a point when the GPL concentration further increases, and the frequency ratios with larger damping
coefficients becomes larger as the GPL concentration keeps increasing.

6 Conclusions

In this paper, a numerical study on the damped nonlinear vibration of the cracked FG-GPLRC dielectric beam
is carried out. Governing equations are derived using the Timoshenko beam theory and the nonlinear von
Kármán strain–displacement relationship. A massless rotational spring model is employed to model the edge
crack, and the SIF at the crack tip is then calculated using finite element method. DQ and direct iterative
methods are utilized to solve the nonlinear system. The following conclusions can be obtained:

(1) As the applied voltage increases, the fundamental frequency ratioωD_L/ωD_L0 of the cracked FG-GPLRC
beam decreases, while nonlinear frequency ratio ωD_NL/ωD_L increases. Two specific crack locations are
observed where the frequency ratio of the beam is independent on crack depth.
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(2) The frequency ratio of the cracked FG-GPLRC beam with profile U is more sensitive to the variations
in applied voltage and AC frequency compared to the ones with other profiles, suggesting that the FG
distribution profiles enable the cracked FG-GPLRCbeams to bemore stablewhen subjected to the external
electric field.

(3) With the application of external electric field, the cracked FG-GPLRC beam with different damping coef-
ficients generates a consistent frequency ratio as the concentration and aspect ratio of GPL increases. For
the two damping coefficients considered, the tensile damping coefficient demonstrates a more pronounced
energy dissipation effect on the nonlinear vibration of the beam than the shear damping coefficient.
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i1nẆin

)

λ
(2)
i11 +

(
Ni∑

n�1
λ
(2)
i1nẆin
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Appendix C
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Appendix D

See Tables 4, 5 and 6.

Table 4 The dimensionless SIFs of FG-GPLRC beams with an edge crack (f GPL � 1.1 wt%)

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

100 0.1 0.1 1.0294 1.0470 1.0118 1.0050 1.0545
0.2 1.0482 1.0586 1.0378 1.0266 1.0705
0.3 1.1083 1.1102 1.1071 1.0883 1.1284
0.4 1.2390 1.2285 1.2495 1.2200 1.2584
0.5 1.4622 1.4340 1.4909 1.4439 1.4810

0.3 0.1 1.0294 1.0818 0.9762 0.9571 1.1049
0.2 1.0482 1.0801 1.0177 0.9835 1.1158
0.3 1.1083 1.1150 1.1053 1.0501 1.1702
0.4 1.2390 1.2095 1.2721 1.1838 1.2984
0.5 1.4622 1.3794 1.5492 1.4086 1.5205

0.5 0.1 1.0294 1.1154 0.9402 0.9101 1.1564
0.2 1.0482 1.1032 0.9984 0.9426 1.1627
0.3 1.1083 1.1217 1.1047 1.0130 1.2133
0.4 1.2390 1.1917 1.2968 1.1491 1.3404
0.5 1.4622 1.3268 1.6103 1.3747 1.5628



2796 H. Ban et al.

Table 4 continued

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

0.7 0.1 1.0294 1.1501 0.9038 0.8642 1.2090
0.2 1.0482 1.1262 0.9790 0.9017 1.2110
0.3 1.1083 1.1296 1.1053 0.9772 1.2589
0.4 1.2390 1.1759 1.3231 1.1154 1.3846
0.5 1.4622 1.2751 1.6733 1.3432 1.6075

0.9 0.1 1.0294 1.1827 0.8670 0.8190 1.2637
0.2 1.0482 1.1508 0.9605 0.8623 1.2615
0.3 1.1083 1.1393 1.1071 0.9420 1.3068
0.4 1.2390 1.1622 1.3509 1.0834 1.4314
0.5 1.4622 1.2252 1.7391 1.3127 1.6545

200 0.1 0.1 1.0294 1.0513 1.0072 0.9986 1.0608
0.2 1.0482 1.0616 1.0355 1.0207 1.0764
0.3 1.1083 1.1108 1.1065 1.0834 1.1338
0.4 1.2390 1.2258 1.2526 1.2153 1.2631
0.5 1.4622 1.4269 1.4979 1.4392 1.4862

0.3 0.1 1.0294 1.0944 0.9612 0.9378 1.1238
0.2 1.0482 1.0891 1.0103 0.9671 1.1337
0.3 1.1083 1.1180 1.1053 1.0355 1.1872
0.4 1.2390 1.2032 1.2826 1.1701 1.3152
0.5 1.4622 1.3578 1.5727 1.3959 1.5379

0.5 0.1 1.0294 1.1365 0.9135 0.8770 1.1901
0.2 1.0482 1.1188 0.9865 0.9144 1.1939
0.3 1.1083 1.1290 1.1071 0.9894 1.2443
0.4 1.2390 1.1832 1.3157 1.1275 1.3709
0.5 1.4622 1.2906 1.6512 1.3555 1.5948

0.7 0.1 1.0294 1.1764 0.8638 0.8161 1.2584
0.2 1.0482 1.1508 0.9627 0.8623 1.2578
0.3 1.1083 1.1435 1.1114 0.9444 1.3050
0.4 1.2390 1.1669 1.3530 1.0870 1.4324
0.5 1.4622 1.2243 1.7344 1.3183 1.6578

0.9 0.1 1.0294 1.2164 0.8121 0.7546 1.3310
0.2 1.0482 1.1842 0.9404 0.8110 1.3269
0.3 1.1083 1.1624 1.1180 0.8995 1.3718
0.4 1.2390 1.1543 1.3940 1.0487 1.4997
0.5 1.4622 1.1580 1.8233 1.2831 1.7283

300 0.1 0.1 1.0294 1.0545 1.0033 0.9936 1.0660
0.2 1.0482 1.0623 1.0340 1.0192 1.0779
0.3 1.1083 1.1114 1.1065 1.0816 1.0810
0.4 1.2390 1.2253 1.2537 1.2137 1.2652
0.5 1.4622 1.4246 1.5007 1.4377 1.4881

0.3 0.1 1.0294 1.0986 0.9557 0.9309 1.1302
0.2 1.0482 1.0928 1.0080 0.9612 1.1396
0.3 1.1083 1.1199 1.1059 1.0306 1.1933
0.4 1.2390 1.2011 1.2863 1.1659 1.3210
0.5 1.4622 1.3508 1.5807 1.3917 1.5440

0.5 0.1 1.0294 1.1417 0.9033 0.8647 1.2006
0.2 1.0482 1.1247 0.9820 0.9047 1.2050
0.3 1.1083 1.1326 1.1089 0.9809 1.2546
0.4 1.2390 1.1811 1.3231 1.1207 1.3825
0.5 1.4622 1.2779 1.6653 1.3498 1.6070

0.7 0.1 1.0294 1.1848 0.8475 0.7969 1.2763
0.2 1.0482 1.1597 0.9575 0.8475 1.2756
0.3 1.1083 1.1508 1.1150 0.9329 1.3226
0.4 1.2390 1.1659 1.3651 1.0781 1.4508
0.5 1.4622 1.2045 1.7570 1.3108 1.6785

0.9 0.1 1.0294 1.2269 0.7881 0.7266 1.3572
0.2 1.0482 1.1976 0.9337 0.7902 1.3522
0.3 1.1083 1.1751 1.1247 0.8856 1.3985
0.4 1.2390 1.1554 1.4124 1.0371 1.5286
0.5 1.4622 1.1293 1.8567 1.2741 1.7617
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Table 5 The dimensionless SIFs of FG-GPLRC beams with an edge crack (f GPL � 1.3 wt%)

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

100 0.1 0.1 1.0294 1.0494 1.0094 1.0017 1.0534
0.2 1.0482 1.0601 1.0363 1.0236 1.0734
0.3 1.1083 1.1108 1.1065 1.0859 1.1314
0.4 1.2390 1.2274 1.2511 1.2174 1.2610
0.5 1.4622 1.4302 1.4946 1.4410 1.4838

0.3 0.1 1.0294 1.0892 0.9687 0.9473 1.1154
0.2 1.0482 1.0853 1.0132 0.9753 1.1255
0.3 1.1083 1.1162 1.1047 1.0422 1.1787
0.4 1.2390 1.2058 1.2773 1.1764 1.3068
0.5 1.4622 1.3686 1.5619 1.4015 1.5294

0.5 0.1 1.0294 1.1270 0.9275 0.8940 1.1743
0.2 1.0482 1.1106 0.9917 0.9285 1.1790
0.3 1.1083 1.1241 1.1047 1.0003 1.2291
0.4 1.2390 1.1790 1.3252 1.1170 1.3867
0.5 1.4622 1.3084 1.6314 1.3639 1.5779

0.7 0.1 1.0294 1.1659 0.8857 0.8419 1.2353
0.2 1.0482 1.1381 0.9701 0.8824 1.2355
0.3 1.1083 1.1344 1.1059 0.9602 1.2819
0.4 1.2390 1.1696 1.3367 1.1002 1.4072
0.5 1.4622 1.2506 1.7048 1.3287 1.6300

0.9 0.1 1.0294 1.2027 0.8436 0.7908 1.2984
0.2 1.0482 1.1664 0.9493 0.8385 1.2942
0.3 1.1083 1.1466 1.1089 0.9214 1.3372
0.4 1.2390 1.1543 1.3699 1.0644 1.4624
0.5 1.4622 1.1947 1.7810 1.2953 1.6865

200 0.1 0.1 1.0294 1.0534 1.0047 0.9955 1.0639
0.2 1.0482 1.0630 1.0340 1.0177 1.0794
0.3 1.1083 1.1114 1.1065 1.0810 1.1369
0.4 1.2390 1.2248 1.2542 1.2127 1.2658
0.5 1.4622 1.4232 1.5022 1.4368 1.4890

0.3 0.1 1.0294 1.1007 0.9537 0.9281 1.1344
0.2 1.0482 1.0935 1.0065 0.9590 1.1426
0.3 1.1083 1.1199 1.1053 1.0282 1.1957
0.4 1.2390 1.1995 1.2873 1.1633 1.3236
0.5 1.4622 1.3475 1.5844 1.3893 1.5463

0.5 0.1 1.0294 1.1470 0.9003 0.8608 1.2069
0.2 1.0482 1.1270 0.9798 0.9010 1.2102
0.3 1.1083 1.1326 1.1083 0.9772 1.2595
0.4 1.2390 1.1790 1.3252 1.1170 1.3867
0.5 1.4622 1.2732 1.6724 1.3456 1.6108

0.7 0.1 1.0294 1.1911 0.8445 0.7930 1.2847
0.2 1.0482 1.1627 0.9545 0.8430 1.2831
0.3 1.1083 1.1502 1.1138 0.9281 1.3293
0.4 1.2390 1.1622 1.3677 1.0729 1.4566
0.5 1.4622 1.1994 1.7664 1.3052 1.6832

0.9 0.1 1.0294 1.2353 0.7861 0.7240 1.3677
0.2 1.0482 1.2013 0.9300 0.7858 1.3611
0.3 1.1083 1.1739 1.1223 0.8801 1.4057
0.4 1.2390 1.1501 1.4151 1.0308 1.5349
0.5 1.4622 1.1256 1.8679 1.2675 1.7664

300 0.1 0.1 1.0294 1.0545 1.0033 0.9936 1.0660
0.2 1.0482 1.0638 1.0333 1.0162 1.0809
0.3 1.1083 1.1114 1.1065 1.0792 1.1381
0.4 1.2390 1.2242 1.2547 1.2116 1.2673
0.5 1.4622 1.4213 1.5040 1.4354 1.4904

0.3 0.1 1.0294 1.1039 0.9488 0.9219 1.1396
0.2 1.0482 1.0965 1.0043 0.9538 1.1485
0.3 1.1083 1.1211 1.1059 1.0240 1.2012
0.4 1.2390 1.1985 1.2910 1.1596 1.3288
0.5 1.4622 1.3404 1.5915 1.3860 1.5520

0.5 0.1 1.0294 1.1522 0.8908 0.8495 1.2174
0.2 1.0482 1.1322 0.9768 0.8913 1.2206
0.3 1.1083 1.1363 1.1102 0.9699 1.2698
0.4 1.2390 1.1775 1.3320 1.1112 1.3972
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Table 5 continued

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

0.5 1.4622 1.2610 1.6855 1.3409 1.6225
0.7 0.1 1.0294 1.1985 0.8287 0.7746 1.3015

0.2 1.0482 1.1716 0.9500 0.8296 1.2994
0.3 1.1083 1.1581 1.1180 0.9177 1.3457
0.4 1.2390 1.1617 1.3798 1.0650 1.4750
0.5 1.4622 1.1806 1.7875 1.2990 1.7039

0.9 0.1 1.0294 1.2447 0.7621 0.6962 1.3930
0.2 1.0482 1.2147 0.9248 0.7657 1.3864
0.3 1.1083 1.1878 1.1296 0.8661 1.4318
0.4 1.2390 1.1528 1.4340 1.0208 1.5643
0.5 1.4622 1.0973 1.9008 1.2600 1.8002

Table 6 The dimensionless SIFs of FG-GPLRC beams with an edge crack (f GPL � 1.5 wt%)

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

100 0.1 0.1 1.0294 1.0513 1.0072 0.9986 1.0608
0.2 1.0482 1.0616 1.0348 1.0207 1.0764
0.3 1.1083 1.1108 1.1065 1.0834 1.1338
0.4 1.2390 1.2258 1.2526 1.2153 1.2631
0.5 1.4622 1.4269 1.4984 1.4392 1.4862

0.3 0.1 1.0294 1.0955 0.9618 0.9383 1.1249
0.2 1.0482 1.0891 1.0103 0.9671 1.1337
0.3 1.1083 1.1174 1.1047 1.0355 1.1872
0.4 1.2390 1.2022 1.2821 1.1696 1.3147
0.5 1.4622 1.3583 1.5731 1.3950 1.5369

0.5 0.1 1.0294 1.1375 0.9157 0.8793 1.1911
0.2 1.0482 1.1181 0.9857 0.9151 1.1946
0.3 1.1083 1.1271 1.1053 0.9894 1.2437
0.4 1.2390 1.1817 1.3141 1.1270 1.3693
0.5 1.4622 1.2925 1.6517 1.3541 1.5924

0.7 0.1 1.0294 1.1796 0.8689 0.8215 1.2595
0.2 1.0482 1.1493 0.9619 0.8653 1.2578
0.3 1.1083 1.1393 1.1077 0.9451 1.3032
0.4 1.2390 1.1638 1.3494 1.0860 1.4287
0.5 1.4622 1.2285 1.7339 1.3160 1.6521

0.9 0.1 1.0294 1.2206 0.8216 0.7648 1.3310
0.2 1.0482 1.1812 0.9389 0.8162 1.3247
0.3 1.1083 1.1545 1.1120 0.9020 1.3669
0.4 1.2390 1.1969 1.3877 1.0471 1.4918
0.5 1.4622 1.1665 1.8205 1.2798 1.7170

200 0.1 0.1 1.0294 1.0248 0.9921 0.9926 1.0671
0.2 1.0482 1.0645 1.0326 1.0155 1.0816
0.3 1.1083 1.1114 1.1065 1.0786 1.1387
0.4 1.2390 1.2237 1.2553 1.2106 1.2684
0.5 1.4622 1.4199 1.5054 1.4349 1.4909

0.3 0.1 1.0294 1.1070 0.9471 0.9197 1.1428
0.2 1.0482 1.0980 1.0028 0.9515 1.1508
0.3 1.1083 1.1211 1.1059 1.0215 1.2036
0.4 1.2390 1.1969 1.2921 1.1575 1.3310
0.5 0.4604 1.3381 1.5952 1.3837 1.5539

0.5 0.1 1.0294 1.1554 0.8888 0.8467 1.2227
0.2 1.0482 1.1344 0.9746 0.8883 1.2251
0.3 1.1083 1.1363 1.1089 0.9669 1.2734
0.4 1.2390 1.1754 1.3341 1.1076 1.4009
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Table 6 continued

DGPL/tGPL Sg a/h Profile U Profile X Profile O Profile A Profile V

0.5 1.4622 1.2577 1.6912 1.3371 1.6253
0.7 0.1 1.0294 1.2037 0.8284 0.7727 1.3078

0.2 1.0482 1.1738 0.9478 0.8266 1.3046
0.3 1.1083 1.1569 1.1162 0.9141 1.3505
0.4 1.2390 1.1585 1.3814 1.0608 1.4787
0.5 1.4622 1.1777 1.7951 1.2943 1.7067

0.9 0.1 1.0294 1.2511 0.7627 0.6969 1.4003
0.2 1.0482 1.2169 0.9211 0.7642 1.3924
0.3 1.1083 1.1848 1.1271 0.8619 1.4367
0.4 1.2390 1.1475 1.4345 1.0156 1.5675
0.5 1.4622 1.0964 1.9084 1.2544 1.8012

300 0.1 0.1 1.0294 1.0566 1.0014 0.9911 1.0681
0.2 1.0482 1.0653 1.0318 1.0140 1.0831
0.3 1.1083 1.1114 1.1065 1.0774 1.1405
0.4 1.2390 1.2232 1.2563 1.2095 1.2695
0.5 1.4622 1.4180 1.5073 1.4335 1.4923

0.3 0.1 1.0294 1.1091 0.9428 0.9143 1.1480
0.2 1.0482 1.1002 0.9984 0.9471 1.1560
0.3 1.1083 1.1223 1.1065 1.0179 1.2079
0.4 1.2390 1.1959 1.2952 1.1543 1.3357
0.5 1.4622 1.3320 1.6014 1.3809 1.5590

0.5 0.1 1.0294 1.1606 0.8800 0.8373 1.2321
0.2 1.0482 1.1389 0.9723 0.8809 1.2340
0.3 1.1083 1.1399 1.1114 0.9608 1.2825
0.4 1.2390 1.1743 1.3404 1.1028 1.4103
0.5 1.4622 1.2469 1.7029 1.3334 1.6361

0.7 0.1 1.0294 1.2101 0.8124 0.7553 1.3225
0.2 1.0482 1.1820 0.9441 0.8140 1.3203
0.3 1.1083 1.1648 1.1205 0.9050 1.3663
0.4 1.2390 1.1591 1.3925 1.0539 1.4960
0.5 1.4622 1.1603 1.8148 1.2892 1.7264

0.9 0.1 1.0294 1.2584 0.7392 0.6695 1.4245
0.2 1.0482 1.2296 0.9166 0.7449 1.4169
0.3 1.1083 1.1994 1.1350 0.8492 1.4628
0.4 1.2390 1.1517 1.4529 1.0072 1.5964
0.5 1.4622 1.0691 1.9399 1.2483 1.8360
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