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Abstract To perform the accurate and efficient dynamic load identification (DLI) on time-varying (TV)
structural systems, this paper proposes a novel time-domain dynamic load identification method, which we
call the inverse Wentzel–Kramers–Brillouin (WKB) real function recursive solution. The proposed method
can identify the dynamic loads of TV structural systems with different masses, damping, and stiffness online.
Based on theWKB real function recursive solution, we first derive the acceleration recursive solution for linear
time-varying (LTV) dynamic systems. Then, by reversing the acceleration recursive solution, we obtain the
recursive formula for the dynamic load as a function of time. At each time step, this method performs recursion
using the load and response of the previous time step to derive the current load. Finally, we demonstrate through
numerical simulations that this algorithm has higher identification accuracy and computational efficiency than
the inverse Wilson-θ method, and reduces the computation time significantly.

1 Introduction

In engineering practice, environmental erosion or operating conditions may cause the physical properties of a
system to vary over time [1]. For example, bridges with trains passing over them, rockets launching into space,
and deployable and flexible aerospace structures with variable geometry are all time-varying TV structural
systems [2]. The execution of dynamic load identification (DLI) on these systems is imperative for maintaining
stability and safety amidst fluctuating temporal and operational conditions, thereby furnishing indispensable
validation for system design. The direct quantification of dynamic loads on time-varying structural systems
frequently presents challenges due to technological and measurement limitations. However, DLI methods,
which utilize the analysis of structural responses, facilitate an indirect deduction of dynamic loads. These
methods surmount the obstacles inherent in direct measurement and offer pragmatic solutions for tangible
engineering applications. Therefore, developing a DLI method suitable for such systems is an urgent need.

DLI technology for time-invariant structural systems has been extensively developed. The main DLI meth-
ods can be classified into frequency domain method (FDM) [3, 4] and time domain method (TDM) [5, 6]. The
advantage of FDM is that the input–output relationship of the system’s mathematical model in the frequency
domain is linear, and the inverse operation process is easy to be handled. The advantage of TDM is that its
identification result is a load time history, which can intuitively reflect the load variation over time, thus more
suitable for engineering practice than FDM [7–10]. In recent years, emerging theories such as wavelet analy-
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sis, modal filter, neural network, and artificial intelligence have also provided new ideas and methods for DLI
[11–13].

In spite of that, recent studies have rarely concerned with DLI methods for TV structural systems. The
existing research only assumes that the time-varying structural parameters are constant in each micro-time
unit, and identifies the load for each unit to obtain the load-time history [14, 15]. However, some drawbacks
still exist in this method, which are the low computational efficiency, large computational amount, and the
accuracy that is hard to guarantee. Therefore, the major task of this work is to find a DLI method for TV
structural systems based on analytical solutions of differential equations.

It should be noted that ordinary differential equations with time-varying coefficients for LTV structural
systems usually lack analytical solutions [16, 17]. Thus, numerical methods such as the Runge–Kutta method
are often used to obtain numerical solutions to approximate the closed-form solution [18, 19]. To qualitatively
analyze the solutions, the Wentzel–Kramers–Brillouin (WKB) approximation, first proposed for structural
dynamics [20–22], provides an explicit approximation to the one-dimensional steady-state Schrödinger equa-
tion parse representation. The WKB method can solve kinetic equations with slowly varying coefficients with
high accuracy and convergence [23–25]. To overcome the limitations of traditional numerical integration, the
WKB solution and the recursive formula are derived in real functions [26, 27]. TheWKB real function solution
improves the computational efficiency and offers a new idea for DLI of TV structures.

This paper aims to reverse the derivation process of the recursive solution of the WKB real function and
propose a novel method for dynamically identifying loads in linear time-varying (LTV) structural systems. The
second section of this paper presents the fundamental process and conclusions of the recursive displacement
solution using the WKB real function. In the third section, the recursive acceleration solution of the WKB
real function is derived, and a relationship between acceleration response and load in time-varying structural
systems is established. DLI using acceleration offers superior anti-noise performance and stability compared
to displacement, which is significant in the field of DLI. The fourth section demonstrates the inverse reasoning
of the recursive acceleration solution using the WKB real function, thereby obtaining the recursive load solu-
tion for time-varying structural systems. Finally, the specific steps of the inverse Wentzel–Kramers–Brillouin
(IWKB) load identification method are summarized, and a comprehensive flow chart is provided. In the fifth
section, the numerical simulation of the IWKB dynamic load identification method is carried out to verify the
performance of the method.

2 Recursive solution of WKB real functions for LTV structural systems

Modal decomposition allows for the transformation of the vibration of a linear system, including LTV structural
systems, into multiple single-degree-of-freedom (SDOF) dynamic equations expressed in modal coordinates.
The dynamic equations of a SDOF LTV structural system can be represented by the following differential
equations,

m(t)ẍ(t) + c(t)ẋ(t) + k(t)x(t) � F(t) (1)

Both sides of the upper equation are divided by m(t) at the same time, and can be obtained

ẍ(t) + a(t)ẋ(t) + b(t)x(t) � f (t) (2)

where a(t) � c(t)/m(t),b(t) � k(t)/m(t), f (t) � F(t)/m(t). At this point, the time-varying coefficients of
the differential equations become a(t) and b(t).

In general, the rates of change of the parameters of a linear slow time-varying system are much less than
that of the response solution, and the above equation can be expressed as

ẍ(t) + a(εt)ẋ(t) + b(εt)x(t) � f (t) (3)

in which ε(0 < ε << 1) is a small coefficient that a(t) and b(t) change at the relatively slow time scale τ � εt .
Thus, the equations of motion of the above equations can be rewritten in the form of the independent time
variable τ

ε2x ′′ + εa(τ )x ′ + b(τ )x � f (τ , ε) (4)

where x ′ � dx/dτ , x ′′ � d2x/dτ 2, abbreviated x(τ , ε) as x .
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Since Eq. (4) has no analytical solution, an approximate solution to the real function can be obtained using
the WKB method.

x � (e1y1 + e2y2) + (y2T1 − y1T2) (5)

Equation (5) is the form of a real function of the approximate solution of WKB, where
⎧
⎪⎪⎨

⎪⎪⎩

y1 � exp

(

−1

2

∫ τ

0

a(τ )

ε
dτ

)
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1

ε

∫ τ

0
h(τ )dτ
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y2 � exp

(

−1

2

∫ τ

0

a(τ )

ε
dτ

)
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1
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0
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⎧
⎨

⎩

e1 � x0
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0
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0
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dτ
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0
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(8)
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4
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U (τ ) � y21 + y22 � exp
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0

a(τ )

ε
dτ

)

(10)

3 Acceleration recursive solution based on approximate solution of WKB real function

3.1 Acceleration solution based on the approximate solution of the WKB real function

The pair (6) finds the first-order and second-order differentials respectively, and the obtained Eqs. (11) and
(12).
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Equation (13) can be obtained by first-order differential of Eq. (8), which reads
⎧
⎪⎪⎨

⎪⎪⎩

T ′
1 � y1 f (τ , ε)

εh(τ )U (τ )

T ′
2 � y2 f (τ , ε)

εh(τ )U (τ )

(13)

Similarly, Eq. (14) can be obtained by first-order differentiation of Eq. (5),

x ′ � (e1y
′
1 + e2y

′
2) +

(
y′
2T1 + y2T

′
1 − y′

1T2 − y1T
′
2

)
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It can be found from Eq. (13) that

y2T
′
1 − y1T

′
2 � 0 (15)
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Thus, Eq. (14) can be simplified to

x ′ � (e1y
′
1 + e2y

′
2) +

(
y′
2T1 − y′

1T2
)

(16)

By calculating the derivative of the Eq. (16) we can get

x ′′ � (e1y
′′
1 + e2y

′′
2 ) +

(
y′′
2T1 + y′

2T
′
1 − y′′

1T2 − y′
1T

′
2

)
(17)

It is easy to deduce from Eqs. (10), (11), and (13) that

y′
2T

′
1 − y′

1T
′
2 � f (τ , ε)

ε2
(18)

The substitution of (11), (12), (13) into the Eq. (17), and combined with the Eq. (10) is arrived at

x ′′ � (e1y
′′
1 + e2y

′′
2 ) +

(
y′′
2T1 − y′′

1T2
)
+

f (τ , ε)

ε2
(19)

Equation (19) is about the acceleration solution of τ .
Further, it is known from Eq. (4) that

ẍ � d2x

dt2
� ε2

d2ε

dt2
� ε2x ′′ (20)

3.2 Acceleration time recursive solution based on WKB real function approximate solution

The time step of the recurrence formula is τ , which is a small constant. It can be derived from Eq. (19) that

x ′′(τ + �τ ) � (e1 − T2(τ + �τ ))y′′
1 (τ + �τ ) + (e2 + T1(τ + �τ ))y′′

2 (τ + �τ ) +
f (τ + �τ , ε)

ε2
(21)

It can also be derived from Eq. (12) that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′
1 (τ + �τ ) �

(
a2(τ + �τ )

4ε2
− a′(τ + �τ )

2ε
− h2(τ + �τ )

ε2

)

y1(τ + �τ )

+

(
a(τ + �τ )h(τ + �τ )

ε2
− h′(τ + �τ )

ε

)

y2(τ + �τ )

y′′
2 (τ + �τ ) �

(
a2(τ + �τ )

4ε2
− a′(τ + �τ )

2ε
− h2(τ + �τ )

ε2

)

y2(τ + �τ )

−
(
a(τ + �τ )h(τ + �τ )

ε2
− h′(τ + �τ )

ε

)

y1(τ + �τ )

(22)

According to Eq. (6), only y1(τ +�τ ) and y2(τ +�τ ) contains the integral terms in Eq. (22), such that we
can get
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The variations of a(τ ) and h(τ ) in Eq. (23) falling into the interval [τ , τ + �τ ] are relatively small, thus
the above equation can be approximated as follows,
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y2(τ + �τ ) � exp

(
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)
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)
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Substituting Eq. (24) into Eq. (23), we can get

y1(τ + �τ ) � exp

(

− (a(τ ) + a(τ + �τ ))�τ

4ε

)
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2ε
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Similarly, the expression for y2(τ + �τ ) can be obtained as

y2(τ + �τ ) � exp
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4ε
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)

, (26)
⎧
⎪⎪⎪⎨
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T1(τ + �τ ) �
∫ τ

0

y1 f (τ , ε)

εh(τ )U (τ )
dτ +

∫ τ+�τ

τ

y1 f (τ , ε)

εh(τ )U (τ )
dτ � T1(τ ) +

∫ τ+�τ

τ

y1 f (τ , ε)

εh(τ )U (τ )
dτ

T2(τ + �τ ) �
∫ τ

0

y2 f (τ , ε)

εh(τ )U (τ )
dτ +

∫ τ+�τ

τ
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εh(τ )U (τ )
dτ � T2(τ ) +

∫ τ+�τ

τ

y2 f (τ , ε)

εh(τ )U (τ )
dτ
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The integral term in Eq. (27) can also be approximated as follows,
⎧
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∫ τ+�τ

τ
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2ε

(
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+
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)

∫ τ+�τ

τ
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εh(τ )U (τ )
dτ ≈ �τ

2ε

(
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h(τ )U (τ )
+
y2(τ + �τ ) f (τ + �τ , ε)

h(τ + �τ )U (τ + �τ )
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where

U (τ + �τ ) � exp

(

−
∫ τ+�τ

0

a(τ )

ε
dτ

)
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(

−
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a(τ )

ε
dτ

)

� U (τ ) exp

(
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2ε

)
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Substituting Eqs. (22) to (29) into Eq. (21), the recursive expression of the acceleration response can be
obtained.

x ′′(τ + �τ ) �(
e1y

′′
1 (τ + �τ ) + e2y

′′
2 (τ + �τ )

)
+

(
y′′
2 (τ + �τ )T1(τ ) − y′′

1 (τ + �τ )T2(τ )
)

+
�τ

2ε

y′′
2 (τ + �τ )y1(τ ) − y′′

1 (τ + �τ )y2(τ )

h(τ )U (τ )
f (τ , ε)

+

(
�τ

2ε

y′′
2 (τ + �τ )y1(τ + �τ ) − y′′

1 (τ + �τ )y2(τ + �τ )

h(τ + �τ )U (τ + �τ )
+

1

ε2

)

f (τ + �τ , ε) (30)

In addition, the application of this recursive formula also requires the initial values of y1, y2,U , T1 and T2
at τ � 0, and these values can be directly given according to their respective expressions

y1(0) � 1

y2(0) � 0

U (0) � 1

T1(0) � T2(0) � 0

(31)



2828 Y. Li et al.

Fig. 1 Flow chart of IWKB dynamic load identification method

4 IWKB dynamic load identification method using acceleration response

It can be seen from the above analysis that only T1, T2, and f in Eq. (19) are related to the load. By expanding
Eq. (21) and merging similar terms, we can get

f (τ + �τ , ε) �

x ′′(τ + �τ ) − (e1y
′′
1 (τ + �τ ) + e2y

′′
2 (τ + �τ )) − (

y′′
2 (τ + �τ )T1(τ ) − y′′

1 (τ + �τ )T2(τ )
)

−�τ

2ε

y′′
2 (τ + �τ )y1(τ ) − y′′

1 (τ + �τ )y2(τ )

h(τ )U (τ )
f (τ , ε)

�τ
2ε

y′′
2 (τ+�τ )y1(τ+�τ )−y′′

1 (τ+�τ )y2(τ+�τ )
h(τ+�τ )U (τ+�τ ) + 1

ε2

(32)

Equation (32) is the time recursive formula of the load.
So far, we have deduced a DLI method based onWKB accelerated recursion. Since this method is obtained

by inversion based on the recursive solution of the WKB real function, we can call it an inverse WKB (IWKB)
method. The specific steps are described below. Figure 1 shows a flow chart of the specific steps.

Step 1 Initial calculation.
x(0) � x0,ẋ(0) � ẋ0,ẍ(0) � ẍ0;
y1(0) � 1,y2(0) � 0,U (0) � 1,T1(0) � T2(0) � 0;
f (0) � m(0)ẍ(0) + c(0)ẋ(0) + k(0)x(0).
Step 2 The acceleration is correspondingly converted into the space related to τ , and the time step �τ and

the tiny parameter ε are determined;
Step 3 Derivation for each time step.
(1) Determine y1(τ + �τ ),y2(τ + �τ ),y′′

1 (τ + �τ ),y′′
2 (τ + �τ ).

[
y1(τ + �τ )
y2(τ + �τ )

]

� exp

(

− (a(τ ) + a(τ + �τ ))�τ

4ε

)
⎡

⎣
cos

(
(h(τ )+h(τ+�τ ))�τ

2ε

)
− sin

(
(h(τ )+h(τ+�τ ))�τ

2ε

)

cos
(

(h(τ )+h(τ+�τ ))�τ
2ε

)
sin

(
(h(τ )+h(τ+�τ ))�τ

2ε

)

⎤

⎦

[
y1(τ )
y2(τ )

]

[
y′′
1 (τ + �τ )
y′′
2 (τ + �τ )

]

�
⎡

⎣
a2(τ+�τ )

4ε2
− a′(τ+�τ )

2ε − h2(τ+�τ )
ε2

a(τ+�τ )h(τ+�τ )
ε2

− h′(τ+�τ )
ε

−
(
a(τ+�τ )h(τ+�τ )

ε2
− h′(τ+�τ )

ε

)
a2(τ+�τ )

4ε2
− a′(τ+�τ )

2ε − h2(τ+�τ )
ε2

⎤

⎦

[
y1(τ + �τ )
y2(τ + �τ )

]

(2) Confirm f (τ + �τ , ε).

f (τ + �τ , ε)

�
x ′′(τ + �τ ) −

[
e1 − T2(τ )
e2 + T1(τ )

]T [
y′′
1 (τ + �τ )
y′′
2 (τ + �τ )

]

− �τ
2ε

1
h(τ )U (τ )

[
y2(τ )

−y1(τ )

]T [
y′′
1 (τ + �τ )
y′′
2 (τ + �τ )

]

f (τ , ε)

�τ
2ε

1
h(τ )U (τ )

[−y2(τ + �τ )
y1(τ + �τ )

]T [
y′′
1 (τ + �τ )
y′′
2 (τ + �τ )

]

+ 1
ε2

(3) Determine T1(τ + �τ ),T2(τ + �τ ).
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U (τ + �τ ) � U (τ ) exp

(

− (a(τ ) + a(τ + �τ ))�τ

2ε

)

⎧
⎪⎪⎨

⎪⎪⎩

T1(τ + �τ ) � T1(τ ) +
�τ

2ε

(
y1(τ ) f (τ , ε)

h(τ )U (τ )
+
y1(τ + �τ ) f (τ + �τ , ε)

h(τ + �τ )U (τ + �τ )

)

T2(τ + �τ ) � T2(τ ) +
�τ

2ε

(
y2(τ ) f (τ , ε)

h(τ )U (τ )
+
y2(τ + �τ ) f (τ + �τ , ε)

h(τ + �τ )U (τ + �τ )

)

Step 4 Transform the identified loads into space relative to time t.

f (t) � f (τ , ε)

5 Numerical examples of LTV dynamic systems

5.1 Noiseless acceleration response

AnLTVsystem is examinedbasedonMatlab, and the proposedDLImethod is verifiedbasedon the approximate
solution of WKB. The differential equation for vibration in a structural system with a SODF that varies
with time can be formulated as ẍ(t) + a(t)ẋ(t) + b(t)x(t) � F(t). System parameters are designated a(t) �
10 + 0.1εt sin(0.1πεt), b(t) � 36 + 0.2εt sin(0.3πεt), where ε � 0.1; system initial conditions are x0 � 0
m, ẋ0 � 0 m/s. The displacement response of this system cannot be solved analytically, so the Runge–Kutta
method is employed to solve the system response within 0 to 1s numerically, and the numerical solution of the
system acceleration response is obtained. The acceleration response is then incorporated into the DLI method
developed in this paper to solve, and the obtained data is resampled at a sampling rate of 100 Hz.

(1) The external excitation is set to sinusoidal excitation with TV amplitude: f (t) � (1 + 0.08εt) sin(60πεt)
N.

(2) The external excitation is set to an impact excitation with an amplitude of 15N, and the action time is
0.1s.

(3) Load a random load with amplitude of − 5N~5N on the system, and set the sampling frequency of the
acceleration response to 1000Hz.

As depicted in Figs. 2 and 3, the DLI method grounded on WKB exhibits a good identification effect
on the sinusoidal load and impact load of the LTV structural system, and the identified load time history
is remarkably proximate to the actual load. Figure 4 illustrates that the IWKB load identification method is
effective in identifying random loads. Upon detailed examination of the interval between 0.60 and 0.65 s, we
noted that the IWKB method accurately identified the load and confirmed our previous conclusion.

To conduct a quantitative analysis of the error level throughout the entire time history, we designate the
relative average error E as a parameter to measure the accuracy of load identification.

E �
1
N

∑ |p(t) − F(t)|
1
N

∑ |F(t)| × 100% (33)

Among them, p(t) represents the identified load, F(t) represents the real load loaded by the system, and
N represents the number of time steps.

Table 1 shows that the IWKB load identification method has high identification accuracy without noise.
When we use the acceleration response obtained from theWKB real function recursive solution to identify the
load, the relative error is reduced to the order of 1e-14. Therefore, we can conclude that the error is due to the
difference between the Runge–Kutta numerical solution and the recursive solution of the WKB real function
itself.
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Fig. 2 Load identification time history for sinusoidal loads

Fig. 3 Load identification time history for shock loads

Table 1 IWKB Load Identification Error

E (%)

Runge–Kutta numerical solution WKB real function recursion solution

Sinusoidal 0.0100 1.3217e-14
Impact 0.0243 1.5013e-14
Random 0.1446 8.1676e-15

5.2 Acceleration response polluted by noise

A sinusoidal load with TV amplitude is applied to the TV structural system in Numerical Example 5.1,
i.e., f (t) � (1 + 0.08εt) sin(400πεt). The sampling frequency is set to 1000 Hz. We use the acceleration
response polluted by Gaussian white noise for DLI. The signal-to-noise ratios (SNR) of the noise are 30 dB,
25 dB, 20 dB, and 10 dB, respectively.

Figures 5, 6, 7 and 8 show the identification results of sinusoidal loads under different noise conditions. The
figures demonstrate that both the inverse Wilson-θ method and the IWKB method are effective in accurately
determining the time histories of the unknown loads. Under 30 dB SNR input, the load time histories identified
by the two methods perfectly align with the real load. In comparison, the load time histories under 25 dB SNR
identified by the two methods align with the real load; under 20 dB noise, the load time histories identified by
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Fig. 4 Load identification time history for random loads

Fig. 5 Time history of load identification at SNR � 30dB

the two methods align with the real load with a good degree of alignment and slight deviation; under 10 dB
noise, although there is a certain deviation between the time history of the load identified by the two methods
and the real load, it can depict the change law of the load over time.

Table 2 demonstrates that as the signal-to-noise ratio decreases and noise increases, the recognition result
worsens. Furthermore, under the same noise conditions, the IWKB method has slightly higher recognition
accuracy than the Inverse Wilson-θ method.

5.3 Comparison between IWKB method and inverse Wilson-θ method

Now we calculate the numerical example again by employing the LTV structural system with load f (t) �
(1 + 0.08εt) sin(60πεt) and an acceleration response sampling frequency of 100 Hz.
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Fig. 6 Time history of load identification at SNR � 25dB

Fig. 7 Time history of load identification at SNR � 20dB

Fig. 8 Time history of load identification at SNR � 10dB
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Table 2 Error comparison of two load identification methods

SNR of Gaussian White Noise E (%)

Inverse Wilson-θ method IWKB method

30db 3.2933 3.2898
25db 5.2559 5.2449
20db 9.4972 9.4882
10db 28.5967 28.5664

Fig. 9 Loads identified by the IWKB method in 0~15s

For the long-term identification of sinusoidal excitations with TV amplitudes, we employ the IWKB
method and the inverse Wilson-θ method. Figure 9 Loads identified by the IWKB method in 0~15s and
Fig. 10 Loads identified by Inverse Wilson-θ method in 0~15s depict the temporal evolution of DLI. These
figures demonstrate that both algorithms are effective in long-term DLI when the acceleration response is
free from noise interference. To facilitate a comprehensive comparison of the two methods, we computed
their recognition error and time consumption. The IWKB method exhibits a relative error of 0.1710% for
the 0–15 s identification, whereas the inverse Wilson-θ method yields a relative error of 0.1856% for the
same identification period. The IWKB method demonstrates a 7.87% reduction in recognition error compared
to the inverse Wilson-θ method, resulting in a slightly higher recognition accuracy. Furthermore, the IWKB
method requires 0.0439s to perform identification over the 0–15 s duration, while the inverseWilson-θmethod
takes 0.1636s for the same identification interval. Hence, the IWKB method achieves a 73.17% reduction in
calculation time, resulting in significantly improved calculation efficiency.

To further compare the Inverse Wilson-θ method with the IWKB load identification method, we perform
the DLI process from 0 to 2s on the above system and analyze the identification accuracy and efficiency of the
two methods under different time steps.

From Fig. 11, it is evident that the IWKB method takes slightly longer than the Inverse Wilson-θ method
when time step �t is greater than 2e-3s. When �t equals 2e-3s, both methods take a similar amount of time.
However, when �t is less than 2e-3s, the IWKB method is significantly less time-consuming than the Inverse
Wilson-θ method. The smaller �t is, the more obvious the time-saving of the IWKB method becomes. In
general, the smaller the time step, the longer it takes for the two methods to identify the load from 0 to 2 s.
This is attributed to the fact that the smaller the time step, the more time steps are needed to identify the load
for the same duration.

As shown in Fig. 12, when is less than or equal to 2e-4s, the recognition error of the IWKB method
is comparable to that of the Inverse Wilson-θ method. The error fluctuates between 0.0083 and 0.0103%,
indicating that when is less than or equal to 2e-4s, the accuracy of DLI will not be further improved. When is
greater than 2e-4s and less than or equal to 1e-3s, the recognition error of the IWKBmethod is slightly smaller
than that of the Inverse Wilson-θ method. When is greater than 1e-3s, compared with the Inverse Wilson-θ
method, the IWKB method has a significantly reduced recognition error and improved recognition accuracy.
In general, the smaller the time step, the greater the load identification accuracy of the two methods. This is
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Fig. 10 Loads identified by Inverse Wilson-θ method in 0~15s

Fig. 11 Time-consuming comparison of DLI at different time steps of 0~2s

attributed to the fact that the smaller the time step, the superior the fit for the time-varying parameters, and the
higher the accuracy of the identified load.

When the DLI time is fixed, within a certain range, the larger the time step �t , the fewer the number of
time steps and thus less time-consuming both DLI methods become. However, this also leads to a greater
identification error and lower identification accuracy. For higher recognition accuracy, we should choose a
smaller �t ; for higher computational efficiency, we should choose a larger �t . Considering efficiency and
error comprehensively and compared with the Inverse Wilson-θ method, we recommend using a value of �t
between 1e-3s and 2e-3s for the IWKB method.

5.4 The influence of TV parameters on recognition accuracy and efficiency

The system parameters are designated as: m(t) � 1 − 0.05 sin απ t kg, c(t) � 0.1 + 0.1 sin(βπ t) Ns/m,
k(t) � 5 + 1.5 sin(γπεt) N/m. The initial conditions of the system are set to: x0 � 0 m, ẋ0 � 0 m/s. The
sampling frequency is established at 1000Hz.

Initially, we employ the Runge–Kutta method to solve the acceleration response of this system, and then
incorporate the acceleration response into the IWKBmethod to identify the load of the TV system. The values
of α, β, and γ individually represent the rate of change of parameters m(t), c(t), and k(t). Table 3 presents the
scenario when β � γ � 0, that is, c(t) and k(t) are constants, and the influence of the rate of change of m(t) on
the accuracy and efficiency of DLI by the IWKB method. Table 4 depicts the situation when α � γ � 0, and



Inverse WKB recursive solution method for dynamic load 2835

Fig. 12 Error comparison of DLI at different time steps of 0~2s

Table 3 E and time-consuming under different α values

A 0.001 0.01 0.1 1 10

E (%) 0.0220 0.0219 0.0224 0.0294 0.0997
Time consuming (s) 0.0191 0.0191 0.0188 0.0187 0.0199

Table 4 E and time-consuming under different β values

B 0.001 0.01 0.1 1 10

E (%) 0.0210 0.0210 0.0222 0.0221 0.0669
Time consuming (s) 0.193 0.0197 0.0188 0.0199 0.0190

Table 5 E and time-consuming under different γ values

Γ 0.001 0.01 0.1 1 10

E (%) 0.0222 0.0223 0.0272 0.0707 0.5965
Time consuming (s) 0.0201 0.0199 0.0188 0.0197 0.0184

the effect of the rate of change of c(t) on the accuracy and efficiency of DLI by the IWKB method. Table 5
illustrates the case when α � β � 0, and the impact of the rate of change of k(t) on the accuracy and efficiency
of DLI by the IWKB method.

Upon observation of the simulation results, it becomes evident that the accuracy ofDLI by IWKB is affected
by the values of α, β, and γ . Specifically, the larger the rate of change of each parameter of the system over
time, or in other words, the more drastic the parameter changes, the greater the relative error of DLI, and the
lower the recognition accuracy, which is consistent with the assumptions in the previous text. Nevertheless,
the accuracy of DLI using the IWKB method falls within an acceptable range. For instance, for γ � 10, the
change period of k(t) is 0.2s, and E is within 1% at 0.60%. The efficiency of IWKB in DLI is essentially
unaffected by the values of α, β, and γ , and the time consumed in DLI varies between 0.0185 and 0.022s.

5.5 DLI of an LTV mass beam model simply supported at both ends

As shown in Fig. 13, the simply supported beam has a length of 1 m and a cross-section of 0.04 m × 0.01 m.
It has an elastic modulus of 2.1×1011 N/m2, and a TV density of ρ(t) � 7800(1− 30t2) kg/m3. The damping
of the system is set to proportional damping, and the damping ratio of each order is 0.02. The x-axis is taken
as its axis, and the left end of the beam is taken as the origin. The beam is only subjected to lateral forces, and
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Fig. 13 Schematic diagram of a simply supported beam

Fig. 14 Time-domain acceleration response of measuring point 1

Fig. 15 Frequency domain acceleration response of measuring point 1

the load is applied at a distance of 0.335 m from the far point. Sampling points are set at 0.2 m, 0.4 m, 0.6 m,
and 0.8 m from the origin, and the acquisition frequency of the acceleration response is 4000 Hz. The IWKB
method is used to identify the loaded dynamic load in time domain.

(1) Working condition 1: an amplitude of 100 N and an impact time of 0.005 s.
The acceleration response of measuring point 1 is shown in Fig. 14 for the collected acceleration signal of

0 to 0.12 s. The collected signal is subjected to FFT transformation to obtain the frequency response of the
acceleration response of measuring point 1 as shown in Fig. 15.

It can be observed from Fig. 15 that in the frequency response diagram of the LTV structure system,
the resonance peak is wider than that of the time-invariant system because the natural frequency of the LTV
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Fig. 16 Variation law of the first 7 natural frequencies

Fig. 17 Time history of identified impact loads

structure system varies with time. Three distinct peaks appear between 0 and 500 Hz, indicating that the mode
at 0 and 500 Hz makes the main contribution.

To help us determine the modal order between 0and500 Hz and analyze the change of natural frequency
with time, we calculated the first seven natural frequencies of the system. Figure 16 shows that the first four
natural frequencies are in the range of 0 to 500 Hz, so it is reasonable for us to arrange four measuring points.
The natural frequency of each order increases with time, following a quadratic function relationship. The LTV
law of the natural frequency can be calculated from the LTV structural parameters. Since the system only
involves the LTV mass and the time-varying mass is a quadratic function, the time-varying law of natural
frequency is the same as that of mass.

The measured acceleration response was resampled with a sampling frequency of 2000 Hz. The resampled
natural frequency was then used to identify the load and the time history of the impact load under the condition
of no noise, as shown in Fig. 17.

(2) Working condition 2: a sinusoidal load f (t) � 50 sin 200π t .
We treated the acceleration response in the same way as working condition 1, and the time history of

identifying the sinusoidal load is shown in Fig. 19.
The IWKB load identification method has been shown to have high identification accuracy for both the

impact load and sinusoidal load of the time-varying simply supported beammodel as demonstrated in Figs. 17,
18, 19, 20.Additionally, Table 6 shows that the IWKB load identificationmethod is highly accurate and efficient
in time-varying simply supported beam structures.
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Fig. 18 Time history of identified impact loads at SNR � 30db

Fig. 19 Time history of identified sinusoidal loads

Fig. 20 Time history of identified sinusoidal loads at SNR � 30db
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Table 6 Comparison of DLI for Simply Supported Beams

SNR of Gaussian White Noise E (%) Time consuming (s)

Impact load no 2.9415e-15 0.0347
30db 0.4704 0.0316
20db 13.1447 0.0367

Sinusoidal load no 5.5381e-14 0.0367
30db 4.3001 0.0385
20db 19.2971 0.0325

Fig. 21 Schematic diagram of a discrete cantilever beam with MODF

Fig. 22 Variation law of the first 7 natural frequencies

5.6 IDL of multi-degree-of-freedom (MODF) discrete LTV cantilever beam systems

The geometric and physical parameters of the beammirror the simply supported beam in 5.4, with the boundary
conditions altered to a fixed left end and a free right end. As shown in Fig. 21, the beam is partitioned into
20 elements and 21 nodes. The load f is applied in the vertical direction at the 7th node, and the acceleration
measurement points are positioned at the 5th, 10th, 15th, and 20th nodes, with a designated sampling frequency
of 4000Hz. DLI is conducted using the IWKB method.

Working condition 1: f is an impact load with a loading duration of 0.005 s and an amplitude of 50N.
As depicted in Fig. 22, Variation law of the first 7 natural frequencies, the first 7 modal frequencies of

this system escalate with time, mirroring the change in natural frequencies of the system in 5.4. The temporal
characteristics of the modal frequency exhibit a strong correlation with the temporal characteristics of the
mass. Owing to different boundary conditions, the first 7 natural frequencies of the discrete cantilever beam
fall below the first 7 natural frequencies of the simply supported beam.

In a similar vein, we resample the measured acceleration response at a sampling frequency of 2000 Hz.
Subsequently, using the resampled acceleration response, we identify the time history of the impact load.
Figure 23 Time history of identified impact loads depicts the load time history identified by the IWKBmethod
when the acceleration response is unpolluted. Figure 24 Time history of identified impact loads at SNR �
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Fig. 23 Time history of identified impact loads

Fig. 24 Time history of identified impact loads at SNR � 30db

30dbillustrates the load time history identified by the IWKB method when the acceleration response contains
Gaussian white noise with SNR � 30db.

Working condition 2: a sinusoidal load f (t) � 60 sin 170π t .
We employ the same method as in working condition 1 to process the acceleration response and identify

the time history of the sinusoidal load. Figure 25 Time history of identified sinusoidal loads depicts the load
time history identified by the IWKB method when the acceleration response is unpolluted. Figure 26 Time
history of identified sinusoidal loads at SNR � 30db illustrates the load time history identified by the IWKB
method when the acceleration response contains Gaussian white noise with SNR � 30db.

As observed from Figs. 23, 24, 25, 26, the IWKB method exhibits good recognition accuracy for the
parameter-varying discrete cantilever beam system, and the load identified maintains relative accuracy even in
the presence of noise. Table 7 presents a comparison of the DLI errors using the IWKBmethod under different
noise conditions. With the escalation of noise, the error of DLI correspondingly escalates, but the identified
load retains a certain level of accuracy and offers practical reference value.

6 Conclusions

This paper derives the IWKB dynamic load identification method for the LTV structural system from the
approximate solution of the WKB real function. The step-by-step derivation process of the DLI method is
summarized, and the influence of the time step on accuracy and efficiency ofDLI is investigated. The simulation
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Fig. 25 Time history of identified sinusoidal loads

Fig. 26 Time history of identified sinusoidal loads at SNR � 30db

Table 7 Comparison of DLI for Cantilever Beam

SNR of Gaussian White Noise E (%)

Impact load No 8.1308e-15
30db 1.4861
20db 5.0239

Sinusoidal load no 5.8262e-14
30db 7.2397
20db 22.1488

results show that this method has high recognition accuracy for impact load, harmonic load, and random load
of LTV structural systems. When selecting an appropriate time step, compared with Wilson-θ back analysis
methods, IWKBmethods can not only improve recognition accuracy but also significantly improve calculation
efficiency and greatly save program running time. The rate of change of TV parameters significantly influences
the accuracy of load identification, but it does not affect efficiency. Furthermore, whether the method proposed
in this article can achieve DLI for SDOF nonlinear systems remains an area worthy of further exploration.
However, for complex nonlinear systems, such as MDOF systems or continuous structural systems, due to
their high complexity and non-compliance with the principle of linear superposition, modal decomposition
cannot be performed, rendering the IWKB method inapplicable.
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