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Abstract In the present investigation, the scattering nature of SH-waves in the irregular free surface of a linear
orthotropic viscoelastic layer lying over orthotropic viscoelastic half-space has been considered. Different
types of surface irregularity viz. parabolic type, rectangular type, and triangular notch type have been taken into
account in the aforesaid structure. The closed-form expressions of dispersion as well as damping relations have
been deduced analytically. The expressions for the induced reflected displacement due to scattering phenomena
of SH-waves have also been deduced for all aforesaid cases of surface irregularity. The effects of the anisotropy
parameter of the upper layer on the phase velocity and the attenuation coefficient of scattered SH-waves have
also been examined. The effects of vertical irregularity parameter and anisotropy parameter on the induced
reflected displacement component have also been examined. Further, a comparative observation has also been
outlined and discussed.

1 Introduction

The analysis on the propagation of surface waves is an interesting topic for researchers and scientists in the
field of geophysics, civil engineering, and earthquake engineering. The propagation of SH-waves though the
surface irregularity may lead to the scattering of surface waves (Love type waves and SH-waves), which may
further affect the stability of engineering structures. The generation of surface waves takes place after the
occurrence of earthquake. There are different types of orthotropic materials like carbon fiber, prepreg, wood,
biological tissues, polymers such as Low-Density Polyethylene (LDPE), Polyethylene Terephthalate (PET),
and so on that can be found in the real-world scenarios. Materials properties of orthotropic material totally
depends along the coordinate axes. There are different kinds of orthotropic materials like carbon fiber, prepreg,
wood, biological tissues which are orthotropic in nature. Material properties of orthotropic materials totally
depend along the coordinate axes. There exist some sorts of materials that are also viscoelastic in nature. The
materials that respond elastically under the influence of small transient forces but behaves viscously under
the impact of long durational forces are called viscoelastic materials [5]. In the viscoelastic structures, stress
does not depend only on strain but also on strain-rate. There exist different types of viscoelastic materials viz.
carbon fiber, prepreg, bitumen materials, etc., can be used in the construction of engineering structures.

The investigation on orthotropic viscoelastic modeling of polymeric battery separator has been accom-
plished by Yan et al. [16]. Several researchers put significant efforts to deal with the linear orthotropic vis-
coelastic structures. Cansız et al. [1] studied orthotropic viscoelastic material model for passive myocardium:
theory and algorithmic treatment. There are different kinds of rock structures that can be found on the earth’s
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crust. The upper surface of these materials is not smooth. There may exist some kinds of irregularity on the
upper surface of these structures. Surface irregularity occurs in the upper surface of some medium due to
different natural phenomena viz. weathering, erosion, and external impacts, etc. Due to SH-waves propagation
through the surface irregularity of medium, scattering phenomena take place. Reflection phenomena occurs
due to scattering of SH-waves through the surface irregularity. Therefore, induced reflection wave field may
damage the shape of surface irregularity of the medium. Therefore, it is important to investigate the scattering
nature and propagation phenomena of SH-waves through the surface irregularity in the medium.

Wolf [15] studied the propagation of Love waves through the surface irregularity in a layered isotropic
elastic structure. The phenomena of the scattering of Lovewaves through the irregularity boundary of an elastic
layer overlying an elastic half-space has been investigated by Slavin andWolf [12]. Fung and Eom [4] discussed
the bistatic wave scattering and reflection characteristics due to the irregular interface of the inhomogeneous
layered elastic structure. Chattopadhyay et al. [2] studied the scattering characteristics of SH-waves due to
the interaction of Love waves and irregular surface of a layered isotropic viscoelastic structure. Negi and
Singh [7] studied the propagation and scattering characteristics of Love waves through the irregular surface
of a transversely isotropic piezoelectric composite structure. Singh and Kumari [11] analyzed the scattering
behavior of plane SH-waves propagating in a layered piezomagnetic structure containing surface irregularity.
Singh et al. [10] investigated on the scattering phenomena of Love waves passing through the upper irregular
surface of a layered porous-piezoelectric structure. Chattopadhyay [3] investigated the propagation of SH-
waves in a layered and irregular viscoelastic structure. Singh et al. [9] studied the impact of irregularity on
SH-type wave propagation in micropolar elastic composite structure.

It has been found from the existing literatures that many researchers have done the investigation of propa-
gation and scattering characteristics of SH-wave and Love waves interacting through the surface irregularity
in the isotropic elastic, isotropic viscoelastic, piezoelectric, and piezomagnetic layered structure. But, to the
best of author’s knowledge, the study on the scattering and reflection characteristics of SH-waves in a lay-
ered orthotropic viscoelastic composite structure with surface irregularity has not been accomplished till date.
These facts motivated the authors to investigate the scattering and reflection characteristics of SH-waves
passing through the surface irregularity in the layered orthotropic viscoelastic composite structure. In this
paper, scattering and reflection characteristics of SH-waves propagating through the surface irregularity in the
orthotropic viscoelastic composite structure have been investigated. Analytical expressions of dispersion and
damping relations of scattered SH-waves have been obtained. The expressions of displacement components
due to scattering of SH-waves for different type of surface irregularity have been derived. Impact of anisotropy
parameter (related to shear modulus) of upper layer on the phase velocity and attenuation coefficient has also
been discussed. The effects of vertical irregularity parameter and anisotropy parameter of upper layer on the
reflected displacement fields have been observed for three distinct surface irregularity viz. parabolic, triangular
notch, and rectangular, respectively. A comparative observation for the reflected displacement can be done for
three types of surface irregularity.

2 Formulation of the problem

In the present study, a model of linear orthotropic viscoelastic layer of thickness H overlying orthotropic
viscoelastic half-space has been considered. A rectangular coordinate system has been selected in such a way
that SH-waves (horizontally polarized shear waves) propagate along the direction of y-axis. In this model, x-
axis is considered along the downwards direction, and z-axis is considered along the oscillations of SH-waves.
The origin is denoted by x � 0 which is situated between the layer and half-space of this medium.

The equation of the upper free surface containing surface irregularity can be expressed as

x � xB � −H + bh(y), (1)

in which, the term h(y) can be written as

h(y) �
⎧
⎨

⎩

0, for y ≤ − s
2 and y ≥ s

2

h0(y), for − s
2 ≤ y ≤ s

2

. (2)

where s indicates the span of the surface irregularity;H denotes the thickness of the upper layer;b (� 1)
denotes the amplitude of the surface irregularity, and h0(y) associated with the shape of the surface irregularity
of the upper layer. The geometry of the present model is depicted in Fig. 1.
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Fig. 1 Geometry of the problem

The displacement components during the propagation of SH-waves can be written as

u1 � v1 � 0, w1 � w1(x , y, t), u2 � v2 � 0, w2 � w2(x , y, t), (3)

where (u p, vp, wp) are the components of displacement along x, y and z-axis direction, respectively; p � 1
corresponds to the upper layer while p � 2 associated with the lower half-space.

The equations of motion in absence of external forces can be expressed as

σi j , j � ρ
∂2ui
∂t2

, (i , j � 1, 2, 3) (4)

where σi j are components of stress tensor; ui is the displacement components; ρ is the density of the medium.
Stress–strain relations in orthotropic medium can be written as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ23
σ13
σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
ε23
ε13
ε12

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where ci j (i , j � 1, 2, ...6), εi j (i , j � 1, 2, 3) are the components of elastic constants and strain, respectively.
Due to viscoelasticity in the considered medium, the elastic constants of the orthotropic medium can be

expressed as [13, 14]
⎧
⎪⎨

⎪⎩

c11 � cR11 + cI11
∂

∂t
, c12 � cR12 + cI12

∂

∂t
, c13 � cR13 + cI13

∂

∂t
, c33 � cR33 + cI33

∂

∂t
,

c44 � cR44 + cI44
∂

∂t
, c55 � cR55 + cI55

∂

∂t
, c66 � cR66 + cI66

∂

∂t
,

⎫
⎪⎬

⎪⎭
, (6)

where cR11, cR12, cR13, cR33, cR44, cR55, cR66, cI11, cI12, cI13, cI33, cI44, cI55 and cI66 are the real and imaginary
part of elastic coefficients, respectively.

Strain components and displacement components can be related as

ε11 � ∂u

∂x
, ε22 � ∂v

∂y
, ε33 � ∂w

∂z
, ε23 � 1

2

(
∂w

∂y
+

∂v

∂z

)

, ε13 � 1

2

(
∂u

∂z
+

∂w

∂x

)

, ε12 � 1

2

(
∂u

∂y
+

∂v

∂x

)

. (7)

Using Eqs. (3), (5), (6), and (7) in Eq. (4), we obtain
(

cpR55 + cpI55
∂

∂t

)
∂2wp

∂x2
+

(

cpR44 + cpI44
∂

∂t

)
∂2wp

∂y2
� ρp

∂2wp

∂t2
, (8)

where p � 1, 2. Here, subscript 1 is related with the linear orthotropic viscoelastic layer and subscript 2
corresponds to the linear orthotropic viscoelastic half-space.



2748 S. Koley et al.

Equation (8) can be rewritten as

∂2wp

∂y2
+

1

λ
2
p

∂2wp

∂x2
� 1

β
2
p

∂2wp

∂t2
, (9)

where 1
λp

and 1
β p

can be expressed as

1

λp
�
√
cp55
cp44

�

√
√
√
√
√
√
√

cpR55

(

1 + iω
cpI55
cpR55

)

cpR44

(

1 + iω
cpI44
cpR44

) �
√
√
√
√ cpR55 (1 + iωκ2)(1 + iωκ1)

−1

cpR44

�
√
√
√
√ cpR55

cpR44

(
1 + iω(κ1 − κ2) + ω2κ1κ2 + −−),

1

β p
�
√

ρp

cp44
�
√
√
√
√
√

ρp

cpR44

(

1 + iω
cpI44
cpR44

) �
√

ρp

cpR44 (1 + iωκ1)
�
√
√
√
√ρp(1 + iωκ1)

−1

cpR44

�
√

ρp

cpR44

(
1 − iωκ1 − ω2κ2

1 + −−).

Since, κ1 � cpI44
cpR44

<<< 1 and κ2 � cpI55
cpR55

<<< 1 are very small quantity in aforesaid medium, so the above

expression can be written in the following way

1

λp
≈
√
√
√
√cpR55

cpR44

and
1

β p
≈
√

ρp

cpR44

.

Let us consider the following transformation for the displacement components

wp(x , y, t) � Wp(x , y)eiωt , (10)

where ω represents the angular frequency;p � 1 corresponds to the upper layer, and p � 2 is associated with
the lower half-space.

Using Eq. (10) in Eq. (8), we obtain

∂2w1

∂y2
+

1

λ
2
1

∂2w1

∂x2
+ M

2
1w1 � 0, (11a)

∂2w2

∂y2
+

1

λ
2
2

∂2w2

∂x2
+ M

2
2w2 � 0, (11b)

where λ
2
1, λ

2
2, M

2
1, and M

2
2 are given in the Appendix.

3 Boundary conditions

For themathematicalmodel used in the present problem (depicted by Fig. 1), the following boundary conditions
are used.

The traction free condition at upper boundary, i.e., at x � −H + bh(y) is

σ 1
31 − λ

2
1bh

′σ 1
32 � 0. (12)

where h′ � dh
dx .

The continuity conditions for stress and displacement at the interface, i.e., at x � 0 are

w1 � w2, (13)

σ 1
13 � σ 2

32. (14)
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4 Solution of the problem

In view of Eqs. (11a–11b), the solution of the incident wave field for the propagation of SH-waves can be
expressed as [2, 15]

w1,in � A cos λ1s1(x + H )e−iηy , (15)

w2,in � Be−λ2s2xe−iηy , (16)

where s21 � M
2
1 − η2, s22 � M

2
2 − η2; η � ω

cph
is the angular wave number; cph represents the phase velocity

of shear waves; A and B indicate the coefficients of displacement.
Similarly, in viewofEqs. (11a–11b), the solution of the reflectedwave field for the propagation of SH-waves

can be written as [2, 15]

w1,scatt �
∫

c

{
C(υ)e−iλ1ξ1x + D(υ)eiλ1ξ1x

}
e−iυydυ, (17)

w2,scatt �
∫

c

E(υ)e−λ2ξ2xe−iυydυ, (18)

where ξ
2
1 � M

2
1 − υ2, ξ

2
2 � υ2 − M

2
2; υ � ω

cph
; C(υ), D(υ) and E(υ) represent the arbitrary coefficients

in the expression of scattered displacements in υ-plane.
The contour integral of scattered wave field in the υ-plane can be represented through Fig. 2 as [6, 15]
In view of Eqs. (15–16) and (17–18), the total displacement field for SH-waves in the aforesaid medium

can be obtained as

w1 � w1,in + w1,scatt � A cos λ1s1(x + H )e−iηy +
∫

c

{
C(υ)e−iλ1ξ1x + D(υ)eiλ1ξ1x

}
e−iυydυ, (19)

w2 � w2,in + w2,scatt � Be−λ2s2xe−iηy +
∫

c

E(υ)e−λ2ξ2xe−iυydυ. (20)

Using Eqs. (19–20) in the boundary condition (13), we get

A cos λ1s1H � B, (21)

C(υ) + D(υ) � E(υ). (22)

Using Eq. (21) in Eq. (20), we have

w2 � A cos λ1s1He−λ2s2xe−iηy +
∫

c

E(υ)e−λ2ξ2xe−iυydυ. (23)

Fig. 2 Contour integral in υ-plane with branch cut
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Using Eqs. (19) and (23) in the boundary condition (14), we get

C(υ) − D(υ) � 1

γ
E(υ), (24)

where γ � iλ1ξ1c
1
55

λ2ξ2c
2
55
.

On solving Eqs. (22) and (24), we obtain

E(υ) � C(υ)

(
2γ

γ + 1

)

and D(υ) � C(υ)

(
γ − 1

γ + 1

)

. (25)

Using Eq. (25) in Eqs. (19) and (23), we have

w1 � A cos λ1s1(x + H )e−iηy +
∫

c

2C

1 + γ

{
γ cos λ1ξ1x − i sin λ1ξ1x

}
e−iυydυ, (26)

w2 � A cos λ1s1He−λ2s2xe−iηy +
∫

c

2C

1 + γ

{
γ e−λ2ξ2x

}
e−iυydυ. (27)

Due to upper irregular surface of the stratum, perturbation technique on C(υ) provides

C(υ) � bC1(υ) + b2C1(υ) + b3C1(υ) + b4C1(υ) + · · · (28a)

Since, the irregularity in the upper surface is very small in the considered orthotropic viscoelastic layer,
i.e., b << 1, therefore, we have

C(υ) � bC1(υ) , sinη1bh ∼� η1bh , cos η1bh ∼� 1 (b << 1). (28b)

Using Eqs. (26–27) and Eqs. (28a–28b), the boundary condition (12) yields

A
[−iλ1ηh

′ + λ1s
2
1h
]
e−iηy +

∫

c

(
2

1 + γ

)

C1(υ)(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1e
−iyυdυ � 0. (29)

On inverting Eq. (29), we have

C1(υ) � A(γ + 1)

4π(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1

∞∫

−∞

[
iλ1ηh

′ − λ1s
2
1h
]
eiz(υ−η)dz. (30)

With the help of Eq. (30), Eqs. (26–27) provide

w1 � A cos λ1s1(x + H )e−iηy

+ b

∞∫

−∞

A

2π

[
iλ1ηh

′ − λ1s
2
1h
]
e−iηz ×

∫

c

{
γ cos λ1ξ1x − i sin λ1ξ1x

}
eiυy−iυz

(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1
dυdz, (31)

w2 � A cos λ1s1He−iηye−λ2ξ2x

+ b

∞∫

−∞

A

2π

[
iλ1ηh

′ − λ1s
2
1h
]
e−iηz ×

∫

c

γ e−λ2ξ2xeiυy−iυz

(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1
dυdz. (32)

Equations (31–32) can be rewritten as

w1 � A cos λ1s1(x + H )e−iηy +
Ab

2π

∞∫

−∞

[
iλ1ηh

′ − λ1s
2
1h0
]
e−iηzdz ×

∫

c

�0(υ)dυ, (33)

w2 � A cos λ1s1He−γ 2ξ2xe−iηy +
Ab

2π

∞∫

−∞

[
iλ1ηh

′ − λ1s
2
1h
]
e−iηzdz ×

∫

c

�00(υ)dυ. (34)



Scattering and reflection phenomena 2751

where �0(υ) and �00(υ) are given in the Appendix.
The singularities of the contour integrals in Eqs. (31–32) can be obtained as

(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1 � 0. (35)

Equation (35) can be further simplified as

tan

⎛

⎝

√

c144
√

c155

√

(M
2
1 − υ2)

⎞

⎠H �

√

c244
√

c255
c255

√

(υ2 − M
2
2)

√

c144
√

c155
c155

√

(M
2
1 − υ2)

. (36)

Equation (36) represents the dispersion relation for the scattered SH-waves propagating in the orthotropic
viscoelastic structure. Equation (36) containsυm roots in theυ plane satisfying the relation−M1 ≤ υm ≤ −M2
described in Fig. 2. From Fig. 2, it is also cleared that there are N roots of Eq. (36), where N is the integral

part of
[{

(M
2
1 − M

2
2)

H
π

}
+ 1
]
[15].

Due to the viscoelasticity in the considered medium, υ can be expressed as υ � υr − iυi � υr (1 − iδ)
where δ � υi

υr
is defined as attenuation parameter of the medium. Using υ � υr − iυi ,ci j � cRi j + iωcIi j , and

M
2
p � ω2

β
2
p

(p � 1 for the layer and p � 2 for the half-space) in Eq. (36), we get

tan υr Hλ1�3
(− tanh2 υr Hλ1�4 + 1

)

1 + tan2 υr Hλ1�3 tanh2 υr Hλ1�00
� λ2�11�0

λ1
, (37)

tanh υr Hλ1�3
(
tan2 υr Hλ1�4 + 1

)

1 + tan2 υr Hλ1�3 tanh2 υr Hλ1�00
� λ2�11�00

λ1
, (38)

where �3, �4, �0, �00, λ1, λ2 and R12 are provided in the Appendix.
Equation (37) represents the dispersion relation while Eq. (38) provides the damping relation for the

scattered SH-waves in the considered irregular orthotropic viscoelastic composite structure.
Using the concept of contour integration and Fig. 2, the contour integrals

∫

c �0(υ)dυ and
∫

c �00(υ)dυ can
be expressed as

∫

c

�0(υ)dυ � 2π i
∑

Res�0(υ) −
∫

Branch
line

�0(υ)dυ−
∫

c∞

�0(υ)dυ, (39)

∫

c

�00(υ)dυ � 2π i
∑

Res�00(υ) −
∫

Branch
line

�00(υ)dυ−
∫

c∞

�00(υ)dυ. (40)

The residues of contour integrals
∫

c �0(υ)dυ and
∫

c �00(υ)dυ at the poles υm can be written as

Res(�0(υm)) � cos λ1ξ1m(x + H)eiυm(−y+z)

λ1υmH
, (41)

Res(�00(υm)) � cos λ1ξ1mHe−λ1ξ2mxeiυm(−y+z)

λ1υmH
, (42)

where ξ1m and ξ2m are defined at υm .
Equations (39–40) can be evaluated by the method by Sezawa [8]. For this purpose, a contour with branch

cuts M1, M2 containing real axis and an infinite radius semi-circle in the upper half- plane have been taken
into account. In this study, the impact of propagation of SH-waves is considered near the upper surface of
the aforesaid structure. Due to the contribution of the term 1/x3/2 in the Eqs. (39–40), the value of branch
integrals becomes negligible. So, we move away from the irregular region in the upper layer of said orthotropic
viscoelastic structure. Due to higher values of x and y, the integrals over the arc at infinity in the upper layer
becomes zero in the Eqs. (39–40).
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With the help of the Eqs. (41–42) and using the concept for z > x and Re(υm) < 0 in the Eqs. (41–42),
we get

∫

c

�0(υ)dυ � 2π i
N∑

m�1

cos λ1ξ1m(x + H)eiυm(−y+z)

λ1υmH
, (43)

∫

c

�00(υ)dυ � 2π i
N∑

m�1

cos λ1ξ1mHe−λ2ξ2mxeiυm(−y+z)

λ1υmH
. (44)

Similarly, for z < x and Re(υm) > 0, we have
∫

c

�0(υ)dυ � −2π i
N∑

m�1

cos λ1ξ1m(x + H)eiυm (−y+z)

λ1υmH
, (45)

∫

c

�00(υ)dυ � −2π i
N∑

m�1

cos λ1ξ1mHe−λ2ξ2mxeiυm (−y+z)

λ1υmH
, (46)

where N represents the number of roots.
Using Eqs. (43–46) in the Eqs. (33–34), we obtain

w1 � A cos λ1s1(x + H )e−iηy − i Ab
N∑

m�1

cos λ1ξ1m(x + H)

υmH

×
⎧
⎨

⎩
e−iυm y

y∫

−∞

(
iηh′ − s21h

)× ei(υm−η)zdz + eiυm y

∞∫

y

(
iηh′ − s21h

)
e−i(υm+η)zdz

⎫
⎬

⎭
, (47)

w2 � A cos λ1s1He−λ2s2xe−iηy − i Ab
N∑

m�1

cos λ1ξ1mHe−γ 2s2x

υmH

×
⎧
⎨

⎩
e−iυm y

y∫

−∞

(
iηh′ − s21h

)
ei(υm−η)zdz + eiυm y

∞∫

y

(
iθh′ − s21h

)
e−i(υm+η)zdz

⎫
⎬

⎭
, (48)

with Re(υm) > 0.
Using Eq. (2) in the expressions in Eqs. (47–48), we obtain

w1 � A cos λ1s1(x + H )e−iηy + i Ab
N∑

m�1

cos λ1ξ1m(x + H)

υmH
eiυmx ×

⎧
⎪⎨

⎪⎩

(
ηυm + η2 + s21

)

s
2∫

− s
2

he−i(υm+η)zdz

⎫
⎪⎬

⎪⎭
,

(49)

w2 � A cos λ1s1He−λ2s2xe−iηy + i Ab
N∑

m�1

cos λ1ξ1mHe−λ2s2x

υmH

⎧
⎪⎨

⎪⎩
eiυm y(ηυm + η2 + s21

)

s
2∫

− s
2

he−i(υm+η)zdz

⎫
⎪⎬

⎪⎭
.

(50)

Equations (49–50) represents the total displacement component of SH-waves in linear orthotropic vis-
coelastic structure.

5 Some special cases

The obtained analytical results can be applicable in three different physical scenarios of surface irregularity
viz. (1) parabolic type surface irregularity (2) triangular notch type surface irregularity and (3) rectangular
type of surface irregularity in the considered orthotropic viscoelastic structure.
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Fig. 3 Parabolic type surface irregularity

5.1 Case I: Parabolic type of surface irregularity

Surface irregularity of parabolic type in the upper surface of considered orthotropic viscoelastic structure (as

depicted in Fig. 3) can be expressed as

h0(y) �
⎧
⎨

⎩

0, y > s
2 , and y < −s

2(
1 − 4y2

s2

)
, −s

2 ≤ y ≤ s
2

(51)

Due to irregular boundary in the upper surface, we can take only the first mode of SH-wave in upper layer
can propagate which also satisfied Eq. (36). Now, putting η � υ1 � υr − iυi , s1 � ξ11; m � 1 (for first
mode) in Eq. (49) and using Eq. (51), we get

wP
1,re f

A
� ib

cos λ1ξ11(x + H)

υ1H
eiυ1y(2υ2

1 + ξ
2
11)

(
2 sin υ1s

s2υ3
1

− 2 cos υ1s

sυ2
1

)

,

� − b

H
ϒ P
00 + i

b

H
ϒ P
0 , (52)

where ϒ P
0 and ϒ P

00 are given in the Appendix.
Equation (52) provides the expression of reflected displacement component due to scattered SH-waves

when the upper surface contains parabolic type surface irregularity. In the above expression, superscript P
represents the case of parabolic type surface irregularity.

5.2 Case II: Triangular notch type surface irregularity

The triangular notch type surface irregularity (displayed in Fig. 4) can be expressed as

h0(y) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 , y >
s

2
, y <

−s

2

1 +
2y

s
,

−s

2
≤ y ≤ 0

1 − 2y

s
, 0 ≤ y ≤ s

2

(53)

Similarly, the propagation of first mode of SH-waves has been considered in the upper layer in such a way
that it satisfies Eq. (36). With the help of Eq. (53) and putting θ � υ1 � υr − iυi , s1 � ξ11; m � 1 (for first
mode) in Eq. (49), the reflected displacement component can be expressed as

wT
1,re f

A
� ib

cos λ1ξ11(x + H)

υ1H
eiυ1y(2υ2

1 + ξ
2
11)

(
2 sin2 υ1s

2

sυ2
1

)

,
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Fig. 4 Triangular notch type surface irregularity

Fig. 5 Surface irregularity of rectangular shape

� − b

H
ϒT
00 + i

b

H
ϒT
0 , (54)

where ϒT
0 and ϒT

00 are given in the Appendix. The superscript “T” is associated with the triangular notch type
surface irregularity.

5.3 Case III: Rectangular type surface irregularity

The rectangular type surface irregularity (depicted in Fig. 5) can be expressed as

h0(x) �
⎧
⎨

⎩

0, y > s
2 , y < −s

2

1, −s
2 ≤ y ≤ s

2

(55)

Similarly, using Eq. (55) and putting θ � υ1 � υr − iυi , s1 � ξ11; m � 1 (for first mode) in Eq. (49),
the reflected displacement component can be written as

wR
1,re f

A
� ib

cos λ1ξ11(x + H)

υ1H
eiυ1y(2υ2

1 + ξ
2
11)

(
sin υ1s

υ1

)

,

� − b

H
ϒ R
00 + i

b

H
ϒ R
0 , (56)

where ϒ R
0 and ϒ R

00 are given in the Appendix. The superscript “R” is associated with the rectangular type
surface irregularity.
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6 Validation

6.1 Validation of dispersion relation

If c1R44 � c1R55 � μ1, c2R44 � c2R55 � μ2, υr � υ, and υi � 0, then, the dispersion Eq. (37) reduces to

tan

√
√
√
√

(
c2ph
β2
1

− 1

)

υH �
μ2

√(

1 − c2ph
β2
2

)

μ1

√(
c2ph
β2
1

− 1

) , (57)

and the damping Eq. (38) vanishes completely. In the above expression (57), μ1 and μ2 are the rigidity of the
isotropic layer and isotropic substrate, respectively. Equation (57) validates exactly with the classical Love
wave equation [6].

6.2 Reflected mechanical displacement for the parabolic type surface irregularity

If c1R44 � c1R55 � 1 i.e., λ1 �
√

c1R44
c1R55

� 1, ξ11 � ξ11, υr � υ, and υi � 0, Eq. (52) transforms to

wP
1,re f

A
� ib

cos ξ11(x + H)

υH
eiυy(2υ2 + ξ211)

(
2 sin υs

s2υ3 − 2 cos υs

sυ2

)

. (58)

Equation (58) represents the reflected displacement for the propagation of SH-waves in isotropic elastic
composite structure. Equation (58) is matched with the pre-established result given by Chattopadhyay et al. [2]
by reducing viscoelastic case of isotropic case

(
μ′
1 → 0 andμ′

2 → 0
)
andWolf [15] for the isotropic structure

containing parabolic type surface irregularity.

6.3 Reflected mechanical displacement for triangular notch type surface irregularity

In a similar manner, on putting the values λ1 �
√

c1R44
c1R55

� 1, ξ11 � ξ11, and υr � υ, υi � 0 in Eq. (54), we

have

wT
1,re f

A
� ib

cos ξ11(x + H )

υH
× eiυy(2υ2 + ξ211)

(
2 sin2 υs

2

sυ2

)

. (59)

Similarly, Eq. (59) gives the expression of reflected mechanical displacement for the propagation of SH-
waves for isotropic elastic structure containing triangular notch type surface irregularity. Equation (59) is found
to be well in agreement with the result obtained by Chattopadhyay et al. [2] by reducing viscoelastic case of
isotropic case

(
μ′
1 → 0 andμ′

2 → 0
)
and Wolf [15] for the isotropic structure containing triangular notch

type surface irregularity.

7 Numerical results and discussion

For the numerical computation and graphical demonstrations, the following physical properties of the
orthotropic viscoelastic materials (viz. carbon fiber for layer and prepreg for half-space) have been considered:

For orthotropic viscoelastic upper layer, Yu et al. [17]

cR(1)55 � 6.15Gpa, cR(1)44 � 6.15 Gpa, ρ1 � 1.5 g/cm3.

For orthotropic viscoelastic lower half-space, Yu et al. [17]

cR(2)55 � 7.8 Gpa, cR(2)44 � 7.8 Gpa, ρ2 � 1.595 g/cm3.
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Fig. 6 Variation of dimensionless phase velocity
(
cph/β1

)
and attenuation coefficient (log δ) against dimensionless wave number

(υ1H) for the different values of anisotropy parameter

(

λ1 �
√

c1R55 /c1R44

)

of the considered orthotropic viscoelastic structure

Unless otherwise stated:

(y + H)/H � 10, x/H � 10, s/H � 0.01, b/H � 0.001.

The graphical manifestation of the dimensionless phase velocity, attenuation coefficient, and reflected
displacement component due to the scattering of SH-waves propagating through surface irregularity in the
orthotropic viscoelastic composite structure has been represented through Figs. 6a, 7, 8, 9.

Figure 6a displays the impact of anisotropy parameter of upper layer on the phase velocity of SH-waves in
the considered orthotropic viscoelastic composite structure. It has been observed from Fig. 6a that the phase
velocity of scattered SH-waves decreases with the increase in the anisotropy parameter of the upper layer.

Figure 6b depicts the effect of anisotropy parameter on the attenuation coefficient, which is related to
damping phenomena of scattered SH-waves in the said orthotropic viscoelastic structure. It has been observed
from Fig. 6b that the anisotropic parameter has a favorable effect on the attenuation coefficient associated with
the damping of the scattered SH-waves in the considered orthotropic viscoelastic structure.

The impact of anisotropy parameter on the reflected displacement for different type of surface irregularities,
i.e., parabolic type surface irregularity, triangular notch type surface irregularity, and rectangular type surface
irregularity has been demonstrated through Fig. 7a–c, respectively. From Fig. 7a–c, it is observed that the
reflected displacement for all three cases diminishes with the increase in anisotropic parameter (associated
with the ratio of shear modulus) of upper layer in the considered orthotropic viscoelastic composite structure.
It is examined that as the anisotropy prevails in the medium, some energy of the SH-waves may entrap in the
medium, which may further cause decrease in the reflected displacement.

Figure 8a–c demonstrated the influence of vertical irregularity parameter on the reflected displacement
in aforesaid medium for the parabolic type surface irregularity, triangular notch type surface irregularity, and
rectangular type surface irregularity, respectively. It is observed from these figures that the reflected displace-
ment increases with the increase in the vertical irregularity parameter. The vertical irregularity parameter is
associated with the ratio of vertical depth of surface irregularity to thickness of the layer. The increase in
vertical irregularity parameter causes the increase in vertical irregularity depth as compared to layer thickness.
In this situation, more wave components strike through the irregularity wall; therefore, reflected displacement
increases accordingly.

A comparative exploration of induced reflected displacement among three types of surface irregularity
has been observed through Fig. 9. It has been noticed from this figure that the reflected displacement for the
case of rectangular type surface irregularity is maximum while it is minimum for the case of parabolic type
surface irregularity in the considered orthotropic viscoelastic structure. Further, the reflected displacement for
the triangular notch type surface irregularity lies between the former two cases.
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Fig. 7 Variation of dimensionless reflected displacement against dimensionless vertical width (υ1s) for the distinct values of

anisotropy parameter

(

λ1 �
√

c1R55 /c1R44

)

for the case of a parabolic type surface irregularity
[
Re
(
wP
1, re f /A

)]
; b triangular

notch type surface irregularity
[
Re
(
wT
1, re f /A

)]
; and c rectangular type surface irregularity

[
Re
(
wR
1, re f /A

)]
in the considered

orthotropic viscoelastic composite structure

Fig. 8 Variation of dimensionless reflected displacement
[
Re
(
vP
1, ref /A

)]
against dimensionless vertical width (υ1s) for the

distinct values of vertical irregularity parameter (b/H) for the case of a parabolic type surface irregularity
[
Re
(
wP
1, ref /A

)]
;

b triangular notch type surface irregularity
[
Re
(
wT
1, ref /A

)]
; and c rectangular type surface irregularity

[
Re
(
wR
1, ref/A

)]
in the

said orthotropic viscoelastic composite structure

Fig. 9 Variation of dimensionless displacement field
[
Re
(
w1, ref/A

)]
against dimensionless vertical width (υ1s) for distinct

types of surface irregularity viz. parabolic type surface irregularity (PTSI), triangular notch type surface irregularity (TTTSI),
and rectangular type surface irregularity (RTSI)
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8 Conclusions

This paper deals with the scattering phenomena of SH-waves on an irregular surface of the layered orthotropic
viscoelastic structure. The dispersion relation between the phase velocity and wave number has been obtained
for the propagation of SH-waves. The impact of anisotropy parameter of the upper orthotropic viscoelastic
layer on the phase velocity and attenuation coefficient associated with the damping of scattered SH-waves has
also been examined. The exact expression of reflected displacement field due to scattering phenomena is also
obtained by contour residue theorem. The expression of reflected displacement component for different types
of surface irregularity viz. parabolic, triangular notch, and rectangular has also been derived. The effect of
different influencing parameters viz. anisotropy parameter (associatedwith shearmodulus), vertical irregularity
parameter on the reflected displacement component has been observed for all three types of surface irregularity
(i.e., PTSI, TTTSI, and RTSI). Moreover, the major outcomes of the present study can be considered as follow:

1. The phase velocity of scattered SH-waves decreaseswhen the anisotropy prevails in orthotropic viscoelastic
composite material structure.

2. The attenuation coefficient (association with damping of scattered SH-waves) escalates with the rise in the
anisotropy parameter in the aforesaid medium.

3. The anisotropy parameter has an amplifying impact on reflected displacement component for the propa-
gation of SH-waves for all types of surface irregularity viz. parabolic, triangular notch, and rectangular,
respectively.

4. The vertical irregularity parameter favors the induced reflected displacement component for all types of
surface irregularity viz. parabolic, triangular notch, and rectangular, respectively.

5. The induced reflected displacement in the case of rectangular type surface irregularity is observed maxi-
mum, while it is found minimum for the case of parabolic type surface irregularity.

9 Engineering applications

The present study can have some significant applications to examine the stability of engineering structures
made by orthotropic viscoelastic structures in the earthquake prone area. The various orthotropic viscoelastic
materials like carbon fiber and prepreg materials are used in the construction of highways and bridges. SH-
waves are destructive in nature, and the propagation of SH-waves occurs during the earthquake event. As the
SH-waves propagate through the irregular surface of the structure, the phenomena of scattering of SH-waves
may occur in that place. Due to scattering phenomena of SH- waves, the amplitude of reflected displacement
can become higher which can damage the engineering structure. The outcomes of the present study provide
the knowledge about the parameters through which the damaging effect can be reduced. It is examined from
the present analysis that the materials having higher values of anisotropic parameter (associated with the ratio
of shear modulus) may reduce the velocity of SH-wave and may generate the reflected displacement of lesser
amplitude. It is also analyzed from the present investigation that the upper layer containing rectangular type
surface irregularity is more dangerous because it can generate higher reflected displacement, while the upper
surface containing the parabolic type of surface irregularity of same depth and span can generate lower reflected
displacement.

Moreover, the present analysis also provides that the material having larger vertical irregularity parameter
(ratio of maximum irregularity depth to the thickness of layer) can generate higher reflected displacement and
can be avoided for the construction purpose. By obtaining this crucial information, the special attention can
be taken for the selection of materials used in the engineering structures such as highways and bridges in the
earthquake prone area. Therefore, the present investigation can be useful in the field of civil and earthquake
engineering.
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Appendix

λ1 ≈
√
c1R44
c1R55

� λ1 λ2 ≈
√
c2R44
c2R55

� λ2, β
2
1 ≈ c1R44

ρ1
� β2

1 , β
2
2 ≈ c2R44

ρ2
� β2

2 ,

δ � υi

υr
, υ � υr − iυi , M

2
1 � ω2

β
2
1

M
2
2 � ω2

β
2
2

, �0(υ) �
{
γ cos λ1ξ1x − i sin λ1ξ1x

}
e+iυy−iυz

(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1
, �00(υ) � γ e−λ2ξ2x e+iυy−iυz

(i cos λ1ξ1H − γ sin λ1ξ1H )ξ1
,

R12 � c255
c155

� c2R55
(
1 + iωε22

)

c1R55
(
1 + iωε12

) � c2R55
(
1 + iωε22

) (
1 + iωε12

)−1

c1R55
≈ c2R55

c1R55
,

T0 � (1 − δ2
)
(

1 − c2ph
β2
2

)

, T00 � (−2δ)

(

1 − c2ph
β2
2

)

,

T000 � (1 − δ2
)
(

−1 +
c2ph
β2
1

)

, T0000 � (−2δ)

(

−1 +
c2ph
β2
1

)

, �1 �

√
√
√
√
√

⎛

⎝
T0 +

√

T 2
0 + T 2

00

2

⎞

⎠, �2 � T00
2�1

,

�3 �

√
√
√
√
√

⎛

⎝
T000 +

√

T 2
000 + T 2

0000

2

⎞

⎠, �4 � T0000
2�3

, �0 � �1�3 + �2�4

�3�3 + �4�4
, �00 � �2�3 − �1�4

�3�3 + �4�4
,

n1 � sin υr s cosh υi s − sυr cos υr s cosh υi s − sυi sin υr s sinh υi s,

n2 � − cos υr s sinh υi s − sυr sin υr s sinh υi s + sυi cosυr s cosh υi s,

n3 �
(
1 − δ2

)2 − 4δ2
((
1 − δ2

)2 + 4δ2
)2 , n4 � 2δ

(
1 − δ2

)

((
1 − δ2

)2 + 4δ2
)2 , n5 � eυi x cosυr x , n6 � eυi x sin υr x ,

n7 � cos�3γ1υr (z + H) cosh�4γ1υr (z + H), n8 � − sin�3γ1υr (z + H)sinh�4γ1υr (z + H),

n9 � 1 − cos υr s cosh υi s, n10 � − sin υr s sinh υi s, n11 � n3 + δn4, n12 � n4 − δn3,

n13 �
(
1 − δ2

)

(
1 + δ2

)2 , n14 � (2δ)
(
1 + δ2

)2 , n15 � sin υr s cosh υi s, n16 � − cos υr s sinh υi s,

J1 � n5n7 − n6n8, J2 � n5n8 + n7n8, J3 � n3n1 − n4n2, J4 � n3n2 + n4n1,

J5 � n11n9 − n10n12, J6 � n11n10 + n12n9, J7 � n13n15 − n14n16, J8 � n14n15 + n13n16,

L0 � J1 J3 − J2 J4, L00 � J2 J3 + J1 J4, L01 � J1 J5 − J2 J6, L001 � J2 J5 + J1 J6,

L011 � J1 J7 − J2 J8, L0011 � J2 J7 + J1 J8, T31 � (1 − δ2
)
(

1 +
c2ph
β2
1

)

, T41 � (−2δ)

(

1 +
c2ph
β2
1

)

ϒ P
0 � 1

(ν1s)2
(L0T31 − L00T41), ϒ P

00 � 1

(ν1s)2
(L00T31 + L0T41), ϒT

0 � 1

ν1s
(L01T31 − L001T41),

ϒT
00 � 1

ν1s
(L001T31 + L01T41), ϒ R

0 � L011T31 − L001T41, ϒ R
00 � L0011T31 + L01T41.
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