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Abstract This paper addresses the exact controllability of vibrations in a three-dimensional Cosserat elastic
solid body using mathematical techniques such as operator theory and semigroup methods. The verification of
exact (shape) controllability is accomplished through the application of the Hilbert UniquenessMethod, which
involves investigating the boundary observability for the dual system. In partial differential equations control
theory, the concept of exact observability for the dual system is fundamental to achieving exact controllability,
although it differs from the common understanding of controllability. While control theory for systems gov-
erned by ordinary differential equations (ODEs) has a relatively formal and standardized approach, systems
with distributed parameters, such as the Cosserat medium under consideration, involve a multitude of technical
inequalities that must be established. Notably, Cosserat media possess six degrees of freedom for microstruc-
tures, in contrast to classical media with only three degrees of freedom. Consequently, exact control is required
for all six variables, encompassing three translational and three rotational degrees of freedom, while classical
media only necessitate the exact control of three translational variables. The paper concludes with a series of
numerical studies utilizing the fast Fourier transform (FFT) and various simulations, which serve to validate
the effectiveness of the proposed control scheme.

1 Introduction

Flexible structures, as infinite-dimensional systems, play a vital role in science and technology. Examples
of these structures include strings, beams, plates, and shells, which are encountered in various mechanical
engineering applications. To model these continuous systems, partial differential equations (PDEs) along with
a set of boundary conditions (BCs) are used., However, due to the mathematical complexities of these PDE
models, most researchers employ discretization techniques to transform the governing PDEs into a set of
Ordinary Differential Equations for solving vibration and control problems in these complex systems [1, 2].

For instance, in the context of suppression vibrations in beams, as seen in reference [3], the governing PDE
of an Euler–Bernoulli beam was converted into a set of ODEs using the Galerkin method and finite element
method, respectively. Subsequently, a controller was designed for the resulting ODE model to control the
undesirable vibration of the system. Unfortunately, the stability theorem derived for an ODE model cannot be
directly applied to the original PDE model. In fact, the neglected effects of the omitted frequencies and mode
shapes could potentially lead to the destabilization of the mechanical system under a discretized model-based
controller (referred to as spillover instability).
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To address the issue of control spillover, boundary control strategies have been proposed for PDE models
of flexible systems. In the context of distributed parameter system, the placement of actuators/sensors at
boundaries is crucial. This approach is favored because boundary sensing and boundary actuating are more
practical and less challenging to implement compared to using actuators and sensors distributed within the
domain itself [4, 5]. Consequently, many studies have focused on concepts such as boundary controllability and
boundary stabilization. It is worth nothing that for the non-distributed parameter systems (ODE systems), the
concepts of controllability and observability lead to standard methods with related theorems that can be readily
verified without significant difficulty. However, for distributed parameter systems, this is not necessarily the
case.

From a practical perspective, the problem of the exact controllability for the infinite-dimensional systems
has garnered considerable attention from researchers. Exact controllability entails the ability to control the
shape of an infinite-dimensional system governed by Partial Differential Equations (PDEs) [6]. In the context
of mechanical flexible structures, it involves to selecting appropriate boundary that enable one to guide the
system to a desired shape and desired velocity profile within a finite time. For instance, in the case of a string,
the states of the system are defined by the position and velocity of each material point of the string. Therefore,
exact controllability implies steering all points of the string to their intended desired positions and velocities
whitin finite time. It should be noted that, as demonstrated by Dolecki and Russell [7], the concept of exact
observability for an infinite-dimensional system is related to the exact controllability of the dual system. In
the field of exact controllability, the survey paper authored by Lagnese [8] and the comprehensive exposition
by Bensoussan [9] provide extensive findings.

In many engineering applications involving flexible and elastic structures, the presence of a high-
performance controller is essential for system improvement. Consequently, many studies have been conducted
in the realm of vibration control of these systems, leveraging the concepts of boundary control and exact
controllability. For instance, in reference [10], an adaptive boundary control method is proposed to mitigate
the vibration of a flexible marine riser system in the presence of ocean current disturbance. In this research, the
riser system is modeled as a classical Euler–Bernoulli cantilever structure. Boundary control and exact control-
lability have also been applied to control microstructures. Vatankhah et al. investigate boundary stabilization
and exact controllability of Euler–Bernoulli micro-beams, modeled using strain gradient theory, through a
straightforward boundary control law in [6]. [5], Najafi et al. utilize the boundary control method to stabilize
undesired vibration in a composite material. In a separate research endover [11], they adress the boundary
stabilization problem for a three-dimensional elastic Cosserat body. In the applied problem context, Entes-
sari et al. explore the intricate challenge of gantry crane stabilization [12]. Furthermore, an interesting work
focuces on the shape control of a composite plate using piezoelectric materials [13]. This research examines
exact controllability through the use of distributed actuators and sensors.

In many researches, experimental observations have demonstrated the suitability of Cosserat elasticity the-
ory for enhanced modeling of composite materials, microstructures,and other applications[13]. In the Cosserat
theory, infinitesimal particles are endowed with micro-rotations, which means that each particle possesses
directors. The field equations formulated using the Cosserat model encompass a broader range of physical
phenomenon and can account for the results of classical mechanics as well [15]. Unlike classical elasticity,
which permits only three translations (in 3D) for particles, Cosserat theory endows each particle, which no
only three translations but also three independent micro-rotations, without without any requirement for these
rotations to be accompanied by translations. This unique property enable Cosserat elasticity to address a wide
spectrum of phenomena, including crack propagations, blood modeling and porous media.

Certain studies provide an analytical analysis of the propagationof a semi-infinite crackwithin a pre-stressed
functionally graded orthotropic strip (FGOS) exposed to horizontally polarized shear wave propagation. The
analytical tools employed for this analysis include the Wiener–Hopf technique and two-sided Fourier integral
transforms. These techniques are applied to solve the model, leading to the derivation of a closed-form expres-
sion for the stress intensity factor (SIF) corresponding to a constant intensity force (CF). The study explores the
impact of various parameters, such as crack speed, crack length, horizontal compressive pre-stress/horizontal
tensile pre-stress, vertical compressive pre-stress/vertical tensile pre-stress, functional gradient parameter, and
anisotropy parameter, on the SIF within a pre-stressed FGOS. This examination is carried out through numer-
ical computations and graphical representations. Furthermore, for the sake of validation, the results obtained
for CF under constant load conditions are compared with those established in previous studies as a special
case of the problem [16–18].

Lie et al. [19] explored an industrially relevant scenario involving an axially moving accelerated string
subject to input saturation and external disturbances. Their primary goal was to minimize vibration offsets, and
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they achieved this through a boundary control approach. To address input saturation constrains, an auxiliary
term was introduced. Moreover, they employed both finite-dimensional and infinite-dimensional observers
to handle unknown disturbances. Notably, their control strategy addresses the existence, uniqueness, and
convergence of the solution for the closed-loop string system without relying on model reduction techniques.
Through simulations, they demonstrated the effectiveness of their chosen control method, substantiated by the
appropriate selection of control parameters.

Reference [20] delves into fluid boundary control applied to composite shell vibrations that involve partial
fluid filling. These vibrations are governed by linear boundary control regulations, which encompass forces and
moments exerted at the boundaries of the composite shell. Notably, this study achieves boundary stabilization
without the need for actuators within the domain, using the fluid’s free surface for the purpose. The study
demonstrates boundary stabilization through the utilization of semigroup techniques and the LaSalle invariant
set theory.

In other research endeavors, the behavior of a moving Griffith crack within an initially stressed isotropic
strip with infinite length and finite thickness is scrutinized. The strip is subjected to moving parallel punches
of constant load at its boundaries, due to plane wave propagation under point loading. The formulation of this
model incorporates coupled singular integral equations and singularities of the Cauchy type. The analysis of
point loads located at the moving crack edge employs the Dirac delta function, while the Hilbert transformation
properties are harnessed to determine the stress intensity factor (SIF) in the presence of constant point loading.
To assess the impact of various parameters, such as initial stresses, punch pressure, distinct positions of point
load, length, and speed of the crack, numerical simulations and graphical representations are conducted for
the isotropic material strip under consideration, as detailed in references [21] and [22].

The study by Dimitri et al. [23] focuses on evaluating the suitability of a rock formation, particularly the
kaolinite-rich Opalinus Clay, for hosting radioactive waste. They treat this sedimentary rock as a transversely
isotropic geomaterial. Using the eXtended Finite Element Method (XFEM), the research investigates the
formation and propagation of cracks within the rock specimen. Notably, it examines the influence of different
notch dimensions and scale effects on the rock’s response to fracturing, particularly regarding its peak load-
bearing capacity. The study utilizes XFEM results to develop an analytical formulation that approximates the
material’s response in terms of load and crack mouth opening displacement. This formulation provides reliable
estimates of the peak load value and time history response, which are compared to experimental data from
existing literature. The analytical model offers valuable insights for various design purposes.

The study explores the behavior of a Griffith crack in a transversely isotropic dry sandy strip. The crack
is affected by mechanical point loading due to propagating plane waves and applied through moving parallel
punch pressure on the layer’s surface. Using a model based on coupled singular integral equations and the
Dirac delta function, the research derives the stress intensity factor (SIF) for constant point loading. The study
comprehensively analyzes how parameters like crack length, speed, punch pressure, sandiness, and point load
positions impact the SIF for both transversely isotropic dry sandy materials and isotropic material strips. A
comparative investigation of the SIF is carried out for different scenarios, emphasizing key aspects of the
problem [24].

Singh et al. analyzed the behavior of a semi-infinite crack in a pre-stressed magnetoelastic orthotropic
strip subjected to SH-wave propagation. Using the Wiener–Hopf method and Fourier integral transforms,
they derived a closed-form solution for the stress intensity factor under a constant concentrated force. The
study investigated the influence of factors like crack length, speed, magnetoelastic properties, and pre-stress
on the stress intensity factor. Comparisons were made with a pre-stressed magnetoelastic isotropic strip,
revealing the distinct characteristics and the role of orthotropy. This research highlights the significant impact of
magnetoelasticity and pre-stress on crack propagation in orthotropic elastic materials, contributing to structural
analysis, material durability assessment, and the understanding of engineering failures [25].

In this paper, the problem of the exact controllability of the three-dimensional elastic Cosserat body is
examined. The controllability problems of lumped- parameter systems, which are characterized by ordinary
differential equations as their governing equations, are regarded as special cases within the realm of exact
controllability for infinite-dimensional systems.

Extending solutions from lumped systems to infinite-dimensional systems introduces inherent challenges.
As expounded in this paper, various technical obstacles must be surmounted to achieve the intended objectives.
These hurdles encompass the utilization of appropriate technical inequalities, the establishment of a suitable
Hilbert space, and the adaptation of the boundary controllability problem into a boundary observability problem
for the dual system, all within the context of the inner product space associated with the Hilbert space.
Notably, a similar problem was explored for classical elastic bodies by Alabau and Komornik [23]. The task
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Fig. 1 Deformation of a cosserat element

of performing simulation runs to address controllability, particularly for shape control, in the context of three-
dimensional elastic structures is inherently intricate. While there is an abundance of simulations available for
lumped systems, there have been relatively few contributions dealing with the complexities of exact boundary
controllability for such intricate systems.

In this research, simulation were conducted to validate the theoretical results of a specific Cosserat system.
The primary focus of this study revolved around achieving precise controllability for the governing partial

differential equation (PDE) associated with a Cosserat elastic body, specifically through the implementation
of boundary actions. The use of boundary actuators offered significant practical advantages, particularly from
an engineering perspective, as it allowed for the exclusive use of actuators placed along the boundaries,
eliminating the need for in-domain actuators. Moreover, the design of control strategies based on discretizing
the PDE model could result in spillover instabilities. These instabilities become apparent when control design
is executed for the finite-dimensional model of the system.

The structure of this paper is as follows: In Sect. 2, the governing equations are presented along with
their visual representations. Section 3 is dedicated to the study of the exact controllability problem using the
Hilbert Uniqueness Method. In Sect. 4, numerical simulations are included to validate the analytical results,
and finally, Sect. 5 presents the conclusion of the paper.

2 Three-dimensonal cosserat elastic: equations of the motion

The governing equations of the Cosserat elastic continua are specified by the following set of linear Partial
Differential Equations (PDEs) (where notation ∇ stand for the Divergence operator).

(λ + μ)∇(∇.u) + (μ + κ)∇2u + κ∇ × ϕ + ρ f � ρ ü in � × (0, T )

(α + β)∇(∇.ϕ) + γ∇2ϕ + κ∇ × u − 2κϕ + ρl � ρ j ϕ̈ in � × (0, T )
(1)

� is a region that is bounded and has a smooth boundary encompassing the Cosserat elastic media, u
represents for the displacement vector (u̇ is the time derivative of u) and ϕ denotes the microrotation vector.
Additionally,α, β and γ are the new constants described in the Cosserat elasticity and the coefficients λ and μ
are Lame’s constantsρ and j are positive constants representing themass density andmicro inertia, respectively
[27]. Finally, f and l stand for the external force and moment vectors. For closer examination Fig. 1 illustrates
the characteristics of the Cosserat micro element, which can undergo micro-elongation the micro-rotations.

In the context of the Cosserat elastic body, it is important to note that, in the general case, there are a
minimum of three directors associated with each micro-element. The following equation outlines the relevant
boundary conditions. {

u � 0,ϕ � 0 at 
1
tn � mn � 0 at 
2 � 
 − 
1

(2)

where 
 denotes the boundary of the body, 
1 stands for the clamped portion of the boundary and 
2 cor-
responds to the free part of the boundary. The equations for stress and couple stress at the boundaries are as
follows [28].

tn � λ(∇.u)n + (μ + κ)(n.∇)u + μ∇(n.u) + κn × ϕ on 
2 × (0, T ) (3)
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mn � α(∇.ϕ)n + β(n.∇)ϕ + γ∇(n.ϕ) in 
2 × (0, T ) (4)

Here n denotes the unit outward normal to the boundary. It crucial to emphasize that Eqs. (3) and (4) are
applicable exclusively to 
2[27].

3 Exact controllability of the three-dimensional cosserat elastic media

The energy of the Cosserat body is described as follows:

E � 1

2

˚
�

{
λ(∇.x1)(∇.x1) + (μ + κ) tr [(∇x1)T (∇x1)] − κx3.∇ × x1 + 2κx3.x3

− κx3.∇ × x1 + μ tr[(∇x1)(∇x1)] + α(∇.x3)(∇.x3) + γ tr[(∇x3)T (∇x3)]

+βtr[(∇x3)(∇x3)] + ρx2.x2 + ρ j x4.x4}d� (5)

For the sake of simplicity and without loss of generality, we assume ρ � ρ j � 1, whereas

(u,ϕ) ∈ H � {(u,ϕ) ∈ H2(�) × H2(�) : u|
 � ϕ|
 � 0} (6)

Given that the energy of the body cannot be negative, it follows that E ≥ 0. It is assumed that the domain
� is

� � {x ∈ R
3 : |x| < R} (7)

Here R represents the set of real numbers.

Theorem 1 Assuming that T is arbitrarily large but sufficient, the solutions of the following equation satisfy
the relation (9).

⎧⎨
⎩

Ẋ � AX
x1 � x2 � x3 � x4 � 0 in 


X0 ∈ (H1
0(�))4

⋂(
H2(�)

)4 (8)

(2T/(1 + ζ ) − χ )E ≤ R
∫ T

0

∫




d
dt ≤ ((4ζ + 2)/(1 + ζ ) + χ )E (9)

where

H1
0(�) � (

H1
0(�)

)3
andH2(�) � (

H2(�)
)3

(10)

Furthermore, ζ and χ are positive real numbers, and
 is the trace of the potential energy on the boundary.
The potential energy of the Cosserat body is described as follows:

PotentialEnergy � 1/2
˚

�

{
λ(∇.x1)(∇.x1) + (μ + κ)tr [(∇x1)T (∇x1)]

+ 2κx3.x3 − κx3.∇ × x1 − κx1.∇ × x3 + μtr [(∇x1)(∇x1)] + α(∇.x3)(∇.x3)

+γ tr [(∇x3)T (∇x3)] + βtr [(∇x3)(∇x3)]
}
d� (11)

To complete the proof of the above theorem, the definitions of the stress and the couple stress tensors are
adopted.
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Definition The stress tensor ti j and couple stress tensor mi j can be defined as follows: [28],

ti j � λεmmδi j + (μ + κ)εi j + με j i (12)

mi j � αγmmδi j + βγi j + γ γi j (13)

Here, εi jk represents the classical permutation symbol and δi j stands for the Kronecker delta. Additionally,
the following equations apply to εi j and γi j

εi j � u j , i + ε j ikϕk (14)

γi j � ϕi , j (15)

where r � x in R
3 and n � (n1, n2, n3) represents the unit normal vector to 
. By multiplying Eq. (1) by

rmui ,m and then integrating by parts, a result is obtained:
∫ T

o

∫



[2Rui , j ti j + Ru̇i u̇i ]d
dt �
[∫

�

2rmui , mu̇i

]T
0
+
∫ T

0

∫
�

[2ui , j t j i + 3u̇i u̇i + 2rmt ji ui , jm]d�dt

(16)

Pursuing the same procedure as for Eq. (2) yields the following relations
[∫

�

u̇i ui

]T
0
+
∫ T

0

∫
�

[ui , j t j i − u̇i u̇i ]d�dt � 0 (17)

∫ T

0

∫



R(ϕi , jm ji + ϕ̇i ϕ̇i )d
dt �
[∫

�

2rmϕi , m ϕ̇i d�

]T
0
+
∫ T

0

∫
�

[3ϕ̇i ϕ̇i − m jiϕi , j ]d�dt

+
∫ T

0

∫
�

[2rmt jiϕl , mεli j ]d�dt (18)

And
∫

�

ϕi ϕ̇i d�]T0 +
∫ T

0

∫
�

(ϕi , jm ji − ϕ̇i ϕ̇i )d�dt +
∫ T

0

∫
�

(ϕiεi pq tqp)d�dt � 0 (19)

By adding Eqs. (16), (17), (18) and (19) with appropriate coefficients, and then applying the boundary
conditions, the following relation will be obtained
∫ T

0

∫



R(ϕi , jm ji + 2ui , j t j i )d
dt �
{∫

�

[2rm(ϕi , m ϕ̇i + ui , mu̇i ) + 2ui u̇i + 2ϕi ϕ̇i ]d�

}T
0

+
∫ T

0

∫
�

(ϕi , jm ji + ϕ̇i ϕ̇i + u̇i u̇i + 4t j iε j i )d�dt

−
∫ T

0

∫
�

(2ϕiεi pq tqp + 3t j iε j i )d�dt +
∫ T

0

∫



Rt jiε j i d
dt (20)

Rearranging terms in the integrals yields
∫ T

0

∫



R(ϕi , jm ji + 2ui , j t j i − t j iε j i )d
dt �
{∫

�

[(2rmϕi , m + 2ϕi )ϕ̇i + (2rmui , m + ui )u̇i ]d�

}T
0

+ 2ET −
∫ T

0

∫
�

2ϕiεi pq tqpd�dt (21)

The fact that the total energy of the elastic body can be reformulated in the following form has been utilized
in the aforementioned relation [28].

E � 1/2
∫

�

(ϕi , jm ji + ϕ̇i ϕ̇i + u̇i u̇i + t j iε j i )d� (22)
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The focus of this step is on the term "2ϕiεi pq tqp". Initially, one may consider.

A � 2ϕiεi pq tqp � −2κϕ.∇ × u + 4κϕ.ϕ (23)

Before proceeding with the reminder of the proof, it is necessary to determine the upper bound of the
aforementioned term.

|−2κϕ.∇ × u + 4κϕ.ϕ| ≤ |2κϕ.∇ × u| + |4κϕ.ϕ| ≤ κ|∇ × u|2 + κ|ϕ.ϕ| + 4κ|ϕ.ϕ|
≤ 2κ tr[(∇u)T (∇u)] + 5κ tr[(∇ϕ)T (∇ϕ)]

� 2κ tr[(∇u)T (∇u)] + 5κ/(γ − β)(γ − β)tr[(∇ϕ)T (∇ϕ)]

≤ max {2, 5κ/(γ − β)}{κ tr[(∇u)T (∇u)] + (γ − β)tr[(∇ϕ)T (∇ϕ)]}dt (24)

To establish the algebraic relation mentioned above, the relation (25) has been used

|∇ × u|2 � tr [(∇u)T (∇u)] − tr [(∇u)(∇u)] (25)

accustoming

C � κtr [(∇u)T (∇u)] + (γ − β)tr [(∇ϕ)T (∇ϕ)] (26)

and

ζ � max {2, 5κ/(γ − β)} (27)

one can obtain

|A| ≤ 2ζ/(1 + ζ )E (28)

Therefore, the following relation is obtained

∣∣∣∣2ET −
∫ T

0

∫



R(ϕi , jm ji + 2ui , j t j i − t j iε j i )d
dt

∣∣∣∣ ≤
{∫

�

[(2rmϕi , m + 2ϕi )ϕ̇i + (2rmui , m + 2ui )u̇i ]d�

}T
0

+ 2ζ/(1 + ζ )ET (29)

The relation

ui , j t j i � ε j i t j i (30)

Is true on the boundary, so,

(31)

∣∣∣∣2ET −
∫ T

0

∫



R(ϕi , jm ji + ui , j t j i )d
dt

∣∣∣∣ ≤
{∫

�

[(2rmui , m + 2ui )u̇i

}
T
0 + (2rmϕi ,

m + 2ϕi )ϕ̇i ]d� + 2ζ/(1 + ζ )ET

To complete the proof, the following equation is considered

‖2rmui , m + 2ui‖L2(�) ≤ ‖2rmui , m‖L2(�) (32)

This is due to the following identity

‖2rmui , m + 2ui‖2L2(�) − ‖2rmui , m‖2L2(�)
�
∫

�

(
4u2i + 8rmui , mui

)
d�

�
∫

�

(4u2i − 12u2i )d� +
∫




4rmnmu
2
i d
 � −

∫
�

8u2i d� (33)
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The analogous outcome is true for the terms ϕi ’s. Based on this result, the following equation can be
obtained∣∣∣∣

{∫
�

[(2rmui , m + 2ui )u̇i + (2rmϕi , m + 2ϕi )ϕ̇i ]d�

} T

0

≤ 2R
∑
i

[(∫
�

|∇ui |2d�

) 1
2
(∫

�

(u̇i )
2d�

) 1
2
]
+ 2R

∑
i

[(∫
�

|∇ϕi |2d�

)1/2(∫
�

(ϕ̇i )
2d�

)1/2
]

≤ Rδ1

∫
�

ui , mui , md� + Rδ−1
1

∫
�

u̇i u̇i d� + Rδ2

∫
�

ϕi , mϕi , md� + Rδ−1
1

∫
�

ϕ̇i ϕ̇i d�

(34)

In order to complete the proof, additional lemmas are needed.

Lemma 1 suppose λ, α, μandγ are positive constants, then,

a)ti jεi j ≥ κεi jεi j b)m jiγi j ≥ (γ − β)γi jγi j (35)

Proof Constructing ti jεi j yields the following result.

ti jεi j � λεmmεkk + (μ + κ)εi jεi j + με j iεi j ≥ (μ + κ)εi jεi j + με j iεi j � μ(εi jεi j + ε j iεi j ) + κεi jεi j ≥ κεi jεi j
(36)

Another inequality can be obtained the same procedure.

Lemma 2 The following inequalities hold in �.

a)2εmipui , mϕp ≤ εmiεmi + 6ϕpϕp (37)

b)ui , mui , m ≤ 2εmiεmi + 4ϕiϕi (38)

2εmipui , mϕp � 2ϕ.∇ × u ≤ 2|ϕ|.|∇ × u| ≤ 2(ϕ.ϕ)1/2.(2ui , mui , m)
1/2 (39)

Proof Considering the following relation

εmiεmi − 2ϕ.∇ × u + 6ϕ.ϕ � ui , mui , m − 4ϕ.∇ × u + 8ϕ.ϕ ≥ ui , mui , m − 4
√
2(ϕ.ϕ)1/2(ui , mui , m)

1/2

≥ [(ui , mui , m)
1/2 − 8(ϕ.ϕ)1/2]2 ≥ 0

(40)

Leads to the first inequality of the lemma 2. For the second inequality, consider the relation (41).

ui , mui , m � εmiεmi − 2ϕ.ϕ + 2ϕ.∇ × u ≤ εmiεmi − 2ϕ.ϕ + εmiεmi + 6ϕ.ϕ (41)

which lasts the following inequality

ui , mui , m ≤ 2εmiεmi + 4ϕ.ϕ (42)

Lemma 3 The following inequality holds.∫
�

ui ,mui ,md� ≤
∫

�

2εmiεmi + 4ϕi , mϕi , md� (43)

Proof The inequality becomes evident by utilizing the second result of Lemma 2 and applying Pioncare’s
inequality.
By employing the above-mentioned lemmas, Eq. (34) leads to∣∣∣∣∣

[∫
�

{(2rmui , m + 2ui )u̇i + (2rmϕi , m + 2ϕi )ϕ̇i }d�

]T
0

∣∣∣∣∣
≤ Rδ1

∫
�

2εimεim + +4ϕi ,mϕi ,m]d� + Rδ−1
1

∫
�

u̇i u̇i d�

+Rδ2

∫
�

ϕi , mϕi , md�

+Rδ−1
2

∫
�

ϕ̇i ϕ̇i d�

(44)
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which takes the following form∣∣∣∣∣∣∣

⎡
⎣∫

�

{(2rmui , m + 2ui )u̇i + (2rmϕi , m + 2ϕi )ϕ̇i }d�

⎤
⎦
T

0

∣∣∣∣∣∣∣
≤ Rδ1

∫
�

2εimεimd� + Rδ−1
1

∫
�

u̇i u̇i d�

+(Rδ2 + 4Rδ1)

∫
�

ϕi , mϕi , md� + Rδ−1
2

∫
�

ϕ̇i ϕ̇i d�

(45)

and also ∣∣∣∣∣∣∣

⎡
⎣∫

�

{(2rmui , m + 2ui )u̇i + (2rmϕi , m + 2ϕi )ϕ̇i }d�

⎤
⎦
T

0

∣∣∣∣∣∣∣
≤ Rδ1/(κ/2)

∫
�

kεimεimd� + Rδ2

+4Rδ1/(γ − β)

∫
�

(γ − β)ϕi ,mϕi ,md�

+Rδ−1
1

∫
�

u̇i u̇i d� + Rδ−1
2

∫
�

ϕ̇i ϕ̇i d�

(46)

Setting

δ1 � √
κ/2&δ2 � −√

2κ +
√
2κ + (γ − β) (47)

leads to ∣∣∣∣
∫

�

{(2rmui , m + 2ui )u̇i +(2rmϕi , m + 2ϕi )ϕ̇i }d�]T0

∣∣∣
≤ R

√
2

κ

∫
�

[κεimεim + u̇i u̇i ]d� + R(−√
2κ +

√
2κ + (γ − β))−1

×
∫

�

[(γ − β)ϕi , mϕi , m + ϕ̇i ϕ̇i ]d� (48)

Using Lemma 1, the following result is obtained∣∣∣∣∣
[∫

�

{(2rmui , m + 2ui )u̇i + (2rmϕi , m + 2ϕi )ϕ̇i }d�

]T
0

∣∣∣∣∣ ≤ Rmax{√2/κ , [−√
2κ +

√
2κ + (γ − β)]−1}E � χE

(49)

Summarizing the results gives

(2T/(ζ + 1)) − χ )E ≤ R
∫ T

0

∫




d
dt ≤ ((4ζ + 2)T/(ζ + 1) + χ )E (50)

So, the proof of Theorem 1 will be complete. To achieve the exact controllability objective, the following
lemmas are required.

Lemma 4 The following inequalities can be obtained on the boundary region 
.

a)κti jεi j ≤
∑
j

∣∣ti j ni ∣∣2 ≤ 27[λ2 + (μ + κ)2 + μ2]εi jεi j (51)

b) (γ − β)mi jγi j ≤
∑
i

∣∣mi jn j
∣∣2 ≤ 27[α2 + β2 + γ 2]γi jγi j (52)
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Proof At first, the case (a) will be considered. For the right-hand side of the inequality is expressed as follows:

∑
j

∣∣ti j ni ∣∣2 ≤
∑

i , j

∣∣ti j ∣∣2 � ti j ti j �
∑
i , j

∑
k,l

[λδklδi j + (μ + κ)δikδ jl + μδilδ jk]εi j
2

≤
∑
k,l

3[λ2 + (μ + κ)2 + μ2]εi jεi j � 27[λ2 + (μ + κ)2 + μ2]εi jεi j (53)

For the left-hand side of the inequality, it can be obtained

ti jεi j � ti j u j , i � ti j ni u j , n ≤
⎛
⎝∑

j

(ti j ni )
2

⎞
⎠

1/2

(u j , i u j , i )
1/2

≤
⎛
⎝∑

j

(ti j ni )
2

⎞
⎠

1/2

(u j , i u j , i )
1/2 �

⎛
⎝∑

j

(ti j ni )
2

⎞
⎠

1/2

(εi jεi j )
1/2 (54)

Applying the result of Lemma 1 yields

ti jεi j ≤
⎛
⎝∑

j

(ti j ni )
2

⎞
⎠

1/2(
ti jεi j/κ

)1/2 (55)

which takes the following form

κti jεi j ≤
∑
j

(ti j ni )
2 (56)

The proof for case (b) is entirely similar to the procedure described above.

Lemma 5 Let the following set of the equations be satisfied.

⎧⎪⎨
⎪⎩

(λ + μ)∇(∇.u) + (μ + κ)∇2u + κ∇ × ϕ � ü
(α + β)∇(∇.ϕ) + γ∇2ϕ + κ∇ × u − 2κϕ � ϕ̈

ui � 0 on 
 × (0, T )
ϕi � 0 on 
 × (0, T )

(57)

⎧⎪⎪⎨
⎪⎪⎩

(λ + μ)∇(∇.y) + (μ + κ)∇2y + κ∇ × ψ � ÿ
(α + β)∇(∇.ψ) + (γ )∇2ψ + κ∇ × y − 2κψ � ψ̈

yi � vi on 
 × (0, T ), yi (t � T ) � 0
ψi � wi on 
 × (0, T ),ψi (t � T ) � 0

(58)

It can be obtained

I �
∫ T

0

∫
�

[ui (ÿi − ti j , j ( y)) + ϕi (ψ̈i − mi j , j (ψ) − εi jk t jk( y))]d�dt

�
∫ T

0

∫
�

[yi (üi − ti j , j (u)) + ψi (ϕ̈i − mi j , j (ϕ) − εi jk t jk(u))]d�dt

+

{∫
�

[(ui ẏi − u̇i yi ) + (ϕi ψ̇i − ϕ̇iψi )]d�

}T
0

+
∫ T

0

∫



[(ti j (u)n j yi − ti j ( y)n jui ) + (mi j (ϕ)n jψi − mi j (ψ)n jϕi )]d
dt � 0 (59)
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Proof By Utilizing integrations by parts, the desired result can be achieved. Furthermore, by applying the
related governing equations to the above equation, one can obtain.

I �
{∫

�

[(ui ẏi − u̇i ÿi ) + (ϕi ψ̇i − ϕ̇iψi )]d�

}T
0

+
∫ T

0

∫



[(ti j (u)n j yi − ti j ( y)n jui )

+ (mi j (’)n jψi − mi j (ψ)n jϕi )]d
dt � 0 (60)

The exact controllability is concluded is based on the following mapping (�) [29],

�(X (t � 0), Ẋ (t � 0)) � (Ẏ(t � 0), − Y(t � 0)) (61)

where X � (u, ϕ), Y � ( y, ψ) and

H � (L2(�))3 × (L2(�))3 × (H−1(�))3 × (H−1(�))3 (62)

� is a linear mapping. The following theorem characterizes the nature of the �.

Theorem 2 Let T ≥ χ (1 + ζ )/2, then for any given y(t � 0), ỹ0(t � 0) ∈ (L2(�))3 and

ẏ(t � 0), ỹ1(t � 0) ∈ (H−1(�))3 (63)

and alsoψ(t � 0), ψ̃0(t � 0) ∈ (L2(�))3 and

ψ̇(t � 0), ψ̃1(t � 0) ∈ (H−1(�))3 (64)

there exist v � (v1, v2, v3) and w � (w1, w2, w3) both belonging to L2
loc(R; (L

2(
))3) which the solutions of
the following set of equations⎧⎪⎪⎨

⎪⎪⎩
(λ + μ)∇(∇.y) + (μ + κ)∇2y + κ∇ × ψ � ÿ

(α + β)∇(∇.ψ) + γ∇2ψ + κ∇ × u − 2κψ � ψ̈
yi � vi � ti j (u)n j on 
 × (0, T )

ψi � wi � mi j (u)n j on 
 × (0, T )

(65)

satisfy the following conditions

y(t � T ) � ỹ0 and ẏ(t � T ) = ỹ1ψ(t � T ) � ψ̃0 and ψ̇(t � T ) = ψ̃1 (66)

Proof To do this, one needs to assume the case where ỹ0�ỹ1 � ψ̃0 � ψ̃1 in � [29, 30]. Therefore, utilizing
the results of Theorem 1 and Lemmas 4 and 5 associated with HUM, it suffices to demonstrate that the mapping
� is an isomorphism from H onto H ′, making the proof straightforward. To achieve this, the following inner
product will be defined.

H � (L2(�))3 × (L2(�))3 × (H−1(�))3 × (H−1(�))3 (67)

Onto

H ′ � (L2(�))3 × (L2(�))3 × (H (�))3 × (H (�))3 (68)

With the results of Lemmas 4 and 5, one can achieve

〈�(X (0), Ẋ (0)), (X (0), Ẋ (0))〉H ′,H �
∫ T

0

∫



[(ti j (u)n j )
2 + (mi j (ϕ)n j )

2]d
dt (69)

By employing Lemma 5 and Theorem 1, it can be deduced that � is an isomorphism. Subsequently, by
applying HUM, the proof of Theorem 2 will be evident.
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Fig. 2 Control diagram for closed-loop boundary control of an euler–bernoulli beam

4 Numerical results for a Euler–Bernoulli micro beam

In this section, numerical results for an Euler–Bernoulli microbeam with a length of L are being presented and
discussed. The governing equation and boundary conditions for the microbeam are as follows:

ρA
∂2y

∂t2
+ K1

∂4y

∂x4
− K2

∂6y

∂x6
� 0, in(x , t)εR × [0, T ]

⎧⎪⎪⎨
⎪⎪⎩
atx � 0 : y|(0,t) � u10,

∂y
∂x

∣∣∣
(0,t)

� u20,
∂2y
∂x2

∣∣∣
(0,t)

� u30

atx � L : y|(L ,t) � u1L ,
∂y
∂x

∣∣∣
(L ,t)

� u2L ,
∂2y
∂x2

∣∣∣
(L ,t)

� u3L

(70)

In the above relations, y represents the deflection at various points along the beam. The boundary controls
at x � 0 and x � L , denotes as ui0 and uiL (where i � 1,2,3), are defined as follows:⎧⎪⎨

⎪⎩
u10 � −Mc

0 , u
2
0 � F0, u30 � Mn.c

0

u1L � Mc
L , u

2
L � −FL , u3L � Mn.c

L

(71)

In the provided context, F represents the applied force, while Mc and Mn.c represent the moments.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F0,L � K2
∂5y
∂x5

− K
1

∂3y
∂x3

Mc
0,L � K1

∂2y
∂x2

− K2
∂4y
∂x4

Mn.c
0,L � K2

∂3y
∂x3

(72)

The control diagram for closed-loop boundary control of an euler–bernoulli beam is shown in Fig. 2.
To demonstrate the exact controllability of non-classical Euler–Bernoulli microbeams, it is essential to

conduct numerical simulations on the system using control inputs. In various studies, the numerical solution
to the problem of exact controllability is consistently noted as a challenging task in the realm of partial differ-
ential equations. This challenge arises due to the limitations of conventional methods, such as finite element
analysis or finite difference methods, which are extensively employed for simulating partial differential equa-
tions. Unfortunately, these traditional techniques often prove inadequate when applied to exact controllability
problems due to their tendency toward numerical instability in this specific context. Therefore, alternative
approaches and specialized numerical methods are typically required to effectively address the numerical
simulation of exact controllability in systems like non-classical Euler–Bernoulli microbeams.

A novel approach for numerically solving the exact controllability problem of partial differential equations
has been introduced in previous studies [32, 33]. This method is centered around the formulation of initial
conditions for the system within the real number space R, followed by the resolving of the resulting Cauchy
problem through the utilization of the Fast Fourier Transform (FFT) technique. The FFT is a computational
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algorithm that efficiently computes theDiscrete Fourier Transform (DFT) of a sequence of numbers. It serves as
a versatile tool with applications in various fields. In signal processing, it is used for analyzing andmanipulating
audio and image signals, facilitating tasks such as filtering and detecting specific frequency components. In
image processing, it aids in converting images between time and frequency domains, assisting in various image
manipulation tasks. Communication systems benefit from FFT by allowing the analysis of signal spectra,
bandwidth, and modulation techniques in telecommunications.

In structural analysis, FFT is employed to identify vibration modes and frequencies in structures, bridges,
andmechanical systems. It is also essential in control systems analysis, where it evaluates how systems respond
to different frequencies. Additionally, the FFT finds uses in non-destructive testing (NDT) for signal analysis
and flaw detection. In earthquake engineering, it is utilized to analyze seismic data, providing insights into
earthquake characteristics. Overall, the FFT is a powerful and versatile tool with a wide range of applications
in science and engineering [34].

One of the standout advantages of this method is its simplicity, along with its ability to address various
challenges in the field of exact controllability for partial differential equations. Notably, in a separate research
article [35], this method has been effectively utilized to achieve the precise controllability for a simple and
classical two-dimensional Euler–Bernoulli beam, demonstrating its practical efficacy.

First stage In this initial stage, a non-classical Euler–Bernoulli microbeam characterized by infinite length,
with the spatial range of x spanning fromnegative infinity to positive infinity x ∈ (−∞, +∞) is being examined.
To address this, the initial conditions of the target system are expanded within the real number space R. The
subsequent expression illustrates that, in this scenario, the initial conditions are formulated within the domain
of x ∈ (0, −∞) ∪ (L , +∞), where their values are set to zero. Additionally, the initial conditions within the
range of 0 ≤ x ≤ L are modeled as sinusoidal functions.

ρA
∂2ϕ̄

∂t2
+ K1

∂4ϕ̄

∂x4
− K2

∂6ϕ̄

∂x6
� 0, in(x , t)εR × [0, T ]

⎧⎨
⎩

ϕ̄|t�0 �
{
L
(
sin
(

πx
L

))
0 ≤ x ≤ L

0 x 0, x L
ϕ̄,t
∣∣
t�0 � 0 xεR

(73)

Next, the modified system (73) is solved using the dependent variable ϕ(x , t), which represents the dis-
placement of the hypothesizedmicrobeamwith infinite length. This solution is achieved through the application
of the fast Fourier transform. Upon applying the Fourier transform to Eq. (73), the result is as follows:

[
ρA

∂2ϕ

∂t2
+ K1

∂4ϕ

∂x4
− K2

∂6ϕ

∂x6

]
� ρAϕ̃

(
k̈, t
)
+ K1k

4ϕ̃(k, t) − K2k
6ϕ̃(k, t) ⇒ ϕ̃(k, t)

� F[ϕ(x , t)] � F
[
ϕ|t�0

]
cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠ (74)

The system’s response (73) can be described by using the inverse Fourier transform, which results in ϕ

(x , t) � F
−1[ϕ̃(k, t)]. According to the provided equation, the outcome of this inverse transformation can be

represented as follows:

ϕ(x , t) � ϕ|t�0 ∗ F
−1

⎡
⎣cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠
⎤
⎦

� ϕ|t�0 ∗
⎡
⎣ 1

2π

∫ +∞

−∞
cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠exp( jkx)dk

⎤
⎦

� ϕ|t�0 ∗
⎡
⎣ 1

π

∫ +∞

0
cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠cos(kx)dk

⎤
⎦ (75)

Here, the notation f ∗g represents the convolution of two functions, f and g, and j � √−1. By substituting
the provided relationship, the above equation can be reformulated in the following manner:
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ϕ(x , t) � 1

π

∫ +∞

−∞

∫ +∞

0
ϕ(ξ )|t�0cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠cos(k(x − ξ))dkdξ

� 1

π

∫ +1

0

∫ +∞

0
L

(
sin

(
πξ

L

)
− 0.5

)
cos

⎛
⎝k2

√
K1 + K2k2

ρA
t

⎞
⎠cos(k(x − ξ))dkdξ (76)

By confining the obtained solution ϕ(x , t) to the spatial domain of xε[0, L] and the temporal domain of
tε[0, T ], the function ϕ � ϕ|[0, L]×[0, T ] can be regarded as the solution to the problem. This solution adheres
to the specified boundary conditions and initial value, which are outlined as follows:

ρA
∂2ϕ̄

∂t2
+ K1

∂4ϕ̄

∂x4
− K2

∂6ϕ̄

∂x6
� 0, in(x , t)ε[0, L] × [0, T ]

⎧⎪⎪⎨
⎪⎪⎩

ϕ|x�0,L � ϕ̄|x�0,L ,
∂ϕ
∂x

∣∣∣
x�0,L

� ∂ϕ̄
∂x

∣∣∣
x�0,L

, ∂2ϕ

∂x2

∣∣∣
x�0,L

� ∂2ϕ̄

∂x2

∣∣∣
x�0,L

0 ≤ t ≤ T

ϕ|t�0 � L
(
sin
(

πξ
L

)
− 0.5

)
0 ≤ x ≤ L

ϕ,t
∣∣
t�0 � 0 0 ≤ x ≤ L

(77)

Second stage In this phase, the procedure carried out in the initial stage is replicated precisely for the
function ψ (similarly to ϕ) In this phase, the procedure carried out in the initial stage is replicated precisely
for the function ψ (akin to ϕ), with the distinction that the initial conditions for the equation involving ψ are
derived from the subsequent equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
∣∣
t�0 �

⎧⎪⎪⎨
⎪⎪⎩

−ϕ(T ) 0 ≤ x ≤ L

0 x < 0, x > L

ψ ,t

∣∣
t�0 �

⎧⎪⎪⎨
⎪⎪⎩

ϕ,t (T ) 0 ≤ x ≤ L

0 x < 0, x > L

(78)

Following the application of the Fourier transform and subsequently the inverse Fourier transform to the
governing equation of ψ(x , t), the resulting function can be obtained manually. In a manner analogous to the
first step’s treatment of the function ϕ, the same process is applied to the functionψ , resulting in the expression
ψ � ψ

∣∣
[0, L]×[0, T ]. Third stage Now, if we take into account the subsequent relationship for the new function

z(x , t), which can be expressed as:

z(x, t) � ϕ(x , t) + ψ(x , T − t) (79)

Subsequently, leveraging the linearity of the operator inherent in the governingpartial equation, this function
will indeed constitute the solution to the problem, given the specified initial value and final value conditions.

ρA
∂2z

∂t2
+ K1

∂4z

∂x4
− K2

∂6z

∂x6
� 0, in(x , t)ε[0, L] × [0, T ]

⎧⎪⎪⎨
⎪⎪⎩

z|x�0,L � ϕ(x , t)|x�0,L + ψ(x , T − t)|x�0,L 0 ≤ t ≤ T
∂z
∂x

∣∣
x�0,L � ∂ϕ

∂x (x , t)
∣∣∣
x�0,L

+ ∂ψ
∂x (x , T − t)

∣∣∣
x�0,L

0 ≤ t ≤ T

∂2z
∂x2

∣∣∣
x�0,L

� ∂2ϕ

∂x2
(x , t)

∣∣∣
x�0,L

� ∂2ψ

∂x2
(x , T − t)

∣∣∣
x�0,L

0 ≤ t ≤ T
{

z|t�0 � L
(
sin
(

πx
L

)− 0.5
)
+ ψ(T ) 0 ≤ x ≤ L

z,t
∣∣
t�0 � −ψ,t (T ) 0 ≤ x ≤ L{

z|t�0 � 0 0 ≤ x ≤ L
z,t
∣∣
t�0 � 0 0 ≤ x ≤ L

(80)

Indeed, the variable z(x , t) governed by the aforementioned equations bears similarity to the displacement
of a non-classical Euler–Bernoulli double-free microbeam. his similarity extends to the imposition of inputs
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Fig. 3 Change of a dimensionless ϕ and b dimensionless ψ in length of beam (L)

z|x�0, L , ∂z/
∂x

∣∣∣
x�0, L

and ∂2z/
∂x2

∣∣∣
x�0, L

at its initial and final boundaries. By satisfying the conditions

z|t�T � 0 and z, t
∣∣
t�T � 0 across the entire length domain 0 ≤ x ≤ L , the variable z(x , t) fulfills the

prerequisites for exact controllability. Through the derivation of functions ϕ(x , t) and ψ(x , t) from the fast
Fourier transform during the first and second steps of the numerical solution process, the function z(x , t)
and the corresponding control inputs are effectively simulated. In essence, the system of Eqs. (80), much like
the system of (70), operates under the influence of control inputs (71). By numerically solving the system of
Eqs. (80) using the derived functions ϕ and ψ , the simulation successfully addresses the exact controllability
problem of the given system.

x̃ � x/L , w̃ � w/L , t̃ � t/L2
√
(E I )/(ρA), F̃ � FL2/(E I ), M̃ � ML/(E I ) (81)

where the superscript "~ " stands for the dimensionless variables. In addition,F andM are the boundary control
force and moment feedback. For the exact controllability, an arbitrary initial condition has been assigned to
the beam and the results of exact controllability are as follows:

5 Conclusion

This study introduces a comprehensive and innovative approach that address the challenging problem of exact
boundary controllability in the vibrational dynamics of a three-dimensional Cosserat elastic body. To achieve
this objective, the intricates of achieving boundary exact controllability were systematically explored, with the
Hilbert UniquenessMethod (HUM) serving as a key analytical tool. This effort involved rigorousmathematical
examinations, requiring the establishment of a series of complex technical inequalities, each of which was
rigorously proven (Figs. 3, 4, 5 and 6).

To bridge the gap between theory and practical application, a numerical investigation was conducted,
utilizing the powerful fast Fourier transform (FFT) technique. This numerical analysis was complemented
by a series of simulations focused on a specific scenario involving a Euler–Bernoulli microbeam. These
simulations were essential not only validating the theoretical results derived but also for providing concrete
evidence of the feasibility and effectiveness of the proposed method.

In essence, this study not only expands our understanding of exact boundary controllability within the realm
of complex vibrational systems but also underscores the crucial role that advanced mathematical techniques
and numerical simulations play in connecting theory with real-world applicability.

The primary advantage of this method lies in its ability to precisely control the displacement profile of
every point on the body, ensuring it conforms to the desired profile. Additionally, it concurrently adjusts
the velocity profile of all points to match the desired velocity profile. This dual capability is unmatched by
any other existing approach, allowing for the simultaneous manipulation of both displacement and velocity
profiles. Furthermore, this method achieves this control within a finite timeframe, offering the added benefit
of time-efficient steering.
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Fig. 4 Change in dimensionless deflection in free end of Euler–Bernoulli beam in exact controllability

Fig. 5 2D Diagrams of dimensionless deflection of micro beam in difference points at difference times in exact controllability
problem
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Fig. 6 3D Diagrams of dimensionless deflection of micro beam in difference points at difference times in exact controllability
problem
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