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Abstract This paper presents a forced vibration analysis of open doubly curved sandwich panels subjected
to a moving constant force. In this paper, the effect of softness of the core is considered by implementing a
semi-layerwise theory. To this aim, the first-order shear deformation theory is adopted for the face sheets and a
higher-order theory which was obtained based on 3D elasticity theory is considered for the core. The presented
formulation is general and as the deepness parameter is accounted in the strain–displacement relations, the
formulation can be used for a wide range of deep as well as shallow doubly curved shells. To obtain the dynamic
response of the system, the finite elementmethod (FEM) alongwith theNewmarkmethod is used. The proposed
element is a higher-order one with nine nodes and each node has fifteen degrees of freedom. The effect of
various parameters such as length-to-thickness ratio, in-plane aspect ratio, boundary conditions, lamination
scheme, and fiber orientation angles on the dynamic response of the structure is examined. Additionally, the
critical velocity of the force at which the structure experiences maximum dynamic deflection is obtained
in each case. The results show that as the length-to-thickness ratio of the structure increases, the dynamic
magnification factor curve increases with respect to non-dimensional velocity. This study provides insights
into the dynamic behavior of doubly curved sandwich panels with soft cores and can aid in the design of such
structures for specific applications. The results of this study can also serve as a benchmark for future studies
on the forced vibration behavior of doubly curved sandwich panels.

1 Introduction

Sandwich panels are widely used in various engineering applications due to their high strength- and stiffness-
to-weight ratios, and thermal and acoustic insulation properties. Sandwich panels with soft core are commonly
used in various industries due to their desirable properties, where they are subjected to various types of dynamic
loading conditions, includingmoving forces. Therefore, understanding the dynamic behavior of these structures
is of great importance in the design and analysis. Dynamic analysis of sandwich panels is essential to ensure
their safe and reliable operation subjected to various dynamic loads. The analysis typically involves predicting
the structure’s natural frequencies, mode shapes, and response amplitudes under different loading conditions.
The dynamic response of sandwich panels can be affected by various factors such as the panel’s geometry,
boundary conditions, and the type of loading. The analysis can be performed using analytical or numerical
methods, such as the finite element method (FEM), which can provide accurate and detailed predictions of the
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panel’s behavior under dynamic loads. The results of dynamic analysis can be used to optimize the panel’s
design, identify potential failure modes, and develop guidelines and standards for the design and testing of
sandwich panels. Additionally, the analysis can aid in the selection of appropriate materials and core structures
to ensure the panel’s safe and reliable operation under dynamic loads.

Free vibration analysis of sandwich panels with soft core has received significant attention in recent years
due to their excellent mechanical properties and potential applications in various industries. In terms of free
vibration analysis, Joseph and Mohanty [1] studied the free vibration of sandwich plates with viscoelastic
core and functionally graded face sheets using FEM. Malekzadeh et al. [2] utilized an improved high-order
sandwich plate theory and introduced a double Fourier series set of functions to investigate the vibration
characteristics of composite sandwich panels with a viscoelastic core and arbitrary boundary conditions. Tian
et al. [3] presented an analytical solution for the static and vibration analysis of sandwich plates with a soft
core. They employed Navier-type solutions for both free vibration analysis and static bending under sinusoidal
and uniformly distributed loads. Ghavidel et al. [4] studied the free vibration of cylindrical sandwich panels
based on the first-order shear deformation theory of thick cylindrical shells referred to by Qatu (FSDTQ). They
presented an analytical solution for simply supported boundary conditions, and the generalized differential
quadrature method was used for other boundary conditions. Sahu et al. [5] examined the vibration and damping
characteristics of doubly curved sandwich shells. They used a first-order shear deformation theory and assumed
a viscoelastic core with functionally graded face sheets. Finite element analysis was employed to study the
normal and shear deformations of the viscoelastic core. Chalak et al. [6] developed a C0 two-dimensional
finite element model to investigate the free vibration of laminated composite and sandwich plates based on
the higher-order zigzag plate theory. Kant and Swaminathan [7, 8] conducted free vibration analysis of cross-
ply laminated composite and sandwich plates based on higher-order shear and normal deformation theory.
Belarbi et al. [9] created a higher-order layerwise finite element model utilizing a four-noded C0 continuous
isoparametric element to study the free vibration behavior of multilayer sandwich plates, assuming a first-
order shear deformation theory for the face sheets and a higher-order shear deformation theory for the core.
Bacciocchi et al. [10] used a nine-node quadratic rectangular element and theReissner–Mindlin zigzag theory to
investigate the natural frequencies of sandwich plates. Biswal and Mohanty [11] employed FEM to investigate
the free vibration and damping characteristics of multilayer sandwich spherical shells with viscoelastic core
and elastic face sheets based on the first-order shear deformation theory using an eight-noded element with
fifteen degrees of freedom per node. Karakoti et al. [12] proposed a layerwise finite element formulation based
on the first-order shear deformation theory for each layer to analyze the dynamic behavior of functionally
graded material sandwich shell in thermal and non-thermal environments. Lastly, Hirane et al. [13] introduced
an eight-noded quadrilateral C0 element to analyze the static and free vibration analyses of FGM sandwich
plates, assuming a higher-order displacement field for the core and first-order displacement field for the face
sheets while maintaining continuity of displacement at layer interfaces.

When it comes to forced vibration analysis, Alambeigi et al. [14] analyzed the free and forced vibration of
a sandwich beam considering porous core and SMA hybrid composite face layers. They employed first-order
shear deformation theory in their analysis and the analytical solution was presented to solve the equations
of motion using Navier’s solution. Chanda and Sahoo [15] conducted a study on the static and dynamic
responses of simply supported sandwich plates. They employed the non-polynomial zigzag theory as their
analytical framework. To find the solutions, they utilized Navier’s solution technique along with Newmark’s
time integration scheme. Kapuria and Kulkarni [16] investigated the transient response of smart sandwich
plates with electroded piezoelectric sensors and actuators based on a coupled improved zigzag theory. They
employed quadrilateral elements with four physical nodes and one electrical node in their analysis. Wang
et al. [17] investigated the dynamic response of asymmetric sandwich plates with metal foam core subjected
to blast loading analytically and numerically. Higher-order dynamic response of composite sandwich panels
with flexible core under simultaneous low-velocity impacts of multiple small masses was investigated by
Malekzadeh et al. [18]. To model the compressibility of the core, they employed first-order Shear deformation
theory for the face sheets while three-dimensional elasticity was used to model the soft core. Wang et al.
[19] investigated the transient response of doubly curved composite shallow shells reinforced with graphene
nanoplatelets under blast loads. The equations ofmotionwere derived usingHamilton’s principle and nonlinear
strain–displacement relations of the von Karman type were employed. The influence of various parameters,
such as the temperature difference between the upper and lower face sheets, length-to-thickness ratio, and
shell depth, was analyzed. Yang and Qiao [20] presented a higher-order impact model to simulate the response
of sandwich structures with flexible core. In this paper, the results were validated with a 3D finite element
model obtained using commercial software such as ABAQUS and LS-DYNA. Fatt and Sirivolu [21] developed
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an analytical model to predict the response of a composite sandwich shell with PVC foam core under blast
loading. They used Donnell’s nonlinear shallow shell formulation and modeled the PVC foam core with
isotropic and transversely isotropic elastic–plastic properties. Using higher-order sandwich panels theory,
Khanjani et al. [22] investigated the effects of core thickness, radius of curvature, and sector angle on the
static and dynamic response of composite cylindrical sandwich panels. In this paper, the Newmark method
was implemented to obtain the dynamic response of the system. Katariya and Panda [23] computed static
deflection, frequency and transient responses of the layered sandwich shell under various mechanical loading
conditions. Mirfatah et al. [24] investigated the geometrical nonlinear dynamic behavior of shallow sandwich
panels under various periodic and impulsive loadings. Sankar et al. [25] studied the vibration of doubly curved
sandwich shells subjected to in-plane periodic load. In this paper, the problem of parametrically excited
structure was investigated using QUAD-8 element which was developed using higher-order shear flexible
theory. Using the finite element method, Biswal andMohanty [26] investigated the static and dynamic stability
of spherical sandwich shell panels with viscoelastic material core and laminated composite face sheets under
uniaxial and biaxial harmonic excitations. Wattanasakulpong and Eiadtrong [27] investigated the transient
responses of sandwich plates with a functionally graded porous core subjected to time-dependent loads. The
study employed the first-order shear deformation theory (FSDT) to derive the equations ofmotion. The solution
to these equations utilized the Ritz method with Jacobi polynomials for admissible displacements, coupled
with the time integration of Newmark, providing insight into the dynamic response of the plates.

In the case of nonlinear dynamics, Songsuwan et al. [28] performed a nonlinear analysis of free and forced
vibrations in FG-GPLRC beams subjected to time-dependent forces. The study was based on the third-order
shear deformation theory, the equations were solved using the Ritz method while the Gram–Schmidt process
was applied to derive admissible functions. Quan and Duc [29] provided analytical solutions for the nonlinear
vibration of a porous functionally graded sandwich plate exposed to a blast load. The study employed Reddy’s
higher-order shear deformation theorywith vonKármán type nonlinearity to formulate the governing equations
for plate vibration. The obtained results were achieved through the application of the Galerkin method and
the fourth-order Runge–Kutta method. Cong et al. [30] investigated nonlinear dynamic behavior of doubly
curved shallow shells with negative Poisson’s ratios in auxetic honeycombs on elastic foundations subjected
blast, mechanical and damping loads. employing Reddy’s third-order shear deformation theory with von
Kármán type nonlinearity to formulate the governing equations for plate vibration. The obtained results were
obtained using the Galerkin method and the fourth-order Runge–Kutta method. Nguyen et al. [31] presented
an analytical solution to investigate nonlinear dynamic of imperfect functionally graded carbon nanotube
reinforced composite (FG-CNTRC) double curved shallow shells subjected to blast load and temperature.
In their paper, the higher-order shear deformation theory was used, and Galerkin method and fourth-order
Runge–Kutta method were used to solve the problem.

In the case of moving loads, Song et al. [32] conducted research on the dynamic behavior of sandwich
beams and plates, specifically focusing on those with isotropic face sheets and a viscoelastic core subjected
to moving loads. They proposed the extended Rayleigh–Ritz solution along with the penalty method, and the
differential quadrature method. Songsuwan et al. [33] explored the nonlinear transient response of sandwich
beams featuring a functionally graded porous core under a moving load. The study employed Reddy’s third-
order shear deformation theory and incorporated the geometrical nonlinearity of the von Kármán assumption
to formulate the governing equation system. Kiani [34, 35] examined the dynamic response of functionally
graded composite cylindrical and conical panels under the influence of moving loads. The kinematics of the
shell were formulated using the first-order shear deformation theory. The dynamic equations of the system
were obtained using the Ritz method, wherein the shape functions were determined using the Gram–Schmidt
process. The Newmark time marching scheme was employed to determine the system’s response. Bahranifard
et al. [36] investigated the dynamic responses of sandwich truncated conical shells with face sheets reinforced
by graphene platelets composite (GPLRC), a porous core, and circumferential stiffeners when subjected to
asymmetric internal ring-shaped moving loads. The equations of motion were derived based on the first-order
shear deformation theory (FSDT) using the Chebyshev–Ritz method. The Newmark’s time integration scheme
was used to solve the resulting ordinary differential equations of motion.

The review of the available literature shows that there has been no investigation into the dynamic analysis
of doubly curved sandwich panels with a flexible core under the action of a moving load. This paper seeks to
fill this gap by analyzing the influence of a constant amplitude moving force on the vibration characteristics
of sandwich panels, taking into account the softness of the core material using finite element method (FEM).
For this purpose, a new higher-order finite element with nine nodes which was presented by the authors
[37] is used. The proposed element offers a significant advantage by considering the softness of the core,
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Fig. 1 Schematic view of general doubly curved shell

a critical parameter in sandwich structures. In this work, a semi-layerwise displacement field is introduced,
employing the first-order shear deformation theory (FSDT) for the face sheets and a higher-order displacement
field for the core. This innovative approach captures the softness term of the core in the analysis, providing
a more accurate representation than previous equations. Indeed, using this element, it would be possible to
model delaminated sandwich structures considering various delamination thickness-wise positions. In terms of
disadvantages, the introduction of a semi-layerwise displacement field and consideration of the core’s softness,
while advantageous, may increase computational complexity. This could impact the computational resources
required for analysis, particularly for larger and more intricate models. The obtained results based on the
presented formulation are verified against the results obtained from the free vibration analysis of the structure,
previously reported in the literature. The study examines the influence of various factors including side-to-
thickness ratio, and boundary conditions, in-plane aspect ratio, the radius of curvature, lamination scheme,
and fiber orientation angle. The critical velocity is reported in each case.

2 Kinematics

This study examines a doubly curved open shell, depicted in Fig. 1, consisting of three main layers. The core
layer, with a thickness of hc, is sandwiched between two thin laminated composite face sheets: the top and the
bottom face sheets, with thicknesses of ht and hb and a total number of layers of Nt and Nb, respectively. The
panel has a length of a, a width of b, and a total thickness of h � ht + hc + hb. A global orthogonal curvilinear
coordinate system, Oαβz, is chosen with its origin located at a vertex of the mid-surface (z � 0). The α- and
β-axes align with the panel’s length and width directions, respectively, while the z-axis is perpendicular to
the mid-surface. Additionally, local coordinate systems with normal axes zi (i � t , c, b) are considered, with
their origins at the mid-surfaces of the top face sheet, core, and bottom face sheet, respectively, parallel to the
global z-axis. Ri

α , and Ri
β (i � t , c, b) represent the principal radii of curvature in the α and β directions,

respectively. For cylindrical panels, Rα � R and Rβ � ∞, for spherical panels Rα � Rβ � R, and for plates
Rα � Rβ � ∞, where R is the radius of curvature. It is important to note that in all the notations that follow,
the indices t , c, and b refer to the top face sheet, the core, and the bottom face sheet, respectively.

To consider the boundary conditions, elastic restraints are assumed to be present on the panel’s contour.
The distributed elastic springs’ constants are denoted by kα�0

d ; kα�a
d ; kβ�0

d ; and kβ�b
d for edge α � 0, α � a,

β � 0 and β � b, respectively, in which d denote the degrees of freedom of the system:

d ∈
{
ut0,ψ

t
α , v

t
0,ψ

t
β ,w

t
0, u

b
0,ψ

b
α , v

b
0 ,ψ

b
β ,w

b
0 , u0, u1, v0, v1,w0

}
(1)

It should be noted that by simulating the boundary conditions using virtual springs, each degree of freedom
can be fixed or free by letting kd � 0 or kd � ∞, respectively. Consequently, cases of clamped, simply
supported, free and elastically restrained edges can be considered using this method.
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The face sheets are relatively thin and the first-order shear deformation theory is employed to represent
the displacement field of them. This theory assumes that the displacement field at any arbitrary time t can be
estimated as follows:

ui (α,β, zi ) � ui0(α,β) + ziψ
i
α(α,β)

vi (α,β, zi ) � vi0(α,β) + ziψ
i
β(α,β), i � t , b

wi (α,β, zi ) � wi
0(α,β) (2)

in which the displacement components ui , vi , and wi represent the displacements along the α, β, and zi
directions, respectively. The in-plane displacements of the middle surface of the top and bottom face sheets are
represented by ui0 and vi0, respectively, while wi

0 represents the transverse displacement. The rotation angles
of the transverse normal about the β- and α-directions are represented by ψ i

α and ψ i
β , respectively.

Based on EHSAPT, the displacement field of the core is formulated based on the 3D elasticity theory by
considering the following displacement field [38]:

uc(α,β, zc) � u0(α,β) + zcu1(α,β) + z2cu2(α,β) + z3cu3(α,β)

vc(α,β, zc) � v0(α,β) + zcv1(α,β) + z2cv2(α,β) + z3cv3(α,β)

wc(α,β, zc) � w0(α,β) + zcw1(α,β) + z2cw2(α,β) (3)

where uc, vc and wc represent the displacement components of the core along α, β, and zc directions,
respectively. Additionally, ui , vi and w j (i � 0, 1, 2, 3 and j � 0, 1, 2) represent the in-plane and transverse
displacements of the core’s mid-surface.

The strain–displacement relationships in orthogonal curvilinear coordinates can be expressed linearly as
follows:

εα � 1

A(1 + z/Rα)

(
∂u

∂α
+

∂A

∂β

v

B
+

Aw

Rα

)

εβ � 1

B
(
1 + z/Rβ

)
(

∂v

∂β
+

∂B

∂α

u

A
+
Bw

Rβ

)

εz � ∂w

∂z

γαz � 1

A(1 + z/Rα)

∂w

∂α
+ A(1 + z/Rα)

∂

∂z

(
u

A(1 + z/Rα)

)

γβz � 1

B
(
1 + z/Rβ

) ∂w

∂β
+ B

(
1 + z/Rβ

) ∂

∂z

(
v

B
(
1 + z/Rβ

)
)

γαβ � 1

A(1 + z/Rα)

(
∂v

∂α
− ∂A

∂β

u

B

)
+

1

B
(
1 + z/Rβ

)
(

∂u

∂β
− ∂B

∂α

v

A

)
(4)

where normal strains are represented by εα , εβ and εz , and shear strains are represented by γαz , γβz and γαβ .
The parameters A and B are Lamé parameters that allow for the consideration of various shell geometries.
In the following sections, these parameters may be used with subscripts “t ,” “c,” and “b” which refer to lamé
parameters of the top, the core, and the bottom layers. By substituting the displacement fields into Eq. (4), the
strain–displacement relations for each layer can be obtained. These relations can be written concisely in terms
of mid-surface generalized strains as follows:

For the top and bottom layers (i � t , b),

εiα � 1(
1 + zi/Ri

α

)
(
εi0α + ziκ

i
α

)

εiβ � 1(
1 + zi/Ri

β

)
(
εi0β + ziκ

i
β

)

εiz � εi0z



2236 S. Sadripour et al.

γ i
αz � γ i

0αz(
1 + zi/Ri

α

)

γ i
βz � γ i

0βz(
1 + zi/Ri

β

)

γ i
αβ � 1(

1 + zi/Ri
α

)
(
εi0αβ + ziκ

i
αβ

)
+

1(
1 + zi/Ri

β

)
(
εi0βα + ziκ

i
βα

)
(5)

For the core layer,

εcα � 1

Ac
(
1 + zc/Rc

α

) (εc0α + zcε
c
1α + z2cε

c
2α + z3cε

c
3α

)

εcβ � 1

Bc

(
1 + zc/Rc

β

)
(
εc0β + zcε

c
1β + z2cε

c
2β + z3cε

c
3β

)

εcz � εc0z + zcε
c
1z

γ c
αz � 1

Ac
(
1 + zc/Rc

α

) (γ c
0αz + zcγ

c
1αz + z2cγ

c
2αz + z3cγ

c
3αz

)

γ c
βz � 1

Bc

(
1 + zc/Rc

β

)
(
γ c
0βz + zcγ

c
1βz + z2cγ

c
2βz + z3cγ

c
3βz

)

γ c
αβ � 1

Ac
(
1 + zc/Rc

α

)
(
γ c
0αβ + zcγ

c
1αβ + z2cγ

c
2αβ + z3cγ

c
3αβ

)

+
1

Bc

(
1 + zc/Rc

β

)(γ c
0αz + zcγ

c
1αz + z2cγ

c
2αz + z3cγ

c
3αz

)
(6)

In which the generalized strain terms used in Eqs. (5) and (6) are reported in [37, 39].

2.1 Constitutive equations and stress resultants

Tomodel the behavior of each lamina in the top and bottom face sheets, the orthotropic properties are considered
and the stress–strain relations for a typical kth lamina are described as follows:⎧⎪⎪⎨

⎪⎪⎩

σ k
α

σ k
β

τ kαβ

⎫⎪⎪⎬
⎪⎪⎭

�

⎡
⎢⎢⎣
Q

k
11 Q

k
12 Q

k
16

Q
k
12 Q

k
22 Q

k
26

Q
k
16 Q

k
26 Q

k
66

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εkα

εkβ

γ k
αβ

⎫⎪⎪⎬
⎪⎪⎭

{
τ kβz

τ kαz

}
�

[
Q

k
44 Q

k
45

Q
k
45 Q

k
55

]{
γ k
βz

γ k
αz

}
(7)

The transformed reduced stiffness coefficients Q
k
i j , appearing in the equation above, can be expressed in

terms of the stiffness coefficients [37].
The stress resultants N and Q, as well as stress couples M , for the face sheets, are involved in the following

relationships: ⎡
⎢⎢⎣

Ni
α

Ni
αβ

Qi
α

⎤
⎥⎥⎦ �

Ni∑
k�1

zik∫

zik−1

⎡
⎢⎢⎣

σ i
α

σ i
αβ

σ i
αz

⎤
⎥⎥⎦
(
1 +

zi
Ri

β

)
dzi

⎡
⎢⎢⎣

Ni
β

Ni
βα

Qi
β

⎤
⎥⎥⎦ �

Ni∑
k�1

zik∫

zik−1

⎡
⎢⎢⎣

σ i
β

σ i
αβ

σ i
βz

⎤
⎥⎥⎦
(
1 +

zi
Ri

α

)
dzi
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[
Mi

α

Mi
αβ

]
�

Ni∑
k�1

zik∫

zik−1

[
σ i

α

σ i
αβ

]
zi

(
1 +

zi
Ri

β

)
dzi

[
Mi

β

Mi
βα

]
�

Ni∑
k�1

zik∫

zik−1

[
σ i

β

σ i
αβ

]
zi

(
1 +

zi
Ri

α

)
dzi (8)

The following relationships for the stress resultants can be obtained by substituting Eq. (5) into Eq. (7), then
substituting the resultant equations into Eq. (8), and carrying out the integration in the thickness direction for
laminated composite top and bottom face sheets, which are composed of Ni layers. The relationship between
stress resultants and mid-surface strains for face sheets can be expressed as follows [37]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni
α

Ni
β

Ni
αβ

Ni
βα

Mi
α

Mi
β

Mi
αβ

Mi
βα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
i
11

Ai
12

A
i
16

Ai
16

B
i
11

Bi
12

B
i
16

Bi
16

Ai
12

Ãi
22

Ai
26

Ãi
26

Bi
12

B̃i
22

Bi
26

B̃i
26

A
i
16

Ai
26

A
i
66

Ai
66

B
i
16

Bi
26

B
i
66

Bi
66

Ai
16

Ãi
26

Ai
66

Ãi
66

Bi
16

B̃i
26

Bi
66

B̃i
66

B
i
11

Bi
12

B
i
16

Bi
16

C
i
11

Ci
12

C
i
16

Ci
16

Bi
12

B̃i
22

Bi
26

B̃i
26

Ci
12

C̃ i
22

Ci
26

C̃ i
26

B
i
16

Bi
26

B
i
66

Bi
66

C
i
16

Ci
26

C
i
66

Ci
66

Bi
16

B̃i
26

Bi
66

B̃i
66

Ci
16

C̃ i
26

Ci
66

C̃ i
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εi0α

εi0β

εi0αβ

εi0βα

κ i
α

κ i
β

κ i
αβ

κ i
βα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � t , b

[
Qi

α

Qi
β

]
� ks

[
A
i
55 Ai

45

Ai
45 Ãi

44

][
γ i
0αz

γ i
0βz

]
(9)

In which ks is the shear correction factor which is taken to be 5/6 [40, 41], and:

A
i
mn � Ai

mn − ci0B
i
mn Ãi

mn � Ai
mn + ci0B

i
mn

B
i
mn � Bi

mn − ci0C
i
mn B̃i

mn � Bx
mn + ci0C

i
mn

C
i
mn � Ci

mn − ci0D
i
mn C̃i

mn � Ci
mn + ci0D

i
mn (10)

The stiffness coefficients Ai
mn , B

i
mn and Ci

mn are defined as follows, where m, n � 1, 2, 4, 5, 6 and
ci0 � (1/Ri

α − 1/Ri
β ), and the distance of the top and bottom surfaces of the kth layer from the face sheet

mid-surface is indicated by zi k−1 and zi k , respectively.

(
Ai
mn , B

i
mn ,C

i
mn , D

i
mn

)
�

Ni∑
k�1

Q
(k)
mn

zik∫

zik−1

(
1, zi , z

2
i , z

3
i

)
dzi , i � t , b (11)
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and the stress and couple resultants for the core can be described using the following expressions [37]:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nα

Nβ

Nαβ

Nβα

M1α

M1β

M1αβ

M1βα

M2α

M2β

M2αβ

M2βα

M3α

M3β

M3αβ

M3βα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 A16 B11 B12 B16 B16 C11 C12 C16 C16 D11 D12 D16 D16

A12 Ã22 A26 Ã26 B12 B̃22 B26 B̃26 C12 C̃22 C26 C̃26 D12 D̃22 D26 D̃26

A16 A26 A66 A66 B16 B26 B66 B66 C16 C26 C66 C66 D16 D26 D66 D66

A16 Ã26 A66 Ã66 B16 B̃26 B66 B̃66 C16 C̃26 C66 C̃66 D16 D̃26 D66 D̃66

B11 B12 B16 B16 C11 C12 C16 C16 D11 D12 D16 D16 E11 E12 E16 E16

B12 B̃22 B26 B̃26 C12 C̃22 C26 C̃26 D12 D̃22 D26 D̃26 E12 Ẽ22 E26 Ẽ26

B16 B26 B66 B66 C16 C26 C66 C66 D16 D26 D66 D66 E16 E26 E66 E66

B16 B̃26 B66 B̃66 C16 C̃26 C66 C̃66 D16 D̃26 D66 D̃66 E16 Ẽ26 E66 Ẽ66

C11 C12 C16 C16 D11 D12 D16 D16 E11 E12 E16 E16 F11 F12 F16 F16

C12 C̃22 C26 C̃26 D12 D̃22 D26 D̃26 E12 Ẽ22 E26 Ẽ26 F12 F̃22 F26 F̃26

C16 C26 C66 C66 D16 D26 D66 D66 E16 E26 E66 E66 F16 F26 F66 F66

C16 C̃26 C66 C̃66 D16 D̃26 D66 D̃66 E16 Ẽ26 E66 Ẽ66 F16 F̃26 F66 F̃66

D11 D12 D16 D16 E11 E12 E16 E16 F11 F12 F16 F16 G11 G12 G16 G16

D12 D̃22 D26 D̃26 E12 Ẽ22 E26 Ẽ26 F12 F̃22 F26 F̃26 G12 G̃22 G26 G̃26

D16 D26 D66 D66 E16 E26 E66 E66 F16 F26 F66 F66 G16 G26 G66 G66

D16 D̃26 D66 D̃66 E16 Ẽ26 E66 Ẽ66 F16 F̃26 F66 F̃66 G16 G̃26 G66 G̃66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0α

ε0β

ε0αβ

ε0βα

ε1α

ε1β

ε1αβ

ε1βα

ε2α

ε2β

ε2αβ

ε2βα

ε3α

ε3β

ε3αβ

ε3βα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where:

Amn � Amn − c0Bmn Ãmn � Amn + c0Bmn

Bmn � Bmn − c0Cmn B̃mn � Bmn + c0Cmn

Cmn � Cmn − c0Dmn C̃mn � Cmn + c0Dmn

Dmn � Dmn − c0Emn D̃mn � Dmn + c0Emn

Emn � Emn − c0Fmn Ẽmn � Emn + c0Fmn

Fmn � Fmn − c0Gmn F̃mn � Fmn + c0Gmn

Gmn � Gmn − c0Hmn G̃mn � Gmn + c0Hmn (13)

and the coefficients Amn , Bmn , …, Gmn are:

(Amn , Bmn ,Cmn , Dmn , Emn , Fmn ,Gmn , Hmn) �
N∑
i�1

Q
(k)
mn

zck−1∫

zck−1

(
1, zc, z

2
c , z

3
c , z

4
c , z

5
c , z

6
c , z

7
c

)
dzc (14)

2.2 Energy equations

The equations of motion and relevant boundary conditions can be obtained by using Hamilton’s principle [42]:
t2∫

t1

δ(T −U +WF )dt � 0 (15)

The expressions involve the variational operator δ, as well as the initial and final times t1 and t2. U and
T represent the total strain and kinetic energies of the structure, respectively, and WF , on the other hand,
represents the work done by external forces. U and T can be expressed using the following equations:

U � Ut +Uc +Ub +UE
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T � Tt + Tc + Tb (16)

In which the terms Tt , Tc, and Tb represent the kinetic energy of the top face sheet, core, and bottom face
sheet, respectively. Similarly,Ut ,Uc, andUb denote the strain energy of the top face sheet, core, and bottom face
sheet, respectively, while UE refers to the potential energy stored in the elastic edge supports. It is necessary
to determine the energy terms for each main layer. The strain energy of the face sheets can be expressed using
the following equation:

Ui � 1

2

∫

α

∫

β

{
Ni

αεi0α + Ni
βεi0β + Ni

αβεi0αβ

+ Ni
βαεi0βα + Mi

ακ i
α + Mi

βκ i
β + Mi

αβκ i
αβ + Mi

βακ i
βα + Qi

αγ i
0αz + Qi

βγ i
0βz

}

Ai Bidαdβ, i � t , b (17)

where generalized strains and stress resultants are expressed in Eqs. (5) and (9), respectively. Similarly, the
strain energy of the core can be expressed using the following equation:

(18)

Uc � 1

2

∫

α

∫

β

(
Nαε0α + M1αε1α + M2αε2α + M3αε3α + Nβε0β + M1βε1β

+ M2βε2β + M3βε3β + Rzε0z + Mzε1z + Qαzγ0αz + MQ1αzγ1αz + MQ2αzγ2αz

+ MQ3αzγ3αz + Qβzγ0βz + MQ1βzγ1βz + MQ2βzγ2βz + MQ3βzγ3βz + Nαβγ0αβ

+ M1αβγ1αβ + M2αβγ2αβ + M3αβγ3αβ + Nβαγ0βα + M1βαγ1βα + M2βαγ2βα

+ M3βαγ3βα

)
AcBcdαdβ

In which the strain and stress resultants of the core are expressed in Eqs. (6) and (12), respectively.
Additionally, the strain energy stored in the elastic edge supports can be expressed using the following equation:

UE � UE1 +UE2 +UE3 +UE4 (19)

In which UE1 is for the elastic restraints of edge α � 0 and can be defined as:

UE1 � 1

2

∫

β

[
K α�0
ui ui0 (0,β)

2
+ K α�0

ψα
i ψα

i (0,β)
2
+ K α�0

vi
vi0 (0,β)

2
+ K α�0

ψβ
i ψβ

i (0,β)
2
+ K α�0

wi
0

wi
0 (0,β)

2

+K α�0
u0 u0 (0,β)

2+K α�0
u1 u1 (0,β)

2+K α�0
v0

v0 (0,β)
2+K α�0

v1
v1 (0,β)

2+K α�0
w0

w0 (0,β)
2
](

1+
z

Ri
β

)
dβ

(20)

UE2 is for elastic restraints of edge α � a and can be defined as:

UE2 � 1

2

∫

β

[
K α�a
ui ui0(a,β)

2
+ K α�a

ψα
i ψα

i (a,β)
2
+ K α�a

vi
vi0(a,β)

2
+ K α�a

ψβ
i ψβ

i (a,β)
2

+ K α�a
wi
0

wi
0(a,β)

2
+ K α�a

u0 u0(a,β)2 + K α�a
u1 u1(a,β)2 + K α�a

v0
v0(a,β)2

+ K α�a
v1

v1(a,β)2 + K α�a
w0

w0(a,β)2

](
1 +

z

Ri
β

)
dβ (21)

Similarly, UE3 is for the elastic restraints of edge β � 0 and can be defined as:

UE3 � 1

2

∫

α

[
K β�0
ui

ui0 (α, 0)
2
+ K β�0

ψα
i ψα

i (α, 0)
2
+ K β�0

vi
vi0 (α, 0)

2
+ K β�0

ψβ
i ψβ

i (α, 0)
2
+ K β�0

wi
0

wi
0 (α, 0)

2

+K β�0
u0 u0 (α, 0)

2+K β�0
u1 u1 (α, 0)

2+K β�0
v0

v0 (α, 0)
2+K β�0

v1
v1 (α, 0)

2+K β�0
w0

w0 (α, 0)
2
](

1+
z

Ri
α

)
dα

(22)



2240 S. Sadripour et al.

and finally, UE4 is for the elastic restraints of edge β � b and can be defined as:

UE4 � 1

2

∫

α

[
K β�b
ui

ui0 (α, b)
2
+ K β�b

ψα
i ψα

i (α, b)
2
+ K β�b

vi
vi0 (α, b)

2
+ K β�b

ψβ
i ψβ

i (α, b)
2
+ K β�b

wi
0

wi
0 (α, b)

2

+K β�b
u0 u0 (α, b)

2+K β�b
u1 u1 (α, b)

2+K β�b
v0

v0 (α, b)
2+K β�b

v1
v1 (α, b)

2+K β�b
w0

w0 (α, b)
2
](

1+
z

Ri
α

)
dα

(23)

On the other hand, one can calculate the kinetic energy of the face sheets using the following equation:

Ti � 1

2

∫

α

∫

β

{
I
i
0

(
u̇i20 + v̇i20 + ẇi2

0

)
+ I

i
1

(
ψ̇ i2

α + ψ̇ i
β

)
+ I

i
2

(
u̇i0ψ̇

i
α + v̇i0ψ̇

i
β

)}
Ai Bidβdα, i � t , b (24)

and for the core:

Tc � 1

2

∫

α

∫

β

{
I
c
0

(
u̇20 + v̇20 + ẇ2

0

)
+ 2I

c
1(u̇0u̇1 + v̇0v̇1 + ẇ0ẇ1)

+ I
c
2

(
2u̇0u̇2 + u̇21 + 2v̇0v̇2 + v̇21 + 2ẇ0ẇ2 + ẇ2

1

)

+ 2I
c
3(u̇0u̇3 + u̇1u̇2 + v̇0v̇3 + v̇1v̇2 + ẇ1ẇ2)

+ I
c
4

(
2u̇1u̇3 + u̇22 + 2v̇1v̇3 + v̇22 + ẇ2

2

)
+ 2I

c
5(u̇2u̇3 + v̇2v̇3) + I

c
6(u̇

2
3 + v̇23)

}
AcBcdβdα (25)

In which I
i
j ( j � 0, ..., 6) are inertia terms for the face sheets (i � t , b) and the core (i � c) which are

defined as:

[
I
i
0, I

i
1, I

i
2, I

i
3

]
�

hi
2∫

− hi
2

ρi
[
1, zi , z

2
i , z

3
i

](
1 +

zi
Ri

α

)(
1 +

zi
Ri

β

)
dzi i � t , b

[
I
c
0, I

c
1, I

c
2, I

c
3, I

c
4, I

c
5, I

c
6

]
�

hc
2∫

− hc
2

ρc

[
1, z1c , z

2
c , z

3
c , z

4
c , z

5
c , z

6
c

](
1 +

zc
Rc

α

)(
1 +

zc
Rc

β

)
dzc (26)

where ρi (i � t , b) and ρc are the mass density of the top, bottom, and core layers, respectively. On the other
hand, WF can be presented as follows, since external force is applied perpendicular to the sandwich structure
and on one of its top and bottom surfaces, it can be said:

WF �
∫

β

∫

α

(
Fwi

)(
1 +

z f
Ri

α

)(
1 +

z f
Ri

β

)
Ai Bidαdβ, i � t , b (27)

In which the components wi (i � t , b) and z f are determined depending on the location of the applied
force. If the force is applied on the upper surface, wi � wt and z f � −ht/2, but if the force is applied on the
lower surface,wi � wb and z f � hb/2 are used. It is clear that the components A and B are also representative
of the Lame parameters. Therefore, in order to simplify the equations, it can be said:

WF �
∫

β

∫

α

(
F ′wi

)
dαdβ, i � t , b (28)

in which:

F ′ � F

(
1 +

z f
Ri

α

)(
1 +

z f
Ri

β

)
Ai Bi , i � t , b (29)
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Fig. 2 Considered higher-order element

2.3 Compatibility conditions

Assuming perfect bonding between the face sheets and the core, the compatibility relations at the interfaces
are expressed in the following manner:

uc

(
zc � −hc

2

)
� ut

(
zt � ht

2

)
uc

(
zc � hc

2

)
� ub

(
zb � −hb

2

)

vc

(
zc � −hc

2

)
� vt

(
zt � ht

2

)
vc

(
zc � hc

2

)
� vb

(
zb � −hb

2

)

wc

(
zc � −hc

2

)
� wt

(
zt � ht

2

)
wc

(
zc � hc

2

)
� wb

(
zb � −hb

2

)
(30)

By substituting Eqs. (2) and (3) in conditions (30), the compatibility conditions can be simplified as follows:

u2 � 2
(
ub0 + ut0

) − hbψb
α + htψ t

α − 4u0
h2c

u3 � 4
(
ub0 − ut0

) − 2
(
hbψb

α + htψ t
α

) − 4hcu1
h3c

v2 � 2
(
vb0 + vt0

) − hbψb
β + htψ t

β − 4v0

h2c

v3 �
4
(
vb0 − vt0

) − 2
(
hbψb

β + htψ t
β

)
− 4hcv1

h3c

w1 � wb
0 − wt

0

hc

w2 � 2
(
wb
0 + wt

0 − 2w0
)

h2c
(31)

Therefore, the number of problem unknowns can be reduced from twenty-one to fifteen.

2.4 Finite element solution

In this section, the finite element method is utilized to solve the problem at hand. To achieve this, a higher-order
element with nine nodes is employed, and each node has fifteen degrees of freedom. Figure 2 visually presents
this element for reference.
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Therefore, the vector of element degrees of freedom can be defined as follows:

{δ} � {{δ1}, {δ2}, {δ3}, {δ4}, {δ5}, {δ6}, {δ7}, {δ8}, {δ9}}T (32)

where {δi } is the vector of degrees of freedom of each node and is defined as:

{δi } �
{
ut0i ,ψ

t
αi , v

t
0i ,ψ

t
βi ,w

t
0i , u

b
0i ,ψ

b
αi , v

b
0i ,ψ

b
βi ,w

b
0i , u0i , u1i , v0i , v1i ,w0i

}T
(33)

Using shape functions, it is possible to relate the assumed structural displacements and rotations to nodal
displacements and rotations. Therefore:

ut0 �
[
Nut0

]
{δ}, ψ t

α � [
Nψ t

α

]{δ}, vt0 �
[
Nvt0

]
{δ}, ψ t

β �
[
Nψ t

β

]
{δ}, wt

0 �
[
Nwt

0

]
{δ}

ub0 �
[
Nub0

]
{δ}, ψb

α �
[
Nψb

α

]
{δ}, vb0 �

[
Nvb0

]
{δ}, ψb

β �
[
Nψb

β

]
{δ}, wt

0 �
[
Nwt

0

]
{δ}

u0 � [
Nu0

]{δ}, u1 � [
Nu1

]{δ}, v0 � [
Nv0

]{δ}, v1 � [
Nv1

]{δ}, w0 � [
Nw0

]{δ} (34)

In which:
[
Nut0

]
� [

N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}14
]

[
Nψ t

α

] � [
0, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}13

]
[
Nvt0

]
� [{0}2, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}5, N1, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}12

]
[
Nψ t

β

]
� [{0}3, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}11

]
[
Nwt

0

]
� [{0}4, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}10

]
[
Nub0

]
� [{0}5, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}9

]
[
Nψb

α

]
� [{0}6, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}8

]
[
Nvb0

]
� [{0}7, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}7

]
[
Nψb

β

]
� [{0}8, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}6

]
[
Nwb

0

]
� [{0}9, N1, {0}14, N2, {0}14, N1, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}5

]
[
Nu0

] � [{0}10, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}4
]

[
Nu1

] � [{0}11, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}3
]

[
Nv0

] � [{0}12, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, {0}2
]

[
Nv1

] � [{0}13, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9, 0
]

[
Nw0

] � [{0}14, N1, {0}14, N2, {0}14, N3, {0}14, N4, {0}14, N5, {0}14, N6, {0}14, N7, {0}14, N8, {0}14, N9
]

(35)

and Ni (i � 1, 2, . . . , 9) are Lagrange interpolation functions which are defined as follows:

N1(ξ , η) � 1

4
ηξ(η − 1)(ξ − 1)

N2(ξ , η) � −1

2
η
(
ξ2 − 1

)
(η − 1)

N3(ξ , η) � 1

4
ηξ(η − 1)(ξ + 1)

N4(ξ , η) � −1

2
ξ
(
η2 − 1

)
(ξ − 1)

N5(ξ , η) � (
η2 − 1

)(
ξ2 − 1

)
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N6(ξ , η) � −1

2
ξ
(
η2 − 1

)
(ξ + 1)

N7(ξ , η) � 1

4
ηξ(η + 1)(ξ − 1)

N8(ξ , η) � −1

2
η
(
ξ2 − 1

)
(η + 1)

N9(ξ , η) � 1

4
ηξ(η + 1)(ξ + 1) (36)

where ξ and η are the natural coordinates of the system and defined as follows:

ξ � 2α

ae
− 1, η � 2β

be
− 1 (37)

It should be noted that ae and be are the length and width of the assumed element. Now, in order to extract
the vibration characteristics of the structure, the principle of energy is used. The use of the energy principle
in the finite element method to calculate the dynamic and vibration characteristics of the structure is one of
the most effective and efficient methods [43]. Therefore, by substituting Eqs. (34) in Eq. (16), the kinetic and
potential energy terms are calculated as follows:

T � 1

2

{
δ̇
}T

[Me]
{
δ̇
}

U � 1

2
{δ}T [Ke]{δ} (38)

In which [Me] and [Ke] are the mass and stiffness matrices of the element, respectively. On the other hand,
using the defined element and substituting Eqs. (34) in Eq. (27), the work done by external forces can be
expressed as follows:

WF � {δ}T {Fe} (39)

In which {Fe} is the vector of elemental nodal forces. After assembling the mass and stiffness matrices and
the force vector, the equation of motion for the system under external load can be expressed as follows:

[M]
{
δ̈
}
+ [K ]{δ} � {F} (40)

In this equation, [M] and [K ] represent the total mass and stiffness matrices, and {F} represents the total
external force vector. Additionally, {δ} and {

δ̈
}
represent the displacements and accelerations of nodal points.

By solving the differential Eq. (40), the response of the system under the applied load can be calculated. It
should be mentioned that the static results of the system under the applied load can be obtained by setting the
acceleration term in Eq. (40) equal to zero; the static deflection will be employed for nondimensionalizing the
dynamic outcomes. For this purpose, the Newmark method is used. The Newmark method is an approximate
method that is based on the finite difference method. According to this method, the response of the system
under the applied load within the time interval T can be expressed as a sum of static responses of the system
at each specified time tn . Therefore, the time for solving the problem is divided into n intervals, such that:

�t � T

n
(41)

Therefore:

tn � n�t , n � 1, 2, 3, . . . , n (42)

It can be said that the solution of the system at each specific time tn+1 can be calculated by solving the
following equivalent equation:

[
K
]
n+1{δ}n+1 � {

F
}
n+1 (43)

In which:
[
K
]
n+1 � [K ]n+1 + a0[M]n+1
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{
F
}
n+1 � {F}n+1 + [M]n+1

(
a0δn+1 + a2δ̇n+1 + a3δ̈n+1

)
(44)

By calculating {δ}n+1 fromEq. (43), the velocity and acceleration can also be calculated using the following
equations:

⎧⎪⎨
⎪⎩

δ̈n+1 � a0(δn+1 − δn) − a2δ̇n − a3δ̈n

δ̇n+1 � δ̇n + a6δ̈n + a7δ̈n
(45)

In Eqs. (44) and (45), the constants a0, a2, a3, a6, and a7 are defined as follows:

a0 � 1

β�t2
, a2 � 1

β�t
, a3 � 1

2β
− 1

a6 � (1 − α)�t , a7 � α�t (46)

and α and β are constants that are determined using the selected method and the desired convergence rate.
It should be noted that in this analysis, the linear acceleration method with α � 0.33 and β � 0.5 has been
used. The algorithm for using the Newmark method is summarized as follows:

(a) Formation of overall mass and stiffness matrices
(b) Determination of initial conditions, including initial displacement and velocity, and calculation of initial

acceleration of the system
(c) Determination of the time step and parameters α and β
(d) Calculation of integration constants (Eq. (46))
(e) Calculation of the effective stiffness matrix using Eq. (44)

Operations at each time step:

(a) Calculation of the effective load at time t + �t using Eq. (44)
(b) Calculation of displacement at time t + �t using Eq. (43)
(c) Calculation of velocity and acceleration at time t + �t using Eq. (45)

3 Results and discussion

3.1 Material properties

Table 1 provides the mechanical characteristics of the face sheets and core, based on the assumption that M1
material is used for the core, and M2 material is used for the face sheets. In the following sections, a brief
four-letter symbol is used to indicate the boundary conditions of the structure. For example, the abbreviation
CFCS denotes a configuration in which the edges α � 0, β � 0, α � a, and β � b are clamped, free, clamped,
and simply supported, respectively.

Table 1 Mechanical properties for the core and the face sheets

Property Unit Material number

M1 M2

E1 GPa 0.00689 131
E2 GPa 0.00689 10.34
E3 GPa 0.00689 10.34
G12 GPa 0.00345 6.895
G23 GPa 0.00345 6.895
G13 GPa 0.00345 6.205
ν12 – 0 0.22
ν13 – 0 0.22
ν23 – 0 0.49
ρ kg/m3

97 1627
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3.2 Convergence and validation study

To evaluate the effectiveness and accuracy of both the mathematical modeling and the proposed finite element
solution, the free vibration of the system is analyzed. This analysis assumes that there are no external loads
acting upon the structure (i.e.,WF � 0). First, an investigation is carried out to determine the optimum number
of elements needed for achieving reasonable accuracy in a convergence study. Table 2 presents the first six
dimensionless natural frequencies of the case study, where ρc, Ec, ω, a, and h represent the density, Young’s
modulus of the core, the natural frequency, length, and height of the structure, respectively. The results are
calculated for a simply supported sandwich cylindrical panel with a square plane form (a/b � 1). The radius
of curvature-to-length ratio (Rc

α/a) is set to 1, the side-to-thickness ratio (a/h) is 10, and the core thickness to
total thickness ratio (hc/h) is 0.88. The lamination scheme for both the top and bottom face sheets is [0/90/0].
Additionally, the core and face sheets are assigned material properties M1 and M2, respectively.

Considering the presented results in Table 1 and taking into account both accuracy and computation cost, a
mesh density of 10×10 is chosen and applied throughout all subsequent analyses. It should be mentioned that
the reported runtime belongs to a Personal computer with processor properties: Intel (R) core (TM) i3-4170
CPU @ 3.70 GHz, and installed memory RAM: 8.00 GB.

To provide an example, a soft core sandwich plate with an unsymmetric lamination scheme
[0/90/Core/0/90] is considered, with material properties M1 and M2 designated for the core and the face
sheets, respectively. To compare the results obtained using the proposed method with existing literature,
Tables 3, 4 and 5 present the results for various a/h, hc/h f , and a/b ratios. These results are compared
against those based on exact theory [44], higher-order sandwich panel theory (HSAPT), and local–global and
finite element method [45]. As can be seen, excellent agreements have been observed.

After evaluating the accuracy of the results, to investigate the dynamic response of the system, it is assumed
that a load with a constant amplitude is moving along the central axis of the structure longitudinally with a
constant speed v (Fig. 3). Therefore, the force distribution is equal to:

f (α,β, t) � f0δ

(
α − ζ (t),β − b

2

)
(47)

Table 2 Convergence study of the first six dimensionless natural frequencies, � � ωa2
√

ρc/Ec/h, of simply supported cylin-
drical sandwich panel

m × n Natural frequencies Runtime (s)

�1 �2 �3 �4 �5 �6

4 × 4 16.4076 26.4869 31.9940 36.2110 40.4504 47.4401 2660.3
6×6 16.4107 26.2048 31.8732 35.9189 40.4328 46.3772 2685.9
8 × 8 16.4187 26.1633 31.8650 35.8796 40.1605 46.2209 2709.4
10×10 16.4246 26.1534 31.8680 35.8720 40.0891 46.1851 2800.8
12 × 12 16.4288 26.1506 31.8720 35.8709 40.0632 46.1747 3020.2
14×14 16.4320 26.1499 31.8756 35.8714 40.0519 46.1717 3198.2

Table 3 Non-dimensional fundamental natural frequency (� � ωa2
√

(ρ/E22) f /h) of five-layered antisymmetric
([0/90/Core/0/90]) sandwich square plate (M3 andM4, hc/h f � 10)

a/h Present EXACT [44] HSAPT [46] Local global [45] FEM [45]

2 0.7111 0.7141 0.7101 0.7251 0.7368
4 0.9365 0.9363 0.9312 0.9699 0.9904
10 1.8496 1.8480 1.8452 1.9418 1.9712
20 3.4815 3.4791 3.4784 3.6601 3.6836
30 5.0404 5.0371 5.0581 5.2875 5.3034
40 6.4671 6.4634 6.4595 6.7624 6.7727
50 7.7395 7.7355 7.7110 8.0634 8.0698
60 8.8419 8.8492 8.8364 9.1894 9.1929
70 9.8161 9.8118 9.7856 10.1515 10.1530
80 10.6211 10.6368 10.6267 10.9672 10.9672
90 11.3512 11.3408 11.3265 11.6561 11.6552
100 11.9598 11.9400 11.9393 12.2374 12.2358
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Table 4 Non-dimensional fundamental natural frequency (� � ωa2
√

(ρ/E22) f /h) of five-layered antisymmetric
([0/90/Core/0/90]) sandwich square plate (M3 andM4, a/h � 10)

hc/h f Present Exact [44] HSAPT [46] Local global [45] FEM [45]

4 1.9094 1.9084 1.9082 1.9405 2.0962
10 1.8496 1.8480 1.8452 1.9418 1.9712
20 2.1324 2.1307 2.1271 2.2831 2.2880
30 2.3341 2.3321 2.3276 2.5146 2.5153
40 2.4711 2.4690 2.4638 2.6694 2.6687
50 2.5681 2.5658 2.5601 2.7777 2.7765

Table 5 Non-dimensional fundamental natural frequency (� � ωb2
√

(ρ/E22) f /h) of five-layered antisymmetric
([0/90/Core/0/90]) sandwich rectangular plate (M3 andM4, a/h � 10, hc/h f � 10)

a/b Present Exact [44] HSAPT [46] Local global [45] FEM [45]

0.5 5.7372 5.7326 5.7134 6.028 6.1069
1 1.8496 1.8464 1.8452 1.9418 1.9712
1.5 1.2208 1.0900 1.0894 1.1430 1.1644
2 0.8057 0.8048 0.8039 0.8406 0.8584
2.5 0.6633 0.6627 0.6615 0.6891 0.7045
3 0.5809 0.5804 0.5789 0.6009 0.6145
5 0.4497 0.4494 0.4473 0.4585 0.4676

Fig. 3 Sandwich shell subjected to a constant moving force

where ζ (t) represents the position of the moving load at time t . It should be noted that the time interval
considered for investigating the vibrational system will be the period in which the force is present on the
structure or [0, a/v], where a is the length of the structure.

To investigate the dynamic response of the system, two types of diagrams are used. The first type of diagram
shows the variation of the dynamic magnification factor (DMF) with respect to the non-dimensional velocity
(v∗ � T f /τ ),where theDMFparameter represents the ratio of themaximumdynamic deflection at themidpoint
of the structure to its static deflection. The parameter T f represents the fundamental vibration period of the
structure and τ is the time required for the moving load to pass through the structure (τ � a/v). By plotting
the DMF diagram as a function of v∗, the critical velocity (vcr ) of the system, where the maximum deflection
occurs, can be determined. With the critical velocity, the wm diagram as a function of the non-dimensional
position x f can be drawn. In this type of diagram, wm represents the ratio of the dynamic deflection of the
midpoint of the structure to its static deflection at critical velocity, and x f represents the non-dimensional
horizontal position (vt/a) of the moving force. It should be noted that in this section, to calculate the static
response of the system, a force equal to f0 is applied at the center of the structure (α � a/2 and β � b/2).
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Fig. 4 DMF versus dimensionless velocity for a sandwich plate with a SSSS, and b CFFF boundary conditions and different
thickness ratios

3.3 Effect of length-to-thickness ratio

The first example in this section examines three different types of geometries: a sandwich plate, a cylindrical
sandwich panel, and a spherical sandwich panel. The laminating scheme used in this example is a symmetric
five-layer lamination [0/90/Core/90/0]. The structure has a square plane formwith an aspect ratio of a/b � 1.
To investigate the effect of the length-to-thickness ratio, four different ratios of a/h � 10, 20, 30, and 40 are
examined. The ratio of core-to-face thickness is set to hc/h f � 10. It is important to note that the results
in this section are calculated using two different types of boundary conditions: simply supported (SSSS) and
cantilever (CFFF). The results for the sandwich plate, cylindrical sandwich panel, and spherical sandwich
panel are presented in Figs. 4, 5 and 6.

Based on the graphs presented above, it can be inferred that regardless of the type of geometry or boundary
conditions, the DMF curve increases with non-dimensional velocity as the length-to-thickness ratio decreases
(i.e., thickness increases). This indicates that thinner structures experience higher deflection in the same load-
ing. Furthermore, the spherical geometry exhibits the highest deflection, while the flat geometry experiences
the least deflection. Moreover, a comparison of the two boundary conditions indicates that the CFFF bound-
ary condition results in more deflection than the SSSS boundary condition, which can be attributed to the
overall stiffness of the structure due to different boundary conditions. Additionally, Table 6 provides the
non-dimensional velocity (v∗) at which the maximum DMF occurs for each structure.

It can be concluded that the maximum DMF occurs at t∗ ≈ 1 for all thickness ratios with SSSS boundary
conditions. However, for the CFFF boundary conditions, the maximum DMF occurs at t∗ � 1.4. Based on
this observation, it is possible to calculate the critical velocity for each structure. Therefore, the behavior of
the midpoint of the three geometries (sandwich plate, cylindrical, and spherical sandwich panels) for both
SSSS and CFFF boundary conditions is illustrated in Figs. 7, 8 and 9. It should be mentioned that for better
comparison, dynamic deflection for all length-to-thickness ratios (a/h � 10, 20, 30, and 40) are divided to
static deflection of the midpoint of the structure with a/h � 10.
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Fig. 5 DMF plot as a function of dimensionless velocity for a cylindrical sandwich panel with a SSSS, and b CFFF boundary
conditions and various thickness ratios

Table 6 The critical dimensionless velocity for a sandwich plate, cylindrical sandwich panel, and spherical sandwich panel with
SSSS and CFFF boundary conditions

BCs Geometry a/h � 10 a/h � 20 a/h � 30 a/h � 40

SSSS Sandwich plate 0.9 0.9 1 1
Sandwich cylindrical shell 0.9 1 1 1.1
Sandwich spherical shell 0.9 1 1 0.9

CFFF Sandwich plate 1.4 1.4 1.4 1.4
Sandwich cylindrical shell 1.4 1.4 1.4 1.4
Sandwich spherical shell 1.4 1.4 1.4 1.4

To ensure amore accurate comparison, it is necessary to normalize the dynamic deflection of structureswith
varying length-to-thickness ratios (a/h � 10, 20, 30 and 40). This normalization is achieved by dividing the
dynamic deflection by the static deflection of themidpoint of the structure,with a fixed aspect ratio ofa/h � 10.
The analysis reveals that as the length-to-thickness ratio increases, the structure exhibits significantly higher
deflections for both considered boundary conditions. This observation suggests a strong correlation between
the length-to-thickness ratio and the magnitude of deflections.

3.4 Effect of in-plane aspect ratio

In this section, the focus is on investigating the effect of in-plane aspect ratio on the dynamic response of
three types of geometries, namely sandwich plate, cylindrical, and spherical sandwich panels. These structures
are considered with SSSS boundary conditions, a/h � 10, core-to-face thickness ratio hc/h f � 10, and
[0/90/core/90/0] layup. Four in-plane aspect ratios a/b � 1, 2, 3, 5 are examined for each structure to study
the impact of in-plane aspect ratio on their dynamic response. It is important to note that for cylindrical and
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Fig. 6 DMF plot as a function of dimensionless velocity for a spherical sandwich panel with a SSSS, and b CFFF boundary
conditions and various thickness ratios

Table 7 Dimensionless critical velocity for sandwich plate, cylindrical, and spherical sandwich panels with SSSS boundary
conditions

Geometry a/b � 1 a/b � 2 a/b � 3 a/b � 5

Sandwich plate 0.9 0.9 0.8 0.7
Sandwich cylindrical panel 0.9 0.8 0.7 0.7
Sandwich spherical panel 1 0.8 0.7 0.7

spherical sandwich panels, the radius-to-length ratio is assumed to be Rα/a � 5. The DMF curve for each
geometry is presented in Fig. 10 as a function of v∗.

According to the above figure, it can be observed that in all three geometries, the DMF initially increases as
the in-plane aspect ratio (a/b) increases at low velocities (vcr < 0.7), where a/b � 1 exhibits the lowest DMF,
and a/b � 5 shows the highest. However, as the velocity increases and after passing through a transition stage,
the trend completely reverses, and DMF decreases with increase in a/b ratio. Additionally, it is noteworthy
that the critical velocity decreases with increase in a/b ratio for all three geometries. Table 7 presents the
critical velocity (vcr ) for each geometry.

3.5 Effect of radius-to-length ratio

In this section, the effect of the radius-to-length ratio of the structure on its dynamic response is investigated
by considering two geometries of cylindrical and spherical sandwich panels with square plane form (a/b � 1)
and SSSS boundary conditions. The length-to-thickness ratio is set to a/h � 10, the core-to-face thickness
ratio is hc/h f � 10, and the [0/90/core/90/0] lamination scheme is used for four different radius-to-length
ratios Rα/a � 1, 2, 3, 5. The DMF curves as a function of v∗ for each geometry are presented in Fig. 11.
Additionally, Table 8 provides the critical velocity (vcr ) for each geometry. As can be seen, low dimensionless
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Fig. 7 Dynamic displacement of the structure’s center as a function of dimensionless force location for a sandwich plate with
a SSSS boundary conditions and b CFFF boundary conditions

Table 8 Dimensionless critical velocity for cylindrical, and spherical sandwich panels under SSSS boundary conditions

Geometry R/a � 1 R/a � 2 R/a � 3 R/a � 5

Sandwich cylindrical shell 0.6 0.8 0.9 0.9
Sandwich spherical shell 0.8 0.9 1 1

velocities by increasing the radius of curvature-to-length ratio decrease; however, for high velocities the trend
is completely reversed.

3.6 Effect of lamination scheme and fiber orientation angle

In this section, the effect of the lamination scheme and fiber orientation angle is investigated for three types
of geometries, including sandwich plate, cylindrical, and spherical sandwich panels. Two types of symmetric
five-layer lamination, [0/θ/core/θ/0] and unsymmetric five-layer lamination [0/θ/core/θ/0], are considered,
along with fiber orientation angles of θ � 30, 45, 60, and 90. The length-to-thickness ratio of a/h � 10,
square plane form a/b � 1, SSSS boundary conditions, core-to-face thickness ratio of hc/h f � 10, and
radius-to-length ratio of Rα/a � 5 for cylindrical and spherical sandwich panels are assumed. The results for
the sandwich plate, cylindrical, and spherical sandwich panels are presented in Figs. 12, 13 and 14, respectively.

It can be observed that in the case of the sandwich plate, as shown in Fig. 12, until reaching the critical
velocity, DMF changes are very small for four different orientations. However, after the critical velocity until
the non-dimensional velocity v∗ � 2.1, the maximum DMF is observed for θ � 90 among the considered
fiber orientations, while the minimum DMF is observed for θ � 30. Then, the trend is reversed. In the case
of the cylindrical sandwich panel, θ � 30 initially has the lowest DMF, but after v∗ � 0.8, it experiences the
lowest DMF among the other fiber orientations in both types of arrangements. Similar results can be inferred
for the spherical sandwich panel. The critical velocity for all three types of geometry and fiber orientation
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Fig. 8 Dynamic displacement of the structure’s center as a function of dimensionless force location for a cylindrical sandwich
panel with a SSSS boundary conditions and b CFFF boundary conditions

Table 9 Dimensionless critical velocity for sandwich plate, cylindrical and spherical sandwich panels in the case of various
lamination scheme and different fiber orientation angle

Lamination scheme Geometry θ

30
◦

45
◦

60
◦

90
◦

[0/θ/core/θ/0] Sandwich plate 0.9 0.9 0.9 0.9
Sandwich cylindrical shell 0.8 0.7 0.7 0.6
Sandwich spherical shell 0.6 0.6 0.6 0.8

[0/θ/core/0/θ ] Sandwich plate 0.9 0.9 0.9 0.9
Sandwich cylindrical shell 0.8 0.7 0.7 0.7
Sandwich spherical shell 0.6 0.6 0.6 0.8

angles is given in Table 9. As can be seen, the sandwich plate has the highest values for the dimensionless
critical velocity and the sandwich spherical panel has the lowest among considered geometries.

3.7 Effect of boundary conditions

In this section, the effect of boundary conditions is investigated. Similar to previous sections, three types of
geometry including, sandwich plate, cylindrical and spherical sandwich panels are considered. it is assumed
that structures have square plane form, the length-to-thickness ratio is a/h � 10, and the lamination scheme
is symmetric with five layers [0/90/core/90/0]. The ratio of core-to-face thickness is hc/h f � 10, and for
cylindrical and spherical sandwich panels, the radius-to-length ratio is Rα/a � 5. The critical velocity is
presented separately for each of the three structures and seven different boundary conditions in Table 10.
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Fig. 9 Dynamic displacement of the structure’s center as a function of dimensionless force location for a spherical sandwich
panel with a SSSS boundary conditions and b CFFF boundary conditions

Table 10 Effect of boundary conditions on the dimensionless critical velocity of sandwich structures

Geometry BSs

SSSS CCCC CCCF CFCF CFCS SFSC SSSF

Sandwich plate 0.9 0.8 0.9 0.8 0.8 0.9 0.9
Sandwich cylindrical shell 0.9 0.8 0.9 0.9 0.9 0.8 0.8
Sandwich spherical shell 1 0.8 1 1 1 0.8 0.8

4 Conclusions

This paper investigated the forced vibration characteristics of soft core sandwich panels when subjected to a
moving forcewith constant amplitude. The compressibility of the core is effectivelymodeled using the extended
higher-order sandwich panel theory (EHSAPT). The face sheets are represented using the first-order shear
deformation theory (FSDT), while the core’s displacement field employs a third-order polynomial function
for in-plane components and a second-order function for the transverse displacement component. Numerical
modeling of the structure is performed using a higher-order nine-node quadrilateral element, allowing for
fifteen degrees of freedom per node. The dynamic response of the system is computed using the Newmark
method. Validation is achieved by comparing these results with existing literature. The investigation delves into
the impact of various parameters, such as the in-plane aspect ratio, side-to-thickness ratio, boundary conditions,
lamination scheme, and fiber orientation angle, on the dynamic response of the structure. Additionally, the
critical velocity is determined for each case study. The findings highlight crucial insights for the considered
geometry and material properties:

• Regardless of the geometry or boundary conditions, the DMF curve increases when the length-to-thickness
ratio decreases (i.e., thickness increases). This suggests that thinner structures experience higher deflections.
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Fig. 10 Variation of DMF with dimensionless velocity for various aspect ratios for a sandwich panel, b cylindrical sandwich
panel, and c spherical sandwich panel

• Among the different geometries investigated, the spherical geometry exhibits the highest DMF, while the
flat geometry experiences the least DMF.

• A comparison of two different boundary conditions reveals that the CFFF (Clamped-Free-Free-Free) bound-
ary condition results in more DMF compared to the SSSS (Simply supported) boundary condition. This can
be attributed to the overall stiffness of the structure, which is influenced by the boundary conditions.

• In all three geometries, the DMF initially increases as the in-plane aspect ratio (a/b) increases at low
velocities (vcr < 0.7). The geometry with a ratio of a/b � 1 exhibits the lowest DMF, while a ratio of
a/b � 5 shows the highest. However, as the velocity increases and after passing through a transition stage,
the trend completely reverses, and the DMF decreases with increase in a/b ratio.
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Fig. 11 Variation of DMF versus dimensionless velocity for various radius-to-length ratio for a cylindrical sandwich panel, and
b spherical sandwich panel

Fig. 12 The DMF plot versus non-dimensional velocity for the sandwich plate, a the non-symmetric lamination and b the
symmetric lamination



Dynamic response of open doubly curved sandwich shells 2255

Fig. 13 The DMF versus non-dimensional velocity for the cylindrical sandwich panel, a the non-symmetric lamination and b the
symmetric lamination

Fig. 14 The DMF versus non-dimensional velocity for the spherical sandwich panel, a the non-symmetric lamination and b the
symmetric lamination



2256 S. Sadripour et al.

• Additionally, it is worth noting that the critical velocity (vcr ) decreases with increase in in-plane aspect
ratio (a/b) for all three geometries. This implies that as the a/b ratio increases, the structure becomes more
sensitive to higher velocities.

• The relationship between the radius of curvature-to-length ratio and the dimensionless velocities is observed
to be inversely proportional. In other words, for low dimensionless velocities, an increase in the radius of
curvature-to-length ratio leads to a decrease in uplift force. However, for high velocities, this trend is
completely reversed.
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