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Abstract The thorax is the central component of the insect flight drivetrain, making it essential to understand
how thoracic muscles influence insect flight for flapping wing microair vehicle design. This paper presents
a theoretical model that takes into account the influence of thoracic muscles on flapping wing motion with
reference to real insects. The thoracic muscle effect is simulated by the chordwise torsional spring, whose
stiffness is derived from a comparison test with the results of real insect experiments. The elastic deformation
of the flexible flapping wing is modeled by the von Kármán nonlinear plate theory. The predictive quasi-
steady aerodynamic model based on the blade element theory can estimate the aerodynamic force, and the
modeling of the spanwise bending and twisting is donewith quadratic polynomials. The equations ofmotion are
solved using the Newmark-Raphson method. Results suggest that including the influence of thoracic muscles
decreases cycle-averaged lift and power, but enhances the efficiency of lift production by 23%. Moreover, it
also postpones pitching motion and reduces its amplitude, though the movement trends of the flapping motion
remain approximately unchanged regardless of the inclusion of the thoracic muscle effect.

1 Introduction

Insects possess exceptional aerial capabilities despite their small size, making them a natural source of inspi-
ration for the design of flapping wing microair vehicles (FWMAVs). The military and civilian potential of
FWMAVs for tasks such as intelligence gathering, fixed-point patrolling and disaster relief has attracted con-
siderable research interest. In particular, insect-based hovering FWMAVs offer several advantages such as low
cost, low noise, high stealth and flexibility [1–5].

The motion of insect wings is quite complicated [6] and influenced by numerous parameters, including
pitch amplitude, deviation, stroke, flapping frequency, etc. [7, 8]. Most theoretical and experimental studies
[7, 9–17] have focused on rigid wings where the aeroelastic coupling of solid and fluid was ignored. The
experimental study conducted by Sane and Dickinson [7] using a fruitfly-like rigid flapping wing planform at
Reynolds number of about 100 revealed that lift was maximum when the pitch amplitudes and stroke were 45z

and 180z, respectively. Bhat et al. [18] proposed that the flapping motion profile influenced the overall change
in the lift coefficient of the rigid flapping wing, while the pitching motion profile only affected the lift at stroke
reversal. The above researches only focus on the influence of motion parameters on rigid flapping wings; it is
important to note that these results may not be generalizable to flexible flapping wings.
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The structural deformation can significantly change the flow behavior around the wing and consequently
have an essential effect on its aerodynamic performance [19–22]. Nakata et al. [23] conducted an integrated
study on the aerodynamics of a FWMAV by combining wind tunnel experiments and in-house computational
fluid dynamic approach. They found that, compared with a rigid wing, the clap and fling of a flexible wing can
adjust the feathering angle near thewing tip at stroke reversal so as to avoid someunfavorable phase delay during
wing rotation. Kim et al. [24] proposed a coupling method to analyze the fluid–structural interaction (FSI) of
a flexible flapping wing. They revealed that the passive or active deformation of the flexible flapping wing
contributed to generate appropriate aerodynamic performances according to the various flight modes. Yin and
Luo [25] investigatedwing inertia on aerodynamic performance by simulating the FSI of a flappingwing during
hovering flight in a 2D numerical study. They found that both inertial-induced and flow-induced deformations
can result in lift enhancement, and the latter can also lead to higher efficiency. The combined influence of
aspect ratio (AR), deflection and pitch angle on flexible flapping wing aerodynamics during hovering was
investigated experimentally by Akoto et al. [26]. Again, the study revealed that as the AR increased, the
flexible wings mostly outperformed the rigid ones in aerodynamic performance. A theoretical model was
proposed by Chen et al. [27] to quickly estimate the passive deformation and aerodynamic performance of
flexible flapping wings. They found that the flexibility of insect wings and model wings in FWMAVs was
crucial to guarantee an economic flight. Wang et al. [28] recently investigated highly simplified bio-inspired
models (either mathematical or mechanical) in an effort to elucidate the flow physics associated with FSI.
A unanimous conclusion was obtained that some degree of flexibility (both chordwise and spanwise) can be
beneficial for improving propulsive performance (in terms of thrust, cruising speed and efficiency). Reade and
Jankauski [29] developed a simplified 2D model for a flapping wing, by employing unsteady vortex lattice
method and the assumed mode method to model the fluid and structural dynamics, respectively. They found
that for hovering flight, the optimized flexible wing produced 20% more lift and required 15% less power
compared to a rigid wing. Zhao et al. [30] developed four different airfoils to study how camber influences
aerodynamic forces. They found that certain camber of airfoil could improve the aerodynamic characteristics
of flapping wing and the flapping wing with a 20-mm camber was optimal.

Insect wings do not contain any muscle [31] and are actuated and controlled by insect thoracic muscles. As
these muscles contract, they deform the thorax, which indirectly causes the wings of insects to flap [32, 33].
Jankauski [34] confirmed that the thorax behaved as a nonlinear hardening spring via static force–displacement
testing. Casey et al.[35] used a tethered flight experiment to quantify the thorax deformation and the aero-
dynamic/inertial forces operating on the thorax generated by the flapping wing, and the results demonstrated
that thoracic muscle elasticity contributed significantly to the wing motion. Recent studies have imagined
the thorax as an elastically distributed system [36], and mathematical models have shown the significance of
elastic components in flight energetics [37]. Based on the actuation inside the thorax of insects, the actuation
muscles are further classified into two categories: synchronous flight muscle and asynchronous flight muscle
[38, 39]. Actuation by synchronous flight muscles is synchronized with the neuro-controlled signals. These
muscles can control each wing directly and cause direct flight [40], whereas actuation by asynchronous flight
muscles is not synchronized with the neuro-controlled signals. These muscles expand and contract the thorax
to actuate the wing. This indirect flight actuation is the simplest technique for flapping wings among all the
flyers, which are available in nature [33].

Despite the potential importance of thoracic muscle effect on flexible flapping wing aerodynamic perfor-
mance, limited research has been conducted on this topic. Thus, we aim to evaluate the effect of thoracic
muscles on passive deformations and aerodynamic performance in a hovering flexible flapping wing. This
research is focused on the indirect flight actuation. We simplify the insect’s asynchronous thoracic muscles
as torsional spring attached to the base of the wings. The twisting and untwisting of the torsional spring rep-
resent the contraction and relaxation of the thoracic muscles, respectively, and also the energy storage and
release during wing movement, respectively. The intention for simplifying insect thorax muscles into torsional
springs is rooted in the desire to capture the essential aspects of the wing motion while minimizing complex-
ity. Another intention is to help optimize the design of FWMAVs. Our research shows that adding torsional
springs to FWMAVs can enhance the efficiency of lift production. Section 2 presents a flexible flapping wing
model, containing the structural model, the quasi-steady (QS) aerodynamic model and the motion equations
derivation. The proposed model is validated in Sect. 3, and a benchmark case analysis is followed in Sect. 4.1.
The effect of thoracic muscle is discussed in details in Sect. 4.2. Finally, Sect. 5 presents the conclusions.
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2 FSI flapping wing model

2.1 Morphology and kinematics

Figure 1 shows the morphology and kinematics of an insect flapping wing. The isotropic flexible rectangular
plate is a simplification of the flexible flapping wing with elastic modulus E Poisson’s ratio ν, thickness h and
density ρw. c andR correspond to the flapping wing’s mean chord length and wingspan, respectively (along the
span, c is constant). The aspect ratio is defined as AR � R/c. The distance between the flapping rotation center
and the wing root is r0. The thorax is considered as an elastic system consisting of two parts: a rigid body,
representing the flight muscles that provides active drive, and a chordwise torsional spring, which simulates
the influence of thoracic muscle deformation [35, 36, 41]. As shown in Fig. 1b, the rigid body with angular
velocity ϕ̇ drives the wing flapping by the chordwise torsional spring with stiffness kϕ , located at the wing
root. The leading edge of the wing is where the pitching axis is located. A spanwise wing-root torsional spring
of stiffness kα (in Fig. 1c, along the pitching axis) produces the pitching motion of the wing (i.e., the passive
rotation). The two torsional springs’ neutral positions are situated with the plate exactly perpendicular to the
plane of stroke.

The flexible flappingwing’s kinematics in a hovering state are broken down into fourmotions: reciprocating
rotating motion relative to the vertical axis, pitching motion about the pitching axis, as well as elastic bending
and twisting across its span. Since the deviation motion from the stroke plane in hovering can be considered
negligible, it is not included in this study [42, 43]. The wing’s kinematics and deformation are proposed to be
described, respectively, by four rigid-body rotating frames as well as another two elastic frames. The flapping
angle (ϕw) is obtained from revolving the inertial frame xiyizi around yi axis, resulting in the flapping frame
xϕyϕzϕ (Fig. 1b). Figure 1c illustrates that through rotating the flapping frame xϕyϕzϕ further about the xϕ

axis, the pitching frame xαyαzα and the corresponding pitching angle α are determined. Since the root of the
wing is not connected to the common rotation center of the inertial, flapping and pitching frames, a co-rotating
frame (xcyczc) is established by relocating the pitching frame to the wing root (Fig. 1d and e). Our definition
of rotation matrices yields the following [44],

Rϕ �
⎡
⎣

cosϕw 0 sin ϕw
0 1 0

− sin ϕw 0 cosϕw

⎤
⎦ and Rα �

⎡
⎣
1 0 0
0 cosα − sin α
0 sin α cosα

⎤
⎦ (1)

The elastic frames (xηyηzη and xζ yζ zζ ) are attached to the wing’skth strip, whose twisting and bending
along the span are approximated as a further rotation about the respective axes (Fig. 1f and g). r i � [xi , yi , zi ]T

and rc � [xc, yc, zc]T , respectively, can be used to describe the position vector for a generic point P (xc0,
yc0, 0) placed in the inertial and co-rotating frames. Additionally, rc can be divided into two parts, rela �
[uc, vc, wc]T and r0c � [xc0, yc0, 0]T , which stand by the elastic displacement and the position vector for P
without deformation, respectively. The wing strips are supposed to remain straight and unstretched after elastic
deformation, as shown in Fig. 1f and g, but their relative positions alter. Whereas no chordwise stretching is
involved, the spanwise stretching along the span increases progressively. Then, uc, vc and wc can be expressed
by

rela �

⎡
⎢⎢⎢⎣

uc

vc

wc

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

(
umax
c xc0/R

)
cos ζ + yc0 sin η sin ζ

yc0(cos η − 1)
(
umax
c xc0/R

)
sin ζ − yc0 sin η cos ζ

⎤
⎥⎥⎥⎦ (2)

Here, umaxc represents the maximal rootward displacement at the wingtip [45]; ζ and η are the local bending
angle and twisting angle, respectively.

The flexible flapping wing’s angular velocity and acceleration can be estimated by

ωc �
⎡
⎣

ωxc
ωyc
ωzc

⎤
⎦ � (

RϕRαRηRζ

)T
⎡
⎣

0
ϕ̇w
0

⎤
⎦ + RT

ζ

⎡
⎣

η̇ + α̇
0
0

⎤
⎦ +

⎡
⎣
0
ζ̇
0

⎤
⎦ (3)

and

αc �
⎡
⎣

αxc
αyc
αzc

⎤
⎦ � (

RϕRαRηRζ

)T
⎡
⎣

0
ϕ̈w
0

⎤
⎦ + RT

ζ

⎡
⎣

η̈ + α̈
0
0

⎤
⎦ +

⎡
⎣
0
ζ̈
0

⎤
⎦ (4)
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Fig. 1 Schematics of kinematics and morphology of a flexible flapping wing: a real insect, b flapping frame, c pitching frame,
d co-rotating frame and twisting along the span, e bending along the span, f sectional view of the local twisting angle η at the
kth strip and g axonometric plot of the local bending angle ς at the kth strip

Here, Rζ is the rotation matrices caused by the local bending angle in the co-rotating frame, while Rη is
induced by the local twisting angle.

The flexible flapping wing’s translational velocity and acceleration of the can be calculated by

vc �
⎡
⎣

vxc
vyc
vzc

⎤
⎦ � ωc × r (5)

and

ac �
⎡
⎣
axc
ayc
azc

⎤
⎦ � αc × rc + ωc × vc (6)
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Polynomial functions define the spanwise distributions of η and ζ , i.e., [44],

η(xc) � a1xc0+a2x
2
c00 ≤ xc0 ≤ R (7)

and

ζ (xc) � b1xc0+b2x
2
c00 ≤ xc0 ≤ R (8)

The twisting and bending angles at xc0 � 0.5R and R determine the coefficients ai and bi (i � 1,2) in Eqs.
(7), (8). qela1, i and q

ela
2, i (i � 1, 2) represent the correspondent twisting and bending angles, respectively.

2.2 Unsteady aerodynamic force modeling

The improved QSmodel is employed to calculate the unsteady aerodynamic force of the flexible flapping wing
[46], with consideration given to both the coupling effect of rotational and translationmotion. The aerodynamic
forces in the QS model are presumed to be related only to the transient kinematic performance of the flexible
flapping wing, namely, accelerations, velocities and attack angle, while disregarding the flow history effect.
Due to the fact that the kinematic performance of a general point on the flexible flapping wing is affected by
the local radius, the blade element method allows for the division of the flexible flapping wing into multiple
chordwise strips, where the interval dx is taken to be infinitesimal. The flexible wing’s chordwise strips all
remain flat, and the force element (dFaero) is presumed perpendicular to the local strip. The dFaero can be
expressed as

dFaero � (
F tran
n + F rot

n + Fcoup
n + Fam

n

)
endx (9)

where the dFaero is divided into four components based on theQSmodel, knownas, Fcoup
n , F rot

n , Fam
n and F tran

n .
They stand by the translation-rotation coupling, rotation (about the pitching axis), added-mass effect and
translation components, respectively. Wang et al. [46] provide various detailed components derivations, and
the following is a summary,

F tran
n � −sgn(vzc)

1

2
ρ f

(
v2yc + v2zc

)
Ctranc1 (10)

F rot
n � sgn(ωxc)

∫ 0

−c1
sgn(yc)

1

2
ρ f ω

2
xc y

2
cCrotdyc (11)

Fcoup
n � −3π

4
ρ f c

2
1ωxcvyc − π

4
ρ f c

2
1ωxcvyc � −πρ f c

2
1ωxcvyc (12)

Fam
n � −π

4
ρ f c

2
1azc − π

8
ρ f c

3
1axc (13)

Here,Ctran (Ctrans � 2π AR sin αe(2+
√
AR2 + 4)−1 ) indicates the coefficient of translational force, while

Crot is the coefficient of rotational force. Crot equals Ctran when the strip’s effective attack angle αe is π /2.
Moreover, when αe is less than π/2, only can the translation-rotation coupling effect be considered. In Eqs.
(10)–(13), the symbol c1 represents a local strip’s chord length (even though c1 is equal to the mean value c
because of its rectangular shape). According to Eqs. (10)–(13), the four aerodynamic force components are
estimated nonlinearly with respect to the wing kinematics. Furthermore, the pressure centers d̃∗

cp of these force
components of each strip are expressed by Eqs. (14)–(17), where the superscript “*” denotes different force
components.

d̃ transcp � |αe|
/

π (14)

d̃rotcp � 3
/
4 (15)

d̃coupcp � 1

4
and

3

4
(16)

d̃amcp � 1

2
and

9

16
(17)
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2.3 Motion equations and kinematic constraints

The generalized coordinates are used to describe the hovering flexible flapping wing’s kinematics,

q �
[ [

qrot
]T [

qela1
]T [

qela2
]T ]T

(18)

in which qrot � [
ϕ ϕw α

]T,
[
qela1 � qela1, 1, q

ela
1, 2, u

max
c

]T
and qela2 �

[
qela2, 1, q

ela
2, 2

]T
.

The motion equation of the flexible flapping wing is carried out by Lagrange’s equation,

d

dt

(
∂Ek

∂q̇

)
− ∂Ek

∂q
+

∂EP

∂q
� Q (19)

where Ek and Ep stand by the kinetic and potential energy, respectively. Aerodynamic loads and driving torque
are included in the generalized external forces Q.

Ek can be derived by

Ek � 1

2

¨
hρwṙTi ṙids +

1

2
mrl

2ϕ̇2 � 1

2
q̇TMwq̇ +

1

2
mrl

2ϕ̇2 (20)

Mw � 1

2

¨
ρwhLTLds (21)

and

L � ∂ri
∂qi

(22)

in which Mw is the flexible flapping wing’s mass matrix, mr respects the muscle mass driving the insect
flapping, and l denotes the vertical distance between the rigid body and the flexible flapping wing’s leading
edge.

The potential energy Ep is broken down into contributions from its wing-root torsion (because of the
torsional springs), bending and twisting of the flexible flapping wing. Hence, EP can be given by

EP � E rot
P + Eela

P (23)

According to the linear elastic assumption, E rot
P can be formulated as,

E rot
P � 1

2

[
kαα2+kϕ(ϕw − ϕ)2

]
(24)

Eela
P is derived as follows,

Eela
P � 1

2

˚
εTC"dV (25)

Based on the von Kármán nonlinear plate theory [35], the strain ε is

ε �

⎡
⎢⎢⎢⎣

εx

εy

γxy

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

∂uc
∂xc

+ 1
2

(
∂wc
∂xc

)2 − zc
∂2wc
∂x2c

∂vc
∂yc

+ 1
2

(
∂wc
∂yc

)2 − zc
∂2wc
∂y2c

∂vc
∂xc

+ ∂uc
∂yc

+ ∂wc
∂xc

∂wc
∂yc

− 2zc
∂2wc

∂xc∂yc

⎤
⎥⎥⎥⎦ (26)

and the constitutive matrix C can be presented by

C � E

1 − ν2

⎡
⎣
1 ν 0
ν 1 0
0 0 (1 − ν)

/
2

⎤
⎦ (27)

The generalized Coriolis and centrifugal forces (QV) as well as the elastic force (Qela) are calculated by

QV � Ṁwq̇ −
[

∂

∂q

(
1

2
q̇TMwq̇

)]T
+
[
mrl2ϕ̇ 0 · · · 0 ]T8×1 (28)
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Qela �∂Ep

∂q
�

[
−kϕ(ϕw − ϕ) kϕ(ϕw − ϕ) kαα

∂Eelap

∂qela1

∂Eelap

∂qela2

∂Eelap

∂qela3

]T

�[−kϕ(ϕw − ϕ) Q̃ela
]T

(29)

To achieve the prescribed flappingmotion,Q in Eq. (19) also comprises the driving torque and aerodynamic
components, namely, Qϕ and Qaero. Qaero can be broken into four subsections as

Qaero �
∫ R

0

⎧⎨
⎩F tran

n

[
∂rtrani,cp

∂q

]T

+ F rot
n

[
∂rroti,cp

∂q

]T

+ Fcoup
n

[
∂rcoupi,cp

∂q

]T

+Fam
n

[
∂rami,cp
∂q

]T
⎫⎬
⎭
(
RϕRαRηRζ

)
endxc (30)

Here, rtrani,cp , rroti,cp, rcoupi,cp and rami,cp identify the pressure centers of the local strip (in the inertial frame), as
determined by

r∗
i,cp � RϕRαRηRξ

[
xc −c1d̃∗

cp 0
]T

(31)

in which the superscript “*” denotes various force components. On the basis of Sect. 2.2, F tran
n , F rot

n and Fcoup
n

are inextricably linked to the generalized velocities, while Fam
n is affected by the generalized accelerations.

Thus, through removing components of acceleration-related in Qaero

Qaero � Q̃aero − Mamq̈ (32)

where Q̃aerorepresents the aerodynamic loads with respect to the generalized velocity, and the effect of added-
mass is responsible for the mass matrix Mam.Therefore, Eq. (14) can be rewritten as

Mq̈ � −Qela +
[
Qϕ 01×8

]T + Q̃aero − QV (33)

whereM is the sum of Mw and Mam.
Actuators can drive and direct the rigid body’s flapping motion in this model. Hence, Eq. (33) may be

kinematically bound through ϕ, and the constraint is enforced by applying an external driving torque.[
M1×1 M1×8
M8×1 M8×8

][
ϕ̈
q̈i

]
� −

[−kϕ(ϕ − ϕw)

Q̃ela

]
+

[
Qϕ

01×8

]
+

[
Q̃aero

ϕ

Q̃aero
i

]
−

[
QV

ϕ

QV
i

]
(34)

The unknown generalized accelerationsRqiand external driving torque Qϕ are approximated by

M8×8q̈i � −Q̃ela + Q̃aero
i − QV

i − M8×1ϕ̈ (35)

Qϕ �
(
M1×1 − M1×8M

−1
8×8M8×1

)
ϕ̈ − M1×8M

−1
8×8Q

V
i + QV

ϕ︸ ︷︷ ︸
inertial

+M1×8M
−1
8×8Q̃

aero
i − Q̃aero

ϕ︸ ︷︷ ︸
aerodynamic

−M1×8M
−1
8×8Qela+kϕ(ϕ − ϕw)︸ ︷︷ ︸

elastic

(36)

Takingβ � 1/2 and γ � 1/4, theNewmark-Raphsonmethod is utilized to solve Eqs. (35)–(36). A sensitivity
analysis shows that the wing is discretized along the span using a total of 50 strips,and a single flapping cycle
can be divided into 400-time steps. The power consumption P and transient lift L can be estimated using the
generalized coordinate solution

L �
∫ r0+R

r0
eTyi

(
RϕRαRηRζ

)
dFaero (37)

P � Qϕϕ̇ (38)

The efficiency of lift production PL is

PL � L

P
(39)

where L and P represent the mean values of a flapping cycle L and P, respectively.
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Table 1 Parameters for the hindwing of rhinoceros beetles [47]

Density (kg m−3) 60
Span (cm) 5
Chord (cm) 1.5
Thickness (cm) 0.03
Flapping amplitude (°) 91.5
Flapping frequency (Hz) 40.5

Fig. 2 Model validation by comparing with a beetle’s hindwing: a angle of flapping, angle of pitching at b 25% wingspan, c 50%
wingspan and d 75% wingspan

3 Validation

In order to verify the accuracy of the current model, we compared the digitized data obtained from the
photographs of the hindwing of the rhinoceros beetle (Allomyrina dichotoma) with our predictions of flapping,
pitching and twisting angles. The hindwing of rhinoceros beetles has been measured by Phan and Park [47] for
flapping kinematics, wing geometry and mass distribution as shown in Table 1. However, their study did not
report the elastic stiffness (E) and the root stiffness (kα andkϕ) of the hindwing. According to the scaling rules
[48], E is set at 30 MPa, kα is calculated to be 5×10–4 N·m·rad−1 [49], andkϕ is assigned a value of 3×10–4

N·m·rad−1 by comparative verification (Fig. 2a). Moreover, the hindwing can be reinforced via veins, resulting
in complex distributions of mass and stiffness, whereas the present model uses a uniform assumption.

The real rigid-body flapping motion (ϕ) of these beetles is fitted as a smoothed triangular waveform ϕ

(t) � ϕm arcsin[K sin(2π f t)]/ arcsin(K ) with K � 0.9 [50]. In our model, ϕ is equal to ϕw by setting kϕ

� 0, which means the influence of thorax muscles is eliminated. As shown in Fig. 2a, the fitted function
is in good agreement with the real rigid-body flapping motion, which indicates that the adopted rigid-body
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Table 2 Parameters for a flexible flapping wing [49, 51]

ρw (kg·m−3) kα (N·m·rad−1) E (MPa) ν mr (g) kϕ (N·m·rad−1)

Material parameters
50 5×10–4 1 0.3 0 3×10–4

R (cm) c (cm) h (cm) r0 (cm) l (cm) /

Geometry parameters
6 2 0.1 0 0 /

flapping motion model is feasible. On this basis, we change the torsional stiffness kϕ and calculated the
optimal torsional stiffness of the model considering the effect of thorax muscle in subsequent research. The
FSI model incorporates the conformed flapping angle to forecast the pitching motion at 25%, 50% and 75%
of the wingspan, which includes the wing-root pitching in addition to the local twisting motion, as shown in
Fig. 2b–d. The model shows good agreement with previous experiments in terms of local pitch angle (α + η);
however, the pitching angle deviation at 75% of the wingspan is more pronounced compared to the wing root.
This difference is most likely due to the rectangular platform assumption, which results in an inaccuracy in
the local aerodynamic force induced by the beetle wing’s local chord length drop about the wingtip. Though
the QS model can estimate a wing strip’s aerodynamic loads with any chord length, in this study, a rectangular
wing platform is utilized and disregards the change in chord lengths near the wingtip. It is a simplification for
the FSI model while preserving most of the performance within the 75% wingspan. Nevertheless, it shows
that our model is feasible and thus can be a strong tool for quickly evaluating the aeroelastic characteristics of
both flexible flapping wing models and real insect wings.

4 Results and discussion

4.1 A benchmark case

As a benchmark case, an analysis of the flexible flapping wing has been conducted using the kinematics and
shape of a real hawkmoth’s wing (see Table 2 for details) [49, 51]. Although in actual situations, the rigid-body
flapping motion (ϕ) of hawkmoth does not exactly follow the simple harmonic motion [52], the trend of the
rigid-body flapping motion (ϕ) is consistent with the trend of simple harmonic motion [6]. Therefore, the
trigonometric function is reasonable and convenient to model and analyze the flapping motion of insects [6,
53].

In this study, the trigonometric function ϕ̇(t) � 2π f ϕm cos(2π f t) [49] is adopted to describe the rigid-body
flapping motion (ϕ). The flapping frequency f � 25 Hz and amplitude ϕm � 60° are close to the measured
values of hawkmoth wings [49, 52]. Figure 3 shows a comparison of the flapping motion for the flexible
flapping wing between considering thoracic muscle effect (considering TM) and ignoring thoracic muscle
effect (ignoring TM). It is seen that considering TM does not change the tendency of the flapping motion, but
it changes the phase of the flapping motion. Under the effect of thoracic muscle, the flapping motion slightly
lags.

Figure 4 displays a comparison between the wingtip and wing-root passive deformation. When ignoring
TM, the pitching angle α peaks in advance. Considering TM can delay the pitching motion and reduce its
magnitude (Fig. 4a). It can be seen from Fig. 4b that considering TM reduces the amplitude of the spanwise
twist. For both cases, the peak of bending angle along the span occurs near the stroke reversal, as well as the
maximum angle of the wingtip bending for considering TM is roughly 2°, which is lower than that ignoring
TM (Fig. 4c). In other words, considering TM can inhibit the production of spanwise bending of the flexible
flapping wing.

In Fig. 5, the transient lift for the two cases is compared, where t̃ � 0.25–0.75 represents the downstroke
(gray boxes). Considering TM, the lift peaks immediately after each mid-stroke. In contrast, the peak for
ignoring TM appears before the mid-stroke with a larger amplitude. In other words, considering TM causes
a lag in the lift peak and reduces its magnitude. This is because considering TM inhibits the deformation
production of the flexible flapping wing, resulting in a reduction in lift (Fig. 4b and c). Hence, considering TM
can decrease the cycle-averaged lift (0.027N when ignoring TM and 0.022N when considering TM).
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Fig. 3 Flapping angle in the benchmark case. Gray boxes delineate the downstrokes. Consider TM (considering the influence of
thoracic muscles); ignore TM (ignoring the influence of thoracic muscle)

Figure 6 further shows the decomposition of the transient lift for both cases. For both cases, the rotational
lift and added-mass lift have similar trends and amplitudes, indicating that the average lift reduction is mainly
caused via the translation-rotation coupling effect and translational lift. Particularly, there is a substantial
increase in the negative lift resulting from the translation-rotation coupling effect after the stroke reversal
when considering TM (Fig. 6c). This is comparable to the negative lift formation observed in a rigid flapping
wing that is undergoing a delayed wing rotation [9, 54]. As shown in Fig. 4a, though the pitching angle
nearly approaches the neutral position during each stroke reversal, the pitching angular velocity exhibits an
asymmetric trend, and the decrease in transient lift is led by a rapid increase in pitching angle at the beginning
of the following stroke. Therefore, as shown in Fig. 5, it results in a negative lift generation.

Figure 7 depicts a comparison the benchmark case’s transient power. Generally, for both cases, the transient
power consumption is almost the same within a flapping cycle, but considering TM results in lower cycle-
averaged power (0.078W for considering TM and 0.09W for ignoring TM). The flexible flapping wing slightly
reduces the total power consumption because of the reduction in aerodynamic forces when considering TM
(Fig. 7a). As shown in Fig. 7b, considering TMhas a slight effect on the inertial power.Moreover, in both cases,
the peak of the elastic power is observed following each stroke reversal indicates that the stored energy in the
torsional springs andwing structure is employed to balance the aerodynamic power (Fig. 7c and d). Considering
TM can enhance the elastic energy contribution to overcome the aerodynamic drag. Thus, assuming a perfect
recovery system, the total power consumption can be decreased by a flexible flapping wing considering TM.

4.2 Influences of root stiffness design

The root stiffness effect on the flexible wing considering TM is discussed in this section. As can be seen in
Fig. 8a, a larger kα (kα � 7×10–4 N·m·rad−1 and kϕ � 0 N·m·rad−1) creates a strong average lift (L) with
a value of about 0.026N. When the spanwise torsional spring stiffness is extremely low, the lift generation is
significantly decreased and even produces negative lift. In addition, as shown by the lines (L � 0.02 N) in
Fig. 8a, the coupling effect of kα and kϕ needs to be maintained for achieving a given lift. It can be seen from
Fig. 8b, the maximum power consumption (P) appears at kα � 1×10–4 N·m·rad−1 and kϕ � 0 N·m·rad−1.
Considering TM can significantly reduce the power consumption of flapping wings, while the stiffness change
of chordwise torsional spring has little influence on the power consumption. In addition, as shown in Fig. 8c, the
peak of efficiency (PL) occurs at a lower value of lift production. It shows a balance between lift production and
efficiency in the root stiffness design when considering TM. As Fig. 8a illustrates those various combinations
of kα and kϕ produce similar lift generation, the influences of kϕ and kα on the amplitudes of pitching and
flapping at the wing root and wingtip are explored in Fig. 8d–g. For cases with a comparable lift formation, the
amplitudes are different. Moreover, it can be concluded that kα barely changes the flapping amplitude (Fig. 8f).

In order to clarify the role of thoracic muscles in the effectiveness, Fig. 9 compares the transient power and
lift in the high PL status. As shown in Table 3, the high PL considering TM is 23% higher than that ignoring
TM. The high PL status ignoring TM is achieved at kα � 5×10–4 N·m·rad−1 and kϕ � 0N·m·rad−1 [44], while
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Fig. 4 The benchmark case’s passive pitching angle and wing deformation: angle of a wing-root pitching, b wingtip twisting,
c wingtip bending
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Fig. 5 Transient lift in the benchmark case

Fig. 6 The benchmark case’s transient lift decompositions: a Ltran, translational lift, b Lrot, rotational lift, c Lcoup, translation-
rotational coupling lift and d Lam, added-mass lift
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Fig. 7 The benchmark case’s transient power: a P, total transient power, b Paero, aerodynamic power, c Piner, inertial power and
d Pelas, elastic power

Table 3 Aerodynamic parameters of the high PL state

Consider TM Ignore TM Difference

L (N) 0.023 0.027 −15%
P (W) 0.062 0.090 −31%
PL (N·W−1) 0.37 0.3 23%

considering TM, they are kα � 7×10–4 N·m·rad−1 and kϕ � 1×10–4 N·m·rad−1. Generally, considering TM
can reduce the lift generation and power consumption (Fig. 9a and b). The improvement in efficiency is due
to the fact that the reduction in cycle-averaged power being greater than the reduction in cycle-averaged lift.
Based on Fig. 9c, the reduction in lift when considering TM is mainly due to translational-rotational coupling
lift (green lines) and translational lift (red lines), where the Ltran peak around mid-stroke is attenuated and the
negative Lcoup after stroke reversal is increased. In addition, because of a larger root stiffness, the decrease of
power is mainly caused by the reduce of the inertial component (blue lines in Fig. 9d).

5 Conclusion

In this research, the thoracic muscle effect on dynamic performance of flexible flapping wings of insects is
studied. The thoracic muscle effect is simulated by the chordwise torsional spring, whose stiffness is derived
from a comparison test with the results of real insect experiments. The von Kármán nonlinear plate theory is
employed to simulate the elastic deformation of the flexible flapping wing. An aerodynamic force is approx-
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Fig. 8 Aerodynamic performance and passive kinematics considering TMat different kα and kϕ : average a lift,b power, amplitude
of c power loading, d wing-root pitching, e wingtip pitching, f wing-root flapping and g wingtip bending

imated using a quasi-steady aerodynamic model according to the blade element theory, and the bending and
twisting along the span are described using quadratic polynomials. The Newmark-Raphson method is used
to solve the equations of motion. Our results show that considering TM leads to lower cycle-averaged lift
and power. However, compared to the case ignoring TM, considering TM can enhance the efficiency of lift
production by about 23% of insect flight. This provides a more efficient design solution for FWMAVs. Fur-
thermore, although the movement trends of the flapping motion are approximately the same for the cases with
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Fig. 9 Comparison of transient aerodynamic performance for high PL cases: a lift, b power, components of c lift and d power

and without thoracic muscle effect, considering TM delays the pitching motion while reducing its magnitude.
These findings contribute to the design of FWMAVs.
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