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Abstract In this paper, a novel locking-free finite beam element is proposed utilizing the absolute nodal
coordinate formulation. By incorporating a gradient vector along the transverse direction at the boundary
points, the linear interpolation of the gradient vector field within this element is achieved. Consequently, the
problem of constant transverse strain distribution, which is observed in the Omar–Shabana beam element, is
effectively addressed. Building upon this concept, this study further extends the proposed element from two
dimensions to three dimensions. Additionally, it analyzes and compares the locking alleviation mechanism
of the newly developed element and Patel–Shabana beam element. The analysis aims to provide insights
into the factors contributing to the locking alleviation of different absolute nodal coordinate formulation
(ANCF) elements. Furthermore, to demonstrate the effectiveness of the new element, six numerical simulation
examples are designed, comprising three and three dynamic examples. These examples encompass small
deformation statics, large deformation statics, small-scale motion, large-scale motion, and rotational motion
problems. Finally, the results indicate that the proposed ANCF beam element can effectively alleviate the
locking problem. The element exhibits robust adaptability, rationality, and effectiveness when subjected to
complex mechanical characteristics by comparing the numerical results of this element with the classical
Omar–Shabana, high-order Shen, and Patel–Shabana elements.

1 Introduction

The absolute nodal coordinate formulation [1, 2] (ANCF) was a new FE formulation proposed by Shabana [3]
in the 1990s. The proposed method employs the unified interpolation field functions to depict the displacement
of the material points along the beam, whereas the gradient vector is used to represent the beam’s orientation,
replacing the traditional rotation angle parameters. This approach effectively resolves the large deformation
problem of a flexible beamwithin a non-incremental solution framework. Moreover, this method offers several
the advantages, including a constant mass matrix and the absence of Coriolis and centrifugal forces [3].
Over the past two decades, the ANCF has found extensive utilization in diverse engineering applications.
Examples include the modeling of high-speed pantograph–catenary systems, recovery of tethered satellites,
and deployment of thin-film solar sails.
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However, similar to traditional finite elements, the ANCF beam elements are also susceptible to the occur-
rence of locking phenomenon. An illustrative example is the study of the Omar–Shabana [4] beam element.
García-Vallejo et al. [5] comprehensively elucidated the mechanism of curvature thickness locking and shear
locking, focusing on the kinematics aspects. They identified the occurrence of Poisson locking arises from the
inconsistency between the higher-order interpolation in the axial direction and the lower-order interpolation
in the transverse direction. This inconsistency leads to stress coupling in different directions, resulting in the
generation of pseudo-stresses during the bending process. Consequently, the displacement response of the
beam element is significantly underestimated compared to actual solution. Therefore, researchers have been
actively investigating methods to mitigate the detrimental influences of locking on these elements.

Sopanen and Mikkola [6] artificially set Poisson’s ratio of 0 to alleviate the issue of Poisson locking, but
this approach deviates firm the actual conditions. García-Vallejo et al. [5] proposed a new two-dimensional
shear deformation ANCF beam element with the reduced integral technique, which effectively alleviated the
element’s locking phenomenon. Gerstmayr [7–9] and Matikainen [7] only considered the Poisson effect in the
axial direction of the beam and reconstructed the elastic force matrix of the elements with reduced integration,
which effectively mitigate Poisson locking. Mikkola et al. [10] adopted independent interpolation for lateral
deformation to better capture the Poisson effect on the elements. Schwab and Meijaard [11] used the elastic
line method to reconstruct the elastic force formulation, which eliminated the high-order coupling terms of
the axial and lateral deformation and alleviated Poisson locking. Additionally, Schwab and Meijaard [11] used
the Hellinger–Reissner variational principle to alleviate the shear locking of three-dimensional full-parameter
ANCFbeamelements.Nachbagauer et al. [12, 13] used enhanced continuummechanics formulation to alleviate
elements’ locking. Shen et al. [14, 15] developed a series of higher-order beam elements utilizing Pascal
trigonometric polynomials. These elements employ a greater number of generalized coordinates and more
complex interpolation functions. Hence, they are capable of accurately capturingmany structural deformations,
including cross sectionwarping deformations. Patel and Shabana [16–18] decoupled high-order coupling terms
from element kinematics and proposed a new method, called strain split method [19–22], to alleviate Poisson
locking. Additionally, Patel and Shabana developed a new higher-order two-dimensional ANCF beam element
[17], which can also effectively alleviate Poisson locking.

The remainder of this paper is arranged as follows. Section 2 reviews the classical Omar–Shabana ANCF
beam element and presents a detailed analysis of the underlying causes of Poisson locking. Section 3 introduces
a new planar two-dimensional ANCF beam element developed in this study, which can alleviate the locking
phenomenon without reducing integral or modifying elastic force formulation. Section 4 presents a high-order
two-dimensional ANCF beam element developed by Patel and Shabana. Further, two different ideas to alleviate
Poisson locking are obtained by comparing them with the element presented in Sect. 3. Section 5 extends the
plane element developed in Sect. 3 to a three-dimensional space, and a more generalized ANCF beam element
is obtained. Section 6 compares and investigates the performance of several elements, including the element
developed in this study through a series of numerical examples of statics and dynamics, proving that the
developed element can effectively alleviate Poisson locking and has good accuracy and convergence. Finally,
the conclusion is presented in Sect. 7.

2 Omar–Shabana ANCF beam element

The Omar–Shabana beam element is a two-dimensional shear deformable ANCF finite element. The spatial
coordinates of any material point in the element can be described using the position vector and two gradient
vectors associated with the element nodes (Fig. 1), which can capture the stretching, bending, and shearing
deformation of a flexible beam.

In Fig. 1, the two nodes are located on the central axis of the beam (X � 0 and X � L defined the material
coordinates of the two nodes in the material coordinate system). Here, r represents the position vector, and rx
and ry represent two gradient vectors, respectively. The generalized coordinates array of this element can be
defined as follows:

q � [
rT (0) rTX (0) rTY (0) r(L) rTX (L) rTY (L)

]T
. (1)

The interpolation functions used to describe the spatial position of material points can be defined as

r �
⎡

⎣
x

y

⎤

⎦ �
⎡

⎣
a0 + a1X + a2Y + a3XY + a4X2 + a5X3

b0 + b1X + b2Y + b3XY + b4X2 + b5X3

⎤

⎦, (2)
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Fig. 1 Omar–Shabana beam element

where X and Y represent thematerial coordinates of the points in the beam. Further, the generalized coordinates
are used to describe the position of points; hence, Eq. (2) can be rewritten as follows:

r � [
S1I S2I S3I S4I S5I S6I

]
q, (3)

where S1 ∼ S6 can be expressed as

S1 � 1 − 3ξ2 + 2ξ3

S2 � L(ξ − 2ξ2 + ξ3)

S3 � h(1 − ξ )η

S4 � 3ξ2 − 2ξ3

S5 � L(−ξ2 + ξ3)

S6 � hξη. (4)

Here, L and h denote the length and height of the element, respectively, and ξ � X
L , η � Y

h .
The transverse strain of the element at X � 0 can be expressed as

εy � 1

2

(‖rY (0)‖22 − 1
)
. (5)

Note that the distribution of εy along the cross-sectional direction remains constant, which does not conform
to the distribution of transverse strain of the beam element under bending deformation. This inconsistency in
distribution leads to locking phenomena in the beam element.

The transverse strain of element can be expressed as

εy � 1

2

(
(ξ − 1)2‖rY (0)‖22 + ξ2‖rY (L)‖22 − 1

) − ξ (ξ − 1)rTY (0)rY (L). (6)

According to Eq. (6), the distribution of εy follows a quadratic function along the beam axis. However,
due to the lower-order lateral interpolation, the transverse strain εy is only a function that has the independent
variable X and time. Consequently, the nodes and the interior of the element both suffer from the Poisson
locking. Therefore, it is an important idea to design a reasonable interpolation function to ensure an accurate
distribution of transverse strain εy along the cross section.
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Fig. 2 New two-dimensional ANCF beam element

3 New two-dimensional shear deformable ANCF beam element

3.1 Element kinematics

One method to alleviate Poisson’s locking is to increase the order of transverse interpolation, which allows
for better capturing of the telescopic effect of cross section. In this study, a new beam element is proposed
to investigate its performance in alleviating locking. Figure 2 displays the new two-dimensional ANCF beam
element.

This element is different from the Omar–Shabana beam element in that the gradient vectors of the four
corner points of the plane rectangular beam element along the Y direction are used to control the position of the
points in the beam. This element has 16 generalized coordinates (Fig. 2), where r, rX , and rY are all functions
with time and material coordinates X and Y. The generalized coordinate array of this element can be defined
as follows:

q �
[

rT(0,0) rTX (0,0) rT
Y

(
0,− h

2

) rT
Y

(
0, h2

) rT(L ,0) rTX (L ,0) rT
Y

(
L ,− h

2

) rT
Y

(
L , h2

)
]T

. (7)

To avoid the lower-order interpolation in the transverse direction, the higher-order element has the following
interpolation function, which is quadratic in the transverse direction of the beam element:

r �
[
x

y

]
�

[
a0 + a1X + a2Y + a3XY + a4X

2 + a5Y
2 + a6XY

2 + a7X
3

b0 + b1X + b2Y + b3XY + b4X
2 + b5Y

2 + b6XY
2 + b7X

3

]

. (8)

Equation (8) is not a complete polynomial, in which the missing X2Y term can better reflect the coupling
effect between axial deformation and lateral deformation of the beam,Y3 termcan better capture the distribution
of transverse strain εy along the transverse direction due to the high-order interpolation in the lateral direction.

The generalized coordinates are used to describe the position of points; hence, Eq. (8) can be rewritten as
follows:

r � [
S1I S2I S3I S4I S5I S6I S7I S8I

]
q, (9)

where S1 ∼ S8 can be written as

S1 � 1 − 3ξ2 + 2ξ3 S2 � L(ξ − 2ξ2 + ξ3)
S3 � hη

2 (1 − ξ )(1 − η) S4 � hη
2 (1 − ξ )(1 + η)

S5 � 3ξ2 − 2ξ3 S6 � L(−ξ2 + ξ3)
S7 � hη

2 ξ (1 − η) S8 � hη
2 ξ (1 + η)

. (10)
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3.2 Inertial force

The inertial force of beam element can be determined by considering the total kinetic energy of the element
and applying the Lagrange dynamic equation. The element kinetic energy T can be conventionally written as
follows according to Eq. (9).

T � 1

2

∫

V

ρṙT ṙdV � 1

2
q̇T

∫

V

ρST SdV q̇. (11)

hereρ,V, and
∫
V ρST SdV represent the beamdensity, volume domain of the element in the initial configuration

including the curved beam, and element mass matrix M (a positive definite constant matrix), respectively. The
generalized inertial force array in theANCF can be obtained by differentiating the kinetic energyT, with respect
to the time, as follows:

F �
∫

V

ρST SdV q̈ � M q̈. (12)

3.3 Elastic force

The elastic force in the flexible beam element is directly related to the strain energy function. It can be expressed
as the partial derivative of the strain energy in terms of the generalized coordinates:

Qe � ∂U

∂qT
. (13)

The strain energy function can be written in a unified manner as

U � 1

2

∫

V

εTσdV � 1

2

∫

V

εT DεdV . (14)

here ε and σ are defined as arrays, which have six strain and stress components, respectively. D represents the
elastic coefficient matrix, and the constitutive relation used in (14) can reflect the mechanical properties of the
materials. For the isotropic linear elastic materials, D can be written as follows:

D �

⎡

⎢⎢
⎢⎢⎢
⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤

⎥⎥
⎥⎥⎥
⎦
, (15)

where λ and μ represent the first and second Lame constant, respectively.
In the case of plane stress or plane strain, the coefficient matrix takes the following forms, respectively:

Dstress � E

(1 − μ2)

⎡

⎣
1 μ 0
μ 1 0
0 0 1−μ

2

⎤

⎦

Dstrain � E(1 − μ)

(1 + μ)(1 − 2μ)

⎡

⎢
⎣

1 μ
1−μ

0
μ

1−μ
1 0

0 0 1−2μ
2(1−μ)

⎤

⎥
⎦. (16)

Additionally, six Green–Lagrange strain components can be written using the continuummechanics as follows
[23]:

εx � 1

2
(‖rX‖22 − 1)
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Fig. 3 Instantaneous deformation of the element

εy � 1

2
(‖rY ‖22 − 1)

εz � 1

2
(‖rZ‖22 − 1)

εxy � 1

2
γxy � 1

2
rX · rY

εxz � 1

2
γxz � 1

2
rX · rZ

εyz � 1

2
γyz � 1

2
rY · rZ . (17)

3.4 External force and moment

Assume that the position (X, Y,Z) and its cross section are acted by the external force F and moment M,
respectively, in which their directions are both fixed in space. Figure 3 presents the deformation of the element
during the time variation δt .

In Fig. 3, rX0 , rY0 , and rZ0 are defined as three orthogonal gradient vectors at position (X0, Y0, Z0) under the
initial configuration. δu(X0, Y0, Z0) represents the virtual displacement of the point. Generally, the external
virtual work δW generated by the external force F and moment M can be expressed as follows:

δW � δrT F + δ�T M, (18)

where δr and δ� represent the virtual displacement and virtual rotation angle matrices on the local coordinates
system, respectively. Further, δr can be conventionally written as follows according to Eq. (3).

δr � δu � S(X0,Y0,Z0)δq. (19)

Additionally, the matrix of direction cosine between the different coordinate base vectors can be used to
represent the virtual rotation angle vector of the beamcross section. The angular velocity vector of instantaneous
rotation at this point can be written as:

ω � (ė2 · e3)e1 + (ė3 · e1)e2 + (ė1 · e2)e3, (20)
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Fig. 4 Patel–Shabana beam element

where e1, e2, and e3 represent the base vectors of local coordinate system. Furthermore, rx‖rx‖ can be used

instead of e1,
ry‖ry‖ can be used instead of e2, and

rz
‖rz‖ can be used instead of e3. So, the instantaneous virtual

rotation angle vector can be obtained by substituting the relevant expressions into the variational equation of
angular velocity, which can be obtained from Eq. (20). The specific expression is as follows:

δ� � δrTY rZ
‖rY ‖2 · ‖rZ‖2

e1 +
δrTZ rX

‖rZ‖2 · ‖rX‖2
e2 +

δrTXrY
‖rX‖2 · ‖rY ‖2

e3, (21)

Based on Eqs. (19) and (21), the generalized external force can be expressed as follows:

F̃ � ST F +
[

ST
Y rZ

‖rY ‖2·‖rZ‖2
ST
Z rX

‖rZ‖2·‖rX‖2
ST
X rY

‖rX‖2·‖rY ‖2
]
M. (22)

4 Patel–Shabana beam element

This section introduces a higher-order planar beam element developed by Patel and Shabana. This element has
demonstrated its effectiveness in alleviating Poisson locking. The element interpolation polynomial, which is
quadratic in the transverse direction of the beam, is consistent with Eq. (8). Figure 4 displays the element.

Unlike the traditional Omar–Shabana beam element, the proposed element incorporates that a higher-order
curvature vector ryy is used to capture the beam transverse deformation. The generalized coordinates array of
this element can be defined as follows:

q �
[

rT(0,0) rTX (0,0) rTY (0,0) rTYY (0,0) rT(L ,0) rTX (L ,0) rTY (L ,0) rTYY (L ,0)
]
. (23)

Additionally, the position vector of any material point in the beam can be expressed as in Eq. (9), whereas
the derived element shape function, different from Eq. (10), can be expressed as follows:

S1 � 1 − 3ξ2 + 2ξ3 S2 � L(ξ − 2ξ2 + ξ3)

S3 � h(1 − ξ )η S4 � h2η2

2 (1 − ξ )

S5 � 3ξ2 − 2ξ3 S6 � L(−ξ2 + ξ3)

S7 � hξη S8 � h2η2

2 ξ

, (24)

where ξ � X
L , η � Y

h , and the definitions of L and h are the same as that mentioned above. To gain a clearer
understanding of the mechanical mechanism and differences in alleviating Poisson locking between the ANCF
element proposed in Sect. 3 and this higher-order planar beam element, the distribution characteristics of



274 M. Zheng et al.

transverse strain εy on the cross section at position X � 0 are further investigated. For this higher-order planar
beam element, the transverse strain εy can be expressed as follows according to Eq. (5):

εy � 1

2
[(k5 + ηhk7)

2 + (k6 + ηhk8)
2 − 1]. (25)

here k5 and k6 represent the two components of the gradient vector rY (0) in the global coordinate system,
respectively, and k7 and k8 represent the two components of the curvature vector rYY (0) in the global coordinate
system. Thus, if the gradient vector ry at any position in the cross section (X � 0) is Taylor expanded at the
coordinate origin (0, 0), Eq. (26) can be obtained as follows:

rY |(X ,Y )�(0,ηh) � rY |(X ,Y )�(0,0) + rYY |(X ,Y )�(0,0)ηh

�
[
k5
k6

]
+

[
k7
k8

]
ηh. (26)

Equation (26) only retains the linear term of Taylor expansion. The transverse strain εy depends on the
gradient vector rY according to Eq. (5). This highly nonlinear gradient vector rY is linearly expressed using
Taylor expansion at origin position (0, 0), as expressed in Eq. (25). Thus, the Patel–Shabana beam element
can capture higher-order transverse deformation, resulting in its ability to alleviate Poisson locking.

Correspondingly, the proposed ANCF beam element has the same number of generalized coordinates as
that of the Patel–Shabana beam, but it has different generalized coordinate types. The new element lacks
curvature vector rYY , which is replaced by four gradient vectors, namely, rY

(
0, h

2

)
, rY

(
0, − h

2

)
, rY

(
L , h

2

)
, rY(

L , − h
2

)
, located at corner points. The transverse strain εy(X � 0) can be similarly expressed as follows:

εy � 1

2
(δ2x + δ2y − 1)

δx � k′
5

(
1

2
− η

)
+ k′

7

(
1

2
+ η

)

δy � k′
6

(
1

2
− η

)
+ k′

8

(
1

2
+ η

)
. (27)

here k′
5 and k′

6 represent the two components of the gradient vector rY
(
0, − h

2

)
in the global coordinate

system, respectively, and k′
7 and k′

8 represent the two components of the curvature vector rY
(
0, h

2

)
in the

global coordinate system, respectively. Note that, due to the use of four corner gradient vectors in Sect. 3, this
highly nonlinear gradient vector rY is linearly expressed using the linear interpolation of boundary points,
as expressed in Eq. (27). Generally, the high-order curvature vector rYY is used in the Patel–Shabana beam
element to linearize rY based on Taylor expansion. However, the proposed ANCF beam element uses gradient
vectors of corner points, rather than curvature vectors, to linearize rY based on numerical interpolation. These
two different improved methods can enable the ANCF element to capture the deformation characteristics of
the cross section, especially transverse deformation.

5 Three-dimensional spatial beam element

Three-dimensional form of the new two-dimensional shear deformable ANCF beam element proposed in
Sect. 3 is discussed in this section to generalize this method. Accordingly, the interpolation functions used to
describe the spatial position of material points can be defined as follows:

r �
⎡

⎣
x
y
z

⎤

⎦ �

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

a0 + a1X + a2Y + a3Z + a4XY + a5X Z + a6X
2 + a7Y

2 + a8Z
2

+ a9XY
2 + a10X Z2 + a11X

3

b0 + b1X + b2Y + b3Z + b4XY + b5X Z + b6X
2 + b7Y

2 + b8Z
2

+ b9XY
2 + b10X Z2 + b11X

3

c0 + c1X + c2Y + c3Z + c4XY + c5X Z + c6X
2 + c7Y

2 + c8Z
2

+ c9XY
2 + c10X Z2 + c11X

3

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (28)
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Fig. 5 New three-dimensional ANCF beam element

Figure 5 presents the schematic diagram of the 3D ANCF beam element.
In Fig. 5, the element has 36 generalized coordinates, and the vector of the nodal coordinates of left-end

face 1 for the new three-dimensional higher-order element is expressed as follows:

qLeft �
[

rT(0,0,0) rTX (0,0,0) rT
Y

(
0,− h

2 ,0
) rT

Y
(
0, h2 ,0

) rT
Z(0,0,− w

2 )
rT
Z(0,0,w2 )

]T

. (29)

here L,h, andw represent the length, height, and width of the beam element, respectively. Similarly, the element
shape function S1 ∼ S12 can be expressed as follows, according to the corresponding generalized coordinates:

S1 � 1 − 3ξ2 + 2ξ3 S2 � L(ξ − 2ξ2 + ξ3)

S3 � hη
2 (1 − ξ )(1 − η) S4 � hη

2 (1 − ξ )(1 + η)

S5 � wζ
2 (1 − ξ )(1 − ζ ) S6 � wζ

2 (1 − ξ )(1 + ζ )

S7 � 3ξ2 − 2ξ3 S8 � L(−ξ2 + ξ3)

S9 � hη
2 ξ (1 − η) S10 � hη

2 ξ (1 + η)

S11 � wζ
2 ξ (1 − ζ ) S12 � wζ

2 ξ (1 + ζ )

. (30)

6 Numerical examples

To demonstrate the effective alleviation of Poisson locking in beams, this section compares the performance of
several differentANCFelements. Specifically, theOmar–Shabana, Patel–Shabana, andShenhigher-order beam
elements all are considered for discussion and comparison. Thus, seven numerical examples are investigated,
namely, four static analysis examples and three dynamic analysis examples. The first static example involves a
slender cantilever beam with small deformations under a shearing force. The second static example considers
a slender cantilever beam with small deformations under a bending moment. The last static example examines
a thick cantilever beam with large deformations under a shearing force. The first dynamic example considers a
cantilever beam structure under gravity loading. The second dynamic example involves a beampendulumunder
gravity loading. The last dynamic example examines a spin-up cantilever beam under a moment. Additionally,
new element (NE) refers to the proposed ANCF element for the convenience of description.
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Fig. 6 Slender cantilever beam under a shearing force

Table 1 Basic parameters of the beam (slender cantilever beam)

Description Value

Length/m 1
Width/m 0.01
Height/m 0.01
Young’s modulus/Pa 2 × 1011

Poisson’s ratio 0.3

Table 2 Beam tip vertical displacement (m) in different ANCF elements (slender cantilever beam subject to shearing force)

Type 5 elements 10 elements 20 elements 50 elements 100 elements

Om–Sh − 0.01797943 − 0.01814821 − 0.01818387 − 0.01819351 − 0.01819488
Shen − 0.01968086 − 0.01992459 − 0.01997648 − 0.01999060 − 0.01999262
Pat–Sh − 0.01972723 − 0.01993645 − 0.01997963 − 0.01999125 − 0.01999290
NE − 0.01975106 − 0.01993731 − 0.01997966 − 0.01999125 − 0.01999290
Analytical − 0.02

6.1 Static examples

6.1.1 Slender beam subject to shearing force: small deformation

A slender cantilever beam subjected to shearing force F at its free end is considered (Fig. 6). Table 1 presents
the basic parameters of the beam.

The force direction is vertical with the value of 10 N (Fig. 6). Accordingly, the slender beam deflection at
the free end is calculated to be − 0.02 m, based on the classical Euler–Bernoulli beam theory.

Table 2 presents the numerical calculation results for the static analysis. It shows the converged beam tip
vertical displacement with several different ANCF elements. Figure 7 displays the NE’s iterative convergence
situation. From these results, the Om–Sh beam element cannot converge to the correct solution due to excessive
stiffness caused by Poisson locking, whereas the other elements can converge correctly. Specifically, the
elements’ convergence can be enhanced with an increase of the element division number. Moreover, the
number of generalized coordinates of the NE is less, and the cost of the numerical calculation is lower, but the
accuracy is higher. As shown in Fig. 7, the NE’s displacement iteration can immediately converge to the exact
solution.

6.1.2 Slender beam subjected to bending moment: small deformation

A slender cantilever beam subjected to the bending moment M at its free end is considered (Fig. 8). Table 1
presents the basic parameters of the beam.

The bending moment M is perpendicular to the x–y plane with the value of 10 N m. According to the
classical Euler–Bernoulli beam theory, the slender beam deflection at the free end is calculated to be − 0.03
m. Table 3 presents the numerical calculation results for the static analysis, and Fig. 9 shows the NE’s iterative
convergence situation. From these results, the Om–Sh beam element cannot converge to the correct solution
either due to Poisson locking, whereas the other elements can converge correctly. Moreover, the NE does not
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Fig. 7 Displacement iterative curve (slender beam subject to shearing force)

Fig. 8 Slender cantilever beam subject to the bending moment

Table 3 Beam tip vertical displacement (m) in different ANCF elements (slender cantilever beam subject to bending moment)

Type 5 elements 10 elements 20 elements 50 elements 100 elements

Om–Sh − 0.02723433 − 0.02729156 − 0.02729456 − 0.02729474 − 0.02729475
Shen − 0.02989644 − 0.02998744 − 0.02999225 − 0.02999257 − 0.02999270
Pat–Sh − 0.02990484 − 0.02998794 − 0.02999232 − 0.02999258 − 0.02999262
NE − 0.02993395 − 0.02998889 − 0.02999234 − 0.02999258 − 0.02999262
Analytical − 0.03

show excessive stiff mechanical behavior, indicating that the NE cannot suffer the locking, including Poisson
and shear locking. Similarly, the NE’s displacement iteration can converge to the exact solution soon (Fig. 9).

6.1.3 Thick beam subjected to shearing force: large deformation

A thick beam example (Fig. 10) is used to investigate the elements’ convergence under large deformation. The
left-end face of the beam is completely consolidated with ground, whereas a vertical force with 1 × 108 N is
applied to the free end. Table 4 presents the basic parameters of the beam. To compare with the convergent
solution of the ANCF elements, the reference displacement solution of − 0.19560853 m is calculated using
the commercial finite element code in this section.

Table 5 indicates that the Om–Sh beam element converges to an incorrect solution, which is smaller than
the reference solution due to excessive stiffness caused by Poisson locking. The other elements’ displacement
solutions are closer to the reference solution with the increase of element divisions number. This observation
also demonstrates that the NE effectively alleviates Poisson locking, particularly under the condition of large
static deformation.
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Fig. 9 Displacement iterative curve (slender beam subject to bending moment)

Fig. 10 Thick beam subjected to shearing force

Table 4 Basic parameters of the beam (thick beam)

Description Value

Length/m 1
Width/m 0.1
Height/m 0.5
Young’s modulus /Pa 2 × 1011

Poisson’s ratio 0.3

Table 5 Beam tip vertical displacement (m) in different ANCF elements (thick beam subjected to shearing force)

Type 5 elements 10 elements 20 elements 50 elements 100 elements

Om–Sh − 0.17082478 − 0.17225318 − 0.17271488 − 0.17291039 − 0.17296168
Shen − 0.18892794 − 0.19189735 − 0.19320325 − 0.19394511 − 0.19419846
Pat–Sh − 0.18830649 − 0.19076078 − 0.19177493 − 0.19228740 − 0.19245055
NE − 0.18888512 − 0.19137023 − 0.19237288 − 0.19287577 − 0.19303419
ABAQUS − 0.19560853
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Fig. 11 Cantilever beam subjected to the gravity loading

Table 6 Basic parameters of the beam (cantilever beam)

Description Value

Length/m 1
Width/m 0.1
Height/m 0.1
Density/kg m−3 5000
Young’s modulus/Pa 5 × 107

Poisson’s ratio 0.3

Table 7 Basic parameters of the beam (beam pendulum)

Description Value

Length/m 1
Width/m 0.1
Height/m 0.01
Density/kg m−3 7750
Young’s modulus/Pa 2 × 106

Poisson’s ratio 0.3

6.2 Dynamic examples

6.2.1 Cantilever beam

This section introduces a dynamic problem involving a cantilever beam subjected to gravity loading as an
external force. The purpose of this problem is to demonstrate that the ability of the proposed NE element
in effectively alleviating locking phenomena in dynamic simulations. The cantilever beam was subjected to
gravity loading q (Fig. 11). Table 6 presents the basic parameters of the beam.

Figures 12 and 13 show the curves of the horizontal and vertical positions of the beam tip with time,
respectively. TheOm–Sh element exhibits a significant lockingmechanical behavior as evidenced by its notably
small tip displacement. Meanwhile, the beam tip displacement results of Shen, Pat–Sh, and NE elements are
closely aligned, indicating a more accurate representation of the actual solution and reflecting the desired
characteristics.

6.2.2 Beam pendulum

To further investigate the influence of the locking phenomenon on these ANCF elements, a dynamic beam
pendulumproblem is presented in this section. The beampendulumwas subjected to gravity loading q (Fig. 14).
Table 7 presents the basic parameters of the beam.

Figures 15 and 16 display the curves of the horizontal and vertical positions of the beam tip with time,
respectively. The displacement results of the Om–Sh element are not much different from those of the other
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Fig. 12 Comparison of the beam tip horizontal position for different elements (cantilever beam)

Fig. 13 Comparison of the beam tip vertical position for different elements (cantilever beam)

three high-order elements. The reason is that the elastic deformation caused by incorrect cross-sectional strain
distribution has less influence on the overall displacement of the element than the large-scale rigid displacement
of the beam pendulum. Additionally, the Om–Sh element displacement solution is highly consistent with that
of Shen and Pat–Sh element, demonstrating the effectiveness of the proposed element in alleviating locking.

6.2.3 Spin-up beam

This section presents a spin-up beam dynamic problem to demonstrate that the newly proposed ANCF element
(NE) can effectively help alleviate locking in the process of rapid rotation. The left end, where a constant
moment with 50 N is applied, is connected with the ground through the spherical joint, and the right side is
free (Fig. 17). Table 8 presents the basic parameters of the beam.

Figures 18 and 19 present the comparison of the tip horizontal and vertical displacement solutions with
Pat–Sh and NE, respectively. The results indicate good consistency and convergence between the two different
ANCF elements for dynamic analysis.
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Fig. 14 Beam pendulum

Fig. 15 Comparison of the beam tip horizontal position for different elements (beam pendulum)

Table 8 Basic parameters of the beam (beam pendulum)

Description Value

Length/m 1
Width/m 0.1
Height/m 0.01
Density/kg m−3 7800
Young’s modulus/Pa 2 × 108

Poisson’s ratio 0.3

7 Conclusions

The transverse εy can be more accurately captured by using multiple gradient vectors in the cross section.
Accordingly, a new finite element was developed using the absolute nodal coordinate formulation. The effi-
ciency of the new element in alleviating locking was demonstrated through the analysis of three statics prob-
lems, showing comparable performance to the Shen and Pat–Sh beam elements. However, unlike the Shen
element relies on numerous generalized coordinates and Pat–Sh element that introduces a high-order curva-
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Fig. 16 Comparison of the beam tip vertical position for different elements (beam pendulum)

Fig. 17 Spin-up beam

Fig. 18 Comparison of the beam tip horizontal position for different elements (spin-up beam)
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Fig. 19 Comparison of the beam tip vertical position for different elements (spin-up beam)

ture vector, the proposed element features a reduced number of generalized coordinates. Consequently, its
numerical iterative calculations are faster and yield higher accuracy. Additionally, three dynamic problems
were used to demonstrate the effectiveness of the proposed element in alleviating locking in complex dynamic
behaviors (e.g., cantilever beam, beam pendulum, and spin-up beam). First, in the dynamic cantilever beam
problem, a notable difference is observed in the beam tip displacement between the proposed element (NE)
and Om–Sh element, indicating that the NE can effectively alleviate locking phenomena in dynamic scenarios.
Second, in the beam pendulum problem, the results are not significantly different between the Om–Sh element
and the other three high-order elements since the beam motion is mainly rigid in a large range. Finally, the
study provides further confirmation of the adaptability, rationality, and effectiveness of the proposed ANCF
beam element since the tip displacement results of the propose element and Pat–Sh exhibit a high degree of
consistency in the spin-up beam problem.
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