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Abstract In this work, the stochastic aeroelastic stability and flutter reliability of a wing are investigated
using the stochastic finite element method in conjunction with the first order reliability method (FORM).
Three stability conditions are proposed for estimating flutter onset in aeroelastic systems in the presence of
uncertainties. Here, stability conditions are represented as limit state functions and defined in conditional sense
on flow velocity for flutter reliability studies. Due to various representation of limit states, a lack of invariance
in reliability estimates is observed using the conventional flutter reliability approach such as the first order
second moment method. In this paper, a general FORM is proposed, which is suitable for all the limit state
functions considered and shows invariance in reliability estimates. The proposed approach is applied to a wing
having uncertain stiffness parameters, modeled by either random variables or random fields. Random fields are
represented by a Karhunen–Loeve expansion, and the effect of correlation length on the flutter reliability of the
wing is discussed. The computational efficiency of the FORM algorithm for various limit states in comparison
of MCS is also discussed.

1 Introduction

In aircraft design, two aeroelastic instability phenomena are considered: divergence and flutter. Divergence
is a steady state aeroelastic phenomenon that occurs at a flow velocity at which the moment generated by
aerodynamic load overcomes the resisting moment by structural stiffness, leading to structural failure [1].
Flutter is a dynamic aeroelastic phenomenon, in which structures extract energy from air-stream, which leads
to setup of self-excited sustained oscillation resulting in destruction of structures [2]. The velocity at which
the aeroelastic system exhibits sustained oscillation is the flutter velocity, and the frequency which shows
the characteristics of sustained oscillation is called the flutter frequency. Traditionally, a factor of safety is
considered in the aeroelastic design [3,4] to avoid flutter onset within the operational envelope.
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In general, uncertainty is always present in aeroelastic systems in the form of aleatory uncertainty (inherent
uncertainty) and epistemic uncertainty (comes from lack of knowledge and data) [5]. The aleatory uncertainty,
which is irreducible in nature, is modeled by random variables/random fields; it is propagated through the
mathematical model to quantify the response quantity [6,7]. Lindsley et al. [8] carried out limit cycle oscil-
lation (LCO) analysis of a panel in supersonic flow by modeling elastic modulus as a Gaussian random field
and uncertain boundary condition as a random variable using Monte Carlo simulation (MCS). Early review
article appeared in uncertainty quantification (UQ) in aeroelasticity [9], discussed the importance and chal-
lenges associated with UQ in aeroelasticity and emphasized the use of reliability based design optimization
for industrial design application. Castravete and Ibrahim [10] investigated the effect of spatial distribution
of stiffness parameters (bending and torsional rigidities) on the flutter behavior of a cantilever wing in the
time domain using both perturbation and MCS approaches. Danowsky et al. [11] compared three uncertainty
quantification methods namely the Monte Carlo method, the design of experiment (DOE)/response surface
method (RSM), and the non-probabilistic μ-analysis method for a reduced order model of a wing in transonic
flow in the presence of structural and atmospheric uncertainties. The DOE/RSM results of flutter altitude were
identical to full baseline Monte Carlo analysis. Verhoosel et al. [12] proposed perturbation (mean, median, and
mode centered) and importance sampling based methods to carryout uncertain aeroelastic response analysis
of a panel in supersonic flow. The panel elastic modulus was represented by one-dimensional lognormal field.
Anton et al. [13] proposed a method based on the stochastic normal form to predict the effect of uncertainties
in structural stiffness terms and flow speed on the stability of nonlinear aeroelastic system near the Hopf
bifurcation point. The analysis revealed that for a two degrees of freedom (dofs) airfoil aeroelastic system
in the presence of uncertainty in flow velocity, shifted the bifurcation point below the deterministic flutter
velocity. Adamson et al. [14] developed a receptance based experimental approach to carryout flutter analysis
of aeroelastic systems due to variability in manufacturing tolerances, damage, and degradation. Onkar [15]
developed a successive robust flutter prediction technique by coupling nominal analysis, ground vibration test,
wind tunnel test, uncertainty model updation, and the μ-analysis method to predict the worst flutter boundary
of a swept back wing in transonic flow regime in the presence of structural and aerodynamics uncertainties.
A good estimate of transonic flutter boundary (transonic dip) was found by successively updating the aerody-
namic uncertainty bounds using wind tunnel data. Recently, Beran et al. [16] reviewed published articles in
the area of UQ in aeroelasticity based on the pk method [17] and Schur method based eigenvalue analysis.
The authors addressed the difficulty, that the perturbation method was not able to predict bi-modal probability
density function (PDF), which was encountered in mode switching and transonic aeroelastic cases.

Due to decrement of onset of flutter velocity [10,12,13] in the presence of parametric uncertainty, there is a
need to carry out aeroelastic reliability analysis to ensure that aeroelastic systems are free fromflutter instability.
Ge et al. [18] studied the flutter reliability of a cable-stayed bridge using the first order reliability method based
on mean point, design point, and extended design point (for non-normal random variables) approaches by
defining limit state function as the difference between critical flutter speed and extreme wind speed. Zhang
et al. [19] carried out flutter reliability analysis of a long cable stayed bridge by combining Latin hypercube
sampling and check-point approach, where the limit state function was defined as the difference between the
critical flutter wind speed and the design wind speed. Cheng et al. [20] proposed a flutter reliability analysis
method for a suspension bridge based on the RSM, the finite element method (FEM), the first order reliability
method (FORM), and the importance sampling method. In this method, RSM was used to approximate the
limit state function; FEM was used to carryout deterministic flutter analysis, and finally probability of failure
was evaluated using the combination of FORM and importance sampling method. Liaw and Yang [21] studied
the flutter reliability of a laminated curved shell in supersonic flow using the mean centered second order
perturbation approach subjected to independent parametric variation. Further, the authors [22] extended the
reliability study to laminated plates, which had parametric variations in material and geometric properties.
Results of such study indicted that correlation among the plies lowers the reliability of the aeroelastic system
in comparison of no correlation among the plies. Shufang et al. [23] conducted flutter reliability analysis of 2-
dofs and 3-dofs (with flap) wing sections in transonic flow using improved line sampling technique (directional
sampling) to reduce the computational cost. Borello et al. [24] carried out flutter reliability analysis of (1) 2-
dimensional equivalent airfoil section model and (2) composite wing for load-resistance type limit states
using various reliability methods such as MCS, FORM, second order reliability method (based on analytical
expression), response surface coupled with FORM and MCS in subsonic flow. The cumulative distribution
function (CDF) of flutter velocity revealed that the higher order response surface coupled with MCS and
FORM gave the best prediction of flutter onset velocity. Wu and Livne [25] developed a simulation tool
on MCS for aeroelastic reliability analysis of a typical advanced fighter aircraft in the presence of control



A study on stochastic aeroelastic stability and flutter reliability 6651

component uncertainty under roll control. The failure of notch filter was observed in the presence of physical
control component uncertainty. Recently, Swain et al. [4] performed flutter reliability analysis of a laminated
plate in subsonic flow using perturbation based FORM and polynomial neural network (PNN) based reliability
algorithms in the presence of structural uncertainties. The perturbation based FORMmethod was very efficient
than PNN. Pourazaram et al. [26] proposed a reliability framework using the mean value based perturbation
approach to carryout flutter reliability analysis of a wind turbine blade. A new weighted average reliability
methodwas proposed, whichwas based on theweighted sumofCDF of flutter velocity corresponding to altered
design point. In this, the performance function was represented in terms of real part of eigenvalues imposing
a condition on rotor speed. Wang and Qiu [27] developed a non-probabilistic interval method for reliability
assessment of aircraft flutter based on flutter wind speed and natural wind speed interference model, where
the non-probabilistic reliability was defined by the ratio of volume of safe region to the total volume bounded
by interval variables. Zheng and Qiu [28] proposed a novel numerical method based on interval bounds on
real part of eigenvalues to study the flutter reliability of aeroelastic systems in the presence of parametric
uncertainties. Rezaei et al. [29] developed a fuzzy reliability method to study the aeroelastic reliability of an
aircraft wing subjected to uncertainty in structural parameters and airspeed. In this method, a performance
function was defined on the basis of interference area in three-dimensional fuzzy pyramid shape of stability
region bounded by fuzzy flutter speed and airspeed. The reliability index was defined in a similar way as given
in [27]. The method was employed to a wing section and a typical cantilever wing model.

The consequences associated with aeroelastic instability demand accurate and efficient reliability algo-
rithms development due to chances of decrement of flutter velocity in the presence of uncertainties. From the
literature, it can be observed that uncertainty quantification and reliability estimation of aeroelastic systems
are mainly based on methods like MCS, mean centered reliability methods, RSM conjunction with FORM;
where limit state functions are represented in a typical load-resistance type or a response surface form. The
MCS method is computationally expensive, while RSM is accurate in the range of design parameters used to
approximate the response surface. In this work, the authors have proposed three different types of stability
conditions/limit state functions based on intuition and engineering judgment. A general FORM based flutter
reliability algorithm is proposed for various limit state functions and demonstrated on a cantilever wing in
subsonic flow. The stochastic stiffness parameters are considered as Gaussian random variables as well as ran-
dom fields. Here, random fields are discretized using the spectral decomposition method based on a truncated
Karhunen–Loeve (K–L) expansion. Numerical results on the stochastic aeroelastic stability of a cantilever
wing are discussed for various stability conditions. The invariance characteristics of FORM algorithms are
shown for various limit state functions irrespective of uncertainty modeling approaches. Further, the effect
of correlation length of random fields on the flutter reliability of the wing is discussed. The computational
efficiency of the FORM algorithm for various limit states in comparison of MCS is also discussed.

2 Stability conditions

In aeroelastic studies, the flutter phenomenon due to coalescence of bending and torsional modes has been
widely reported [2,24,30,31]. In mode coalescence, generally, frequencies of two modes approach each other,
and their corresponding phase becomes zero [32]. Here, stability of an aeroelastic system is obtained from
eigenvalues, which are in general complex in nature due to the presence of unsteady aerodynamics or damping
or both. Assume that j th and kth are the two coalescence modes which participate in the mechanism of flutter,
and the corresponding complex eigenvalues are γ j and γk respectively. Since the eigenvalues are complex in
nature, and contain real part β (decay rate) and imaginary part ω (frequency), the real part of eigenvalue can
be expressed in terms of damping ratio and frequency as β = −ζω. For the j th and kth modes, the complex
eigenvalues are β j + iω j and βk + iωk respectively. On the basis of participating modes in flutter onset, the
characteristic equation representing aeroelastic system stability can be written as:

(
γ − γ j

)
(γ − γk) = 0 (1)

Substituting the complex form of eigenvalues γ j and γk in Eq. (1), the characteristic equation can be written
as:

(γ − (β j + iω j ))(γ − (βk + iωk)) = 0 (2)

The above characteristic equation [Eq. (2)] representing system stability contains complex coefficients. In order
to make the characteristic equation coefficients real, there is a requirement of multiplying the equation having
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Table 1 Routh table

γ 4 1 A2 Ao

γ 3 A3 A1 0

γ 2 A2A3−A1
A3

Ao 0

γ 1
A1

(
A2 A3−A1

A3

)
−Ao A3

A2 A3−A1
A3

0 0

γ o Ao 0 0

conjugate of eigenvalues of the j th and kth modes [33]. Consequently, the characteristic equation representing
system stability can be written as:

(γ − (β j + iω j ))(γ − (βk + iωk))(γ − (β j − iω j ))(γ − (βk − iωk)) = 0 (3)

Equation (3) can be written in symbolic notation in quartic polynomial form as:

γ 4 + A3γ
3 + A2γ

2 + A1γ + Ao = 0 (4)

On simplification of Eq. (3) and comparing with Eq. (4), the real coefficients A′s of characteristic equation
can be written as:

A3 = −2
(
β j + βk

)

A2 =
((

β2
j + ω2

j

)
+ (

β2
k + ω2

k

) + 4β jβk

)

A1 = −2
(
β j

(
β2
k + ω2

k

) + βk

(
β2
j + ω2

j

))

Ao =
(
β2
j + ω2

j

) (
β2
k + ω2

k

)
(5)

The characteristic roots of Eq. (4) are called eigenvalues, and in the Laplace domain, these are known as
poles. For describing the system’s absolute stability in the Laplace domain often called s-domain, the Routh’s
stability criterion is used [34]. According to the Routh-Hurwitz stability criteria, the number of sign change
in the second column of Routh table (Table 1), gives the number of poles/eigenvalues indicating instability.
Since the roots of quartic characteristic polynomial with real coefficients are complex conjugate in nature, a
pair of eigenvalues shows instability and one of them representing the actual root determines stability of the
system [33].

For stability of a system, the real part of all the roots of Eq. (4) should be negative. The stability condition,
where all polynomial coefficients have positive sign and second column of Table 1 corresponding to γ 1 gives
another condition (Fm) which should also have positive sign, can be expressed as:

Fm = −Ao + A1

A3
A2 −

(
A1

A3

)2

(6)

where Fm is a stability parameter referred as flutter margin. Inspecting the table, if Fm < 0, there are two
changes of sign, so a pair of eigenvalues is unstable (positive real roots), and in reality only one root belongs
to the aeroelastic system characteristic equation represented by Eq. (2) [33]. If Fm > 0, there is no change of
sign, so the system is stable. If Fm = 0, the system is marginally stable, i.e., the flutter onset condition for the

aeroelastic system. Adding and subtracting
A2
2
4 on the right hand side of Eq. (6), on rearrangement, it can be

written as:

Fm =
((

A2

2

)2

− Ao

)

−
(
A2

2
− A1

A3

)2

(7)
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Fig. 1 Cantilever wing model

On substitution of Ao, . . . , A3 fromEq. (5) intoEq. (7), the fluttermargin expression in terms of coalescence
modes decay rate and frequency is given as [35]:

Fm =
(

ω2
k − ω2

j

2
+ β2

k − β2
j

2

)2

+ 4β jβk

(
ω2
k + ω2

j

2
+ 2

(
β j + βk

2

)2
)

−
((

βk − β j

βk + β j

)(
ω2
k − ω2

j

2

)

+ 2

(
β j + βk

2

)2
)2

(8)

On inspection, if β j or βk on the right hand side of Eq. (8) is zero, it leads to Fm = 0, indicating the flutter
onset condition. The above expression of flutter margin can be viewed as a better representation of flutter
prediction over conventional damping ratio based prediction, as it takes care of mode switching phenomenon
due to parametric variation of system parameters. In terms of Fm , three conditions exist regarding stability of
an aeroelastic system (1) Fm < 0, unstable (2) Fm = 0, stability (flutter onset) boundary (3) Fm > 0, stable.

In coalescence modes flutter, the real part of one of the eigenvalue (decay rate) changes its sign (becomes
unstable), while other eigenvalue remains stable. So, stability conditions similar to flutter margin can exist and
are written in the form of product of decay rate (β jβk) of coalescence modes as: (1) β jβk < 0, unstable (2)
β jβk = 0, stability (flutter onset) boundary (3) β jβk > 0, stable. By inspecting the term β jβk , if the real part
of any eigenvalue becomes zero, the flutter onset condition is encountered. This expression of stability also
takes care of mode switching phenomenon due to parametric variation of system parameters [36].

Conventionally, for flutter onset prediction, damping ratio of various modes are traced with respect to flow
velocities [17,31,37,38], and say damping ratio of the j th mode becomes zero at a particular flow velocity,
indicating flutter onset in the system. In terms of damping ratio, the stability condition can be written as: (1)
ζ j < 0, unstable (2) ζ j = 0, stability (flutter onset) boundary, and (3) ζ j > 0, stable.

3 Mathematical and stochastic modeling of an aeroelastic system

In this section, first the mathematical model of an aeroelastic system is presented for assessing system stability.
Then, the stochastic model of various system parameters to account inherent uncertainty is discussed for
assessing system reliability. Both random variables and random fields approaches are discussed for modeling
uncertainty in system parameters.

3.1 Mathematical modeling

In order to examine the various forms of stability criteria, a typical straight cantilever wing with finite span is
considered in Fig. 1. Here, P, Q, and R are the locations of aerodynamic, elastic, and inertia axes respectively.
The aerodynamic axis is located at the quarter chord, i.e., b/2 distance from the leading edge; the location of
elastic and inertia axes are controlled by the dimensionless parameters a and e respectively. The dimensionless
parameters lie in the range (−1, +1). The span of the wing is l, and O is the origin of elastic axis. The governing
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differential equations of the wing are expressed as [39,40]:

mḧ(y, t) + mxαbα̈(y, t) + ∂2

∂y2

(
E I

∂2h(y, t)

∂y2

)
+ L(y, t) = 0 (9)

IQ α̈(y, t) + mxαbḧ(y, t) − ∂

∂y

(
GJ

∂α(y, t)

∂y

)
− M(y, t) = 0 (10)

where m is the mass per unit span, IQ is the mass moment of inertial per unit span, and xα = (e − a) is the
dimensionless static unbalance. E I and GJ are the bending and torsional stiffnesses of the wing respectively.
L and M = M1/4 + L(1/2 + a)b are the distributed lift and moment on the elastic axis respectively. h(y, t)
and α(y, t) are heave and pitch displacements respectively. The aerodynamic load on the cantilever wing is
modeled using Theodorsen’s unsteady aerodynamics based strip theory [41]. According to the strip theory, the
distributed lift and moment at the quarter chord are expressed as:

L = 2πρ∞bUC(k)

(
Uα + ḣ + b

(
1

2
− a

)
α̇

)
+ πρ∞b2

(
ḧ +U α̇ − baα̈

)
(11)

M1/4 = −πρ∞b3
(
1

2
ḧ +U α̇ + b

(
1

8
− a

2

)
α̈

)
(12)

where ρ∞ andU are the free stream density and flow velocity respectively. C(k) is a complex valued function
of reduced frequency k(= bω/U , ω is aeroelastic system frequency), known as Theodorsen’s function.

The global form of finite element equations can be obtained using weak formulation and suitable approx-
imation for heave and pitch displacements, as [40,42]:

(MS + MA) q̈ + (UCA +UC(k)CAω) q̇ + (
KB + KT +U 2C(k)KAω

)
q = 0 (13)

whereMS,KB, andKT are the structural mass, bending stiffness, and torsional stiffness matrices respectively.
MA, UCA, UC(k)CAω, and U 2C(k)KAω are the aerodynamic inertia, aerodynamic damping, frequency-
dependent aerodynamic damping, and frequency-dependent aerodynamic stiffness matrices respectively, and
q is the generalized displacement vector. On substitution of q = q̄ exp (γ t) in Eq. (13), the second order
eigenvalue equation can be obtained as:

(
γ 2 (MS + MA) + γ (UCA +UC(k)CAω) + (

KB + KT +U 2C(k)KAω

))
q̄ = 0 (14)

Here, γ = −ζω + iω = β + iω = Re(γ ) + i Im(γ ) is the complex eigenvalue, and q̄ is the eigenvector of
the aeroelastic system.

3.2 Stochastic modeling

In order to model inherent uncertainty in the aeroelastic system, uncertainty modeling of system parameters
is carried out. Uncertainty in system parameters can be modeled as random variables or random fields. The
variability across the samples is represented by random variable, whereas variability in both physical space
and samples are represented by random fields [43]. In this study, the bending and torsional stiffnesses of the
wing are considered as stochastic parameters.

3.2.1 Random variables

In the stochastic modeling of system parameters as random variables, the uncertain terms can be expanded
using a first-order Taylor series expansion about the design point (r∗, containing N random variables). The
random input terms in Eq. (14) due to uncertain stiffness parameters are expressed as:

KB = K∗
B +

N∑

n=1

∂KB

∂rn
|r∗δrn; KT = K∗

T +
N∑

n=1

∂KT

∂rn
|r∗δrn (15)

where δrn = rn − r∗
n and rn is the nth random variable and (.)∗ denotes the term evaluated at the design point.

Since the input parameters are random, so the response parameters are also random in nature [6]. The response
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quantities such as eigenvalue and eigenvector of the j th mode, as well as frequency dependent Theodorsen’s
function can be expanded using the first-order Taylor series expansion as:

γ j = γ ∗
j +

N∑

n=1

∂γ j

∂rn
|r∗δrn; q̄ j = q̄∗

j +
N∑

n=1

∂q̄ j

∂rn
|r∗δrn

C
(
k j

) = C(k∗
j ) + b

U

N∑

n=1

∂C
(
k j

)

∂k j

∂ Im
(
γ j

)

∂rn
|r∗δrn (16)

where, k j is the reduced frequency of the j th mode. On substituting the random terms from Eqs. (15) and
(16) into Eq. (14) for the j th mode, and separating the zeroth and first order terms, the zeroth and first order
equations can be written as:

Zeroth order:
(
γ ∗
j
2
(MS + MA) + γ ∗

j

(
UCA +UC(k∗

j )C
∗
Aω

)

+
(
K∗

B + K∗
T +U 2C(k∗

j )KAω

))
q̄∗
j = 0 (17)

First order:
(

γ ∗
j
2
(MS + MA) + γ ∗

j

(
UCA +UC(k∗

j )CAω

)
+

(
K∗

B + K∗
T +U 2C(k∗

j )KAω

) )
∂q̄ j

∂rn

+∂γ j

∂rn

(
2γ ∗

j (MS + MA) +UCA +UC(k∗
j )CAω

)
q̄∗
j + ∂ Im

(
γ j

)

∂rn

(
γ ∗
j U

b

U

∂C
(
k j

)

∂k j
CAω

+U 2 b

U

∂C
(
k j

)

∂k j
KAω

)
q̄∗
j = −

(
∂KB

∂rn
+ ∂KT

∂rn

)
q̄∗
j (18)

Multiplying the first order equation by left eigenvector transpose (l q̄∗
j
T
) [44,45], the coefficient matrix of

eigenvector derivative becomes null row vector, the above equation can be written as:

∂γ j

∂rn
l q̄∗

j
T
(
2γ ∗

j (MS + MA) +UCA +UC(k∗
j )CAω

)
q̄∗
j + ∂ Im

(
γ j

)

∂rn
l q̄∗

j
T
(

γ ∗
j U

b

U

∂C
(
k j

)

∂k j
CAω

+U 2 b

U

∂C
(
k j

)

∂k j
KAω

)
q̄∗
j = −l q̄∗

j
T

(
∂KB

∂rn
+ ∂KT

∂rn

)
q̄∗
j (19)

Various terms of Eq. (19) can be represented for obtaining eigenvalue derivatives as [40]:

l q̄∗
j
T
(
2γ ∗

j (MS + MA) +UCA +UC(k∗
j )CAω

)
q̄∗
j = ε + i� (20)

l q̄∗
j
T
(

γ ∗
j U

b

U

∂C
(
k j

)

∂k j
CAω +U 2 b

U

∂C
(
k j

)

∂k j
KAω

)
q̄∗
j = ψ + iϑ (21)

−l q̄∗
j
T

(
∂KB

∂rn
+ ∂KT

∂rn

)
q̄∗
j = η + iϕ (22)

Since γ j = Re(γ j )+ i Im(γ j ) = β j + iω j and substituting it in Eq. (19) with terms represented by Eqs.
(20)–(22), the first order eigenvalue derivatives can be written at the design point as:

∂Re(γ j )

∂rn
= ∂β j

∂rn
= ϕ(ψ − �) − η(ϑ + ε)

�(ψ − �) − ε(ϑ + ε)

∂ Im(γ j )

∂rn
= ∂ω j

∂rn
= η� − ϕε

�(ψ − �) − ε(ϑ + ε)
(23)
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The eigenvalue of the j th mode can also be written as γ j = −ζ jω j + iω j . Hence, the first derivative of
damping ratio of the j th mode at the design point can be expressed as:

∂ζ j

∂rn
= − 1

ω∗
j

(
∂Re

(
γ j

)

∂rn
+ ζ ∗

j
∂ Im

(
γ j

)

∂rn

)

(24)

3.2.2 Random fields

In the present analysis, stiffness parameters are considered as uncertain structural parameters because variability
in stiffness parameters takes care of variation in shape as well as variability in material properties [42]. The
aleatory uncertainty present in random stiffness terms (E I ) and (GJ ) are considered as second order stationary
Gaussian random fields, and represented by their mean and covariance function. A truncated Karhunen–
Loeve expansion is employed for the decomposition of random fields with a known covariance function (κ).
According to the truncated K–L expansion, the random field χ (y, θ) is represented in terms of finite series
having orthonormal random variables in N dimensional space as [46]:

χ (y, θ) = χ +
N∑

n=1

√
λnξn(θ) fn(y) (25)

where χ is the mean of the random field, λn and fn(y) are the nth eigenvalue and eigenfunction respectively
of the covariance kernel represented by Eq. (27). ξn is the standard normal random variable showing the
orthonormal condition with respect to Gaussian measure as E[ξm, ξn] = δmn , where E[ ] and δmn are the
mathematical expectation operator and Kronecker delta function respectively. In this study, the exponential
covariance kernel is adopted because eigenvalues and eigenfunctions of the covariance kernel can be obtained
analytically [6]. The exponential covariance function for the random field can be written as:

κ(y, y1) = σ 2ec|y−y1| (26)

where σ is the standard deviation (SD) of the process and c is the reciprocal of correlation length (lcor ) equal
to the span of the wing (l). The eigenvalue and eigenfunction presented in Eq. (25) can be obtained by solving
Fredholm integral of second kind [47] and is represented in kernel form as:

∫

l
κ(y, y1) fn(y1)dy1 = λn fn(y) (27)

By following the procedure for obtaining eigenvalue and eigenfunction of exponential covariance function
given in [6,47], the eigenvalue can be obtained as:

λn = 2σ 2c

c2 + � 2
n

(28)

where�n is a parameter obtainedby solvingEqs. (29) and (30) for odd and evenvalues of subscript respectively;
and the corresponding eigenfunctions are defined by Eqs. (31) and (32) respectively.

tan

(
�n

l

2

)
− c

�n
= 0 (29)

tan

(
�n

l

2

)
+ �n

c
= 0 (30)

fn(y) = cos(�n y)√
l
2 + sin(�nl)

2�n

(31)

fn(y) = sin(�n y)√
l
2 − sin(�nl)

2�n

(32)
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It is important to note that the eigenvalues are arranged in descending order with increasing n. Since bending
and torsional stiffnesses are treated as random field parameters, the global bending and torsional stiffness
matrices in Eq. (13) can be written as [39,42]:

KB = K̄B +
N∑

n=1

ξn (θ)KB,n (33)

KT = K̄T +
N∑

n=1

ξn (θ)KT,n (34)

where K̄B and K̄T are themean structural bending and torsional stiffnessmatrices respectively;
∑N

n=1 ξn(θ)KB,n

and
∑N

n=1 ξn(θ)KT,n are the random structural bending and torsional stiffness matrices respectively. Conse-
quently, the stochastic finite element equations (Eq. (13)) for random field problem can be written as:

(MS + MA) q̈ + (UCA +UC(k)CAω) q̇ +
(
K̄B +

N∑

n=1

ξn (θ)KB,n

+ K̄T +
N∑

n=1

ξn (θ)KT,n +U 2C(k)KAω

)
q = 0 (35)

Substituting q = q̄ exp (γ t) in Eq. (35), the second-order random eigenvalue equation can be written for
random field problem as:

(
γ 2 (MS + MA) + γ (UCA +UC(k)CAω) +

(
K̄B +

N∑

n=1

ξn (θ)KB,n

+ K̄T +
N∑

n=1

ξn (θ)KT,n +U 2C(k)KAω

))
q̄ = 0 (36)

Express ξn (θ) = ξ∗
n (θ) + δξn(θ) and substitute random response terms from Eq. (16) into Eq. (36) for the j th

mode by modifying notational representation of nth random variable as rn = ξn , and random vector at design
points r∗ = ξ∗. After separating zeroth order and first order terms, the zeroth and first order equations can be
written as:

Zeroth order:

(

γ ∗
j
2
(MS + MA) + γ ∗

j

(
UCA +UC(k∗

j )CAω

)
+

(
K̄B +

N∑

n=1

ξ∗
n (θ)KB,n

+K̄T +
N∑

n=1

ξ∗
n (θ)KT,n +U 2C(k∗

j )KAω

))

q̄∗
j = 0 (37)

First order:

(
γ ∗
j
2
(MS + MA) + γ ∗

j

(
UCA +UC(k∗

j )CAω

)
+

(
K̄B +

N∑

n=1

ξ∗
n (θ)KB,n + K̄T +

N∑

n=1

ξ∗
n (θ)KT,n

+U 2C(k∗
j )KAω

))
∂q̄ j

∂ξn
+ ∂γ j

∂ξn

(
2γ ∗

j (MS + MA) +
(
UCA +UC(k∗

j )CAω

))
q̄∗
j

+∂ Im(γ j )

∂ξn

(
γ ∗
j U

b

U

∂C(k j )

∂k j
CAω +U 2 b

U

∂C(k j )

∂k j
KAω

)
q̄∗
j = − (

KB,n + KT,n
)
q̄∗
j (38)
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Multiplying Eq. (38) by left eigenvector transpose l q̄∗
j
T
[44,45], the coefficient matrix of eigenvector

derivatives becomes zero vector. Equation (38) can be written as:

∂γ j

∂ξn

l q̄∗
j
T

(
2γ ∗

j (MS + MA) +
(
UCA +UC(k∗

j )CAω

))
q̄∗
j + ∂ Im(γ j )

∂ξn

l q̄∗
j
T
(

γ ∗
j U

b

U

∂C(k j )

∂k j
CAω

+U 2 b

U

∂C(k j )

∂k j
KAω

)
q̄∗
j = −l q̄∗

j
T (

KB,n + KT,n
)
q̄∗
j (39)

Various terms of Eq. (39) can be represented similar to Eqs. (20)–(22) for obtaining eigenvalue derivatives as:

l q̄∗
j
T

(
2γ ∗

j (MS + MA) +
(
UCA +UC(k∗

j )CAω

))
q̄∗
j = ε + i� (40)

l q̄∗
j
T

(
γ ∗
j U

b

U

∂C(k j )

∂k j
CAω +U 2 b

U

∂C(k j )

∂k j
KAω

)
q̄∗
j = ψ + iϑ (41)

−l q̄∗
j
T (

KB,n + KT,n
)
q̄∗
j = η + iϕ (42)

Simplifying Eq. (39) using symbolic terms appeared in Eqs. (40)–(42), the eigenvalue derivatives can be
obtained using Eqs. (23) and (24).

4 Aeroelastic reliability methods

In Sect. 3, the mathematical and stochastic models of a wing were discussed, and parameters were modeled as
random variables as well as random fields. The process of obtaining eigenvalue derivatives was also discussed,
which is required for aeroelastic reliability analysis. Reliability refers to a system performing its intended
function over a given period of time under the operating conditions [48]. The aeroelastic instability phenomenon
is obtained from stability conditions (discussed in Sect. 2), hence the limit state function g(r), which is a
boundary between safe and unsafe regions, can be written in implicit form by defining it in conditional sense
as [26,42,49]:

g(r) = ζk(r)|U f lutter=U = 0

= β j (r)βk(r)|U f lutter=U = 0

= Fm(r)|U f lutter=U = 0 (43)

where the indices j and k are equal to 1 and 2 respectively. The probability of failure due to dynamic aeroelastic
instability can be written as:

Pf lutter = P [g(r) ≤ 0] (44)

There are various methods for obtaining Pf lutter such as MCS, FOSM, and FORM. The reliability methods:
MCS, FOSM, and FORM are discussed in the following sections.

4.1 Monte Carlo simulation

The Monte Carlo simulation method is a random sampling technique [50] in which a large number of simu-
lations is required to obtain the desired response with required accuracy level [51]. MCS is used to quantify
uncertainty in response of systems where approximate methods fail to capture it accurately. It is also used for
the validation of approximate methods. The probability of failure (Pf ) due to flutter can be obtained using the
number of samples (ns) satisfying Eq. (44), out of total samples (Ns) at various flow velocities. At a given
flow velocity (U ), the probability of failure can be written as:

Pf lutter = ns
Ns

(45)
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4.2 First order second moment method

In the FOSMmethod, the limit state function represented in Eq. (43) is expanded via Taylor’s series expansion
about the mean value of random variables (ro) truncated to the first order terms at a given flow velocity as
[43,52]:

g(r) = g(ro) +
N∑

n=1

∂g(r)
∂rn

|ro(rn − ron ) (46)

where ron is the mean value of random variable, rn . Taking the mathematical expectation of Eq. (46), the mean
and variance of the limit state function can be written as:

E [g(r)] = g(ro); σ 2
g(r) =

N∑

n=1

(
∂g(r)
∂rn

|ro
)2

σ 2
rn (47)

where σrn is the standard deviation of input random parameter. The reliability index (βR) and the corresponding
probability of failure due to flutter can be written as:

βR = E [g(r)]
σg(r)

; Pf lutter = �(−βR) (48)

where � is the standard normal CDF function.

4.3 First order reliability method

The first order reliability method is an improvement over the FOSM method, in which performance function
is expanded about a design point (r∗) using Taylor’s series expansion. Since the limit state function given in
Eq. (43) is represented in implicit form, a Newton–Raphson based recursive algorithm proposed by Rackwitz
and Fiessler [53] is used. In order to get faster convergence, the algorithm should be defined in the reduced
co-ordinate system (r′), (zero mean and unit variance) and the limit state function can be written as:

g(r′) = 0 (49)

The limit state function can be linearized using the first-order Taylor series expansion as:

g(r′∗
k+1) = g(r′∗

k ) + ���g(r′∗
k )T

(
r′∗
k+1 − r′∗

k

)
(50)

where ���g(r′∗
k ) is the gradient vector of the limit state function at the kth iteration point r′∗

k . The limit state
function becomes zero, if the (k + 1)th design point satisfies the limit state, i.e., g(r′∗

k+1) = 0. By rearranging
the terms of Eq. (50), the (k + 1)th design point can be obtained as:

r′∗
k+1 = 1

|���g(r′∗
k )|2

[
���g(r′∗

k )T r′∗
k − g(r′∗

k )
]
���g(r′∗

k ) (51)

Since the value of the term g(r′∗
k ) is independent of coordinate system, the term in original coordinate system

is g(r∗
k ), Eq. (51) can be written in modified form as:

r′∗
k+1 = 1

|���g(r′∗
k )|2

[
���g(r′∗

k )T r′∗
k − g(r∗

k )
]
���g(r′∗

k ) (52)

The criteria for obtaining convergent design points are described below. In this algorithm, two convergence
criteria are used [42].

(a) If a design point lies beyond the limit set by the user, then the reliability index should be calculated by
using FOSM and the converged design point is the mean value of design point. Here, in the present case
μ ± 6σ is the limit.



6660 S. Kumar et al.

(b) If a design point lies within the prescribed limit set by the user, then the reliability index is computed using
FORM and it runs till convergence on |�βR| and |�g| are satisfied. The convergence criteria depend on
limit state functions as:
• For limit state functions,

ζk(r)|U f lutter=U = 0

β j (r)βk(r)|U f lutter=U = 0 |�βR | ≤ 0.001 and |�g| ≤ 0.0001

• For limit state function, Fm(r)|U f lutter=U = 0, |�βR| ≤ 0.001 and |�g| ≤ 0.01.

The steps of the FORM algorithm to calculate the reliability index are given below.

1. Consider a limit state function from Eq. (43) at a given flow velocity (U ).
2. Calculate the mean and standard deviation of limit state functions considering design points as mean value

of random variables (ro), hence the reliability index using Eq. (48).
3. Assume initial design point (r∗) at rμ−3.5σ of random variables if U < U f else mean value of random

variables (ro), where U f is the mean flutter velocity.
4. Compute the mean (μNorm

rn,k
) and standard deviation (σ Norm

rn,k
) of design point (r∗) at kth iteration in the

equivalent normal space using equivalent normal transformations [54].
5. Compute the gradient of limit state function���g(r) at kth iteration design point (r = r∗

k ).
6. Compute the gradient of limit state function at kth iteration design point in the reduced co-ordinate system

as:���g(r′∗
k )=���g(r∗k ).∗σ , where .∗ and σ are element wise multiplication and a vector of equivalent normal

standard deviation of random parameters.
7. Compute the design point (r′∗

k+1) using Eq. (52).
8. Compute the reliability index (distance from the origin to limit state in the reduced coordinate system) as

βRk+1 =
√

(r′∗
k+1)

T (r′∗
k+1)

and check the condition, if U > U f or alternatively Pf lutter ≥ 0.5 evaluated from Eq. (48), then βRk+1 =
−βRk+1 .

9. Compute the new design point in original space as

r∗
n,k+1 = μNorm

rn,k
+ σ Norm

rn,k
r

′∗
n,k+1

and the limit state function g(r
∗
k+1) corresponding to the new design point rk+1 in the original coordinate

system.
10. Check convergence condition (a). If satisfied, save the value of reliability index and design point computed

in step 2 and go to step 12, else (if k = 1, go to step 4 ) go to the next step.
11. Check convergence condition (b). If satisfied, go to the next step else go to step 4.
12. Save the converged value of reliability index and the corresponding probability of failure using Eq. (48)

for a given flow velocity (U ).

To obtain the CDF (reliability) of flutter velocity, all the above steps are repeated for a range of flow velocities
of interest. It is important to note that for handling random field problem, rn , r and σrn are replaced by ξn , ξ ,
and 1 (due to property of random variable ξn) respectively.

5 Results and discussion

In this section, stochastic aeroelastic stability and flutter reliability analyses of a cantilever wing using various
limit state functions are discussed. Here, the stiffness parameters, E I andGJ are modeled as random variables
and random fields as two separate cases and discussed in Sects. 5.1 and 5.2 respectively.

Themean properties of the wing are given in Table 2. The approximate Theodorsen’s function is taken from
Sazesh and Irani [55]. Figure2 shows the variation of various mean stability parameters with flow velocities
obtained from the perturbation approach. From Fig.2a, it is observed that the mean damping ratio (ζ2) of mode
2, changes its sign and becomes zero at flow velocity 137.38 m/s (hence mean flutter velocity) while for mode
1, the mean damping ratio (ζ1) is always positive. The same mean flutter velocity is observed for other stability
parameters (β1β2 and Fm) as shown in Fig. 2b, c. The present mean flutter velocity of the wing exactly matches
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Table 2 Mean properties of cantilever wing [55]

Parameters Description Values

E I Span-wise bending stiffness 9.77 × 106 N m2

GJ Span-wise torsional stiffness 0.988 × 106 N m2

m Mass per unit span 35.719 kg m−1

xα Dimensionless static unbalance 0.33
a Elastic axis location parameter − 0.2
b Semi-reference chord 0.9144 m
l Span 6.09 m
IQ Mass moment of inertia per unit span 6.5704 kg m2 m−1

ρ∞ Free stream density 1.225 kg m−3

Fig. 2 Variation of mean stability parameters a damping ratios (ζi ), b product of decay rates β1β2, and c flutter margin (Fm)
with flow velocities

with those reported in [55]. From these figures, it can also be noted that the mean damping ratio (ζ2) and mean
decay rates (β1β2) increase initially with flow velocities. After 127m/s, their values decrease rapidly with
flow velocities and reach the flutter point immediately without giving sufficient margin. However, the mean
Fm values decrease gradually with flow velocities and provides a better flutter estimation approach compared
to other stability parameters.
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Table 3 Variation in COVs of stability parameters with flow velocities for 5% COV in E I

COV of ζ2 COV of β1β2 COV of Fm
Perturbation MCS Perturbation MCS Perturbation MCS

Velocity Det. Rand. Det. Rand. Det. Rand.
m/s C(k) C(k) C(k) C(k) C(k) C(k)

100 0.019 0.020 0.020 0.008 0.013 0.012 0.003 0.002 0.002
125 0.038 0.038 0.038 0.022 0.030 0.030 0.023 0.016 0.016
135 0.170 0.137 0.135 0.156 0.130 0.128 0.140 0.104 0.103

Table 4 Variation in COVs of stability parameters with flow velocities for 5% COV in GJ

COV of ζ2 COV of β1β2 COV of Fm
Perturbation MCS Perturbation MCS Perturbation MCS

Velocity Det. Rand. Det. Rand. Det. Rand.
m/s C(k) C(k) C(k) C(k) C(k) C(k)

100 0.007 0.013 0.012 0.006 0.010 0.010 0.161 0.164 0.162
125 0.083 0.080 0.121 0.029 0.038 0.091 0.335 0.361 0.352
135 1.177 1.405 1.714 1.110 1.340 1.919 1.323 1.584 1.486

5.1 Random variables

In this section, the effect of randomvariablemodeling of stiffness parameters: E I andGJ on the aeroelastic
stability and flutter reliability of the cantilever wing is studied. The coefficient of variations (COVs) of stiffness
parameters are considered to be 5%. Table 3 shows the variation in stability parameters at various flow
velocities in the presence of 5% COV in E I obtained from the perturbation approach (with C(k) considered
as deterministic and random quantity in the vicinity of parametric uncertainty) and MCS with 20,000 samples.
From the table, it is observed that the COVs of stability parameters at various flow velocities obtained from
the perturbation approach do not agree with MCS, when C(k) is considered as deterministic. However, the
COVs of stability parameters at various flow velocities obtained from the perturbation approach, when C(k) is
considered as random, agree well with MCS. Table 4 shows the COVs of stability parameters at various flow
velocities in the presence of 5% COV in GJ . From the table, it is observed that at flow velocity U = 100m/s,
the COVs of stability parameters obtained from perturbation agree well with MCS, when C(k) is considered
as random and do not agree with when C(k) is considered as deterministic. At flow velocity 125m/s, there
are some discrepancy in the COVs of stability parameters obtained from the perturbation approach with C(k)
as a random quantity compared with MCS due to change in probabilistic distribution of stability parameters
as shown in Fig. 6. At flow velocity 135m/s, the COVs of stability parameters obtained from the perturbation
approach agree reasonably well with MCS, when C(k) is a random quantity in comparison of C(k) considered
as a deterministic quantity. Hence, for all further studies,C(k) is considered as a random quantity in the vicinity
of parametric uncertainty present in the aeroelastic system.

Figures 3 and 4 show the variation in COVs of stability parameters with flow velocities for 5% COV in E I
and GJ respectively.

From Fig. 3, it is observed that the COVs of stability parameters increase as flow velocity approaches the
mean flutter velocity, and starts decreasing as flow velocity crosses the mean flutter velocity. It is also observed
that the COVs of stability parameters obtained from the perturbation approach agree well with MCS. From
Fig. 4, it is observed that the COVs of stability parameters increase up to the mean flutter velocity after that
start decreasing. It is also noted that there is a slight difference in the mean flutter velocity prediction between
the perturbation approach and MCS.

Next, the PDFs of stability parameters (ζ j , β jβk , and Fm) obtained using the perturbation approach and
MCSalongwith a suitablemodel curve fit (parametric or non-parametric) are studied. In the case of perturbation
approach, the first two moments (mean and standard deviation) of Gaussian density obtained from Eq. (47)
are used to present the PDFs of stability parameters [52]. In the case of MCS, normalized histograms of the
sampled data are used to present the PDFs of stability parameters [52]. Further, a parametric density model fit
(Gaussian model curve fit) of the sampled data is also presented by using the first two moments of Gaussian
density for each stability parameter. In the case of non-parametric density model fit (kernel model curve fit),
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Fig. 3 Variation in COVs of stability parameters a ζ2, b β1β2, and c Fm with flow velocities for 5% COV in E I

Table 5 Skewness and Kurtosis values of stability parameters for 5% COV in E I using MCS

Velocity (m/s) Stability parameters

ζ2(r) β1(r)β2(r) Fm(r)

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

125 0.06 2.98 0.07 3.00 0.27 3.07
135 0.31 3.11 0.29 3.09 0.23 3.05

the sampled data are processed in kernel density estimator having Gaussian kernel to present the PDF of each
stability parameter [57].

Figures 5 and 6 show the PDFs of stability parameters in the presence of 5%COV in E I andGJ respectively
using the perturbation approach and MCS at flow velocities 125m/s (away from the mean flutter velocity) and
135m/s (near to the mean flutter velocity).

It is important to note that the skewness and kurtosis values of distribution indicate about the nature
of probability distribution, i.e., symmetric and peakedness. Ideally for Gaussian distribution (a reference
distribution), the skewness and kurtosis values are 0 and 3 (mesokurtic) respectively. According to Bulmer
[56], if the skewness coefficient is less than −1 or greater than +1, then the distribution is highly skewed. If
skewness coefficient is in between −1 and −0.5 or between 0.5 and +1, then the distribution is moderately
skewed, and if skewness coefficient lies in between −0.5 to +0.5, then the distribution is approximately
symmetric.

The skewness and kurtosis values of the PDFs of stability parameters (as shown in Fig. 5) obtained from
MCS at flow velocities 125m/s and 135m/s are given in Table 5.

From the table, it canbeobserved that the skewness coefficients of stability parameters at bothflowvelocities
lie between −0.5 to +0.5 and kurtosis values are nearly 3. Hence, the distributions of stability parameters are
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Fig. 4 Variation in COVs of stability parameters a ζ2, b β1β2, and c Fm with flow velocities for 5% COV in GJ

Table 6 Skewness and Kurtosis values of stability parameters for 5% COV in GJ using MCS

Velocity (m/s) Stability parameters

ζ2(r) β1(r)β2(r) Fm(r)

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

125 2.62 14.63 −4.47 37.13 0.33 3.19
135 −0.77 3.21 −1.08 4.02 0.20 3.00

Gaussian in nature, and the Gaussian distribution curve fit for MCS data on normalized histogram is shown in
Fig. 5. It is also noted from the figure, there is no negative region bounded by stability parameters at 125m/s
and 135m/s, so there is non-occurrence of flutter phenomenon at these two flow velocities due to 5% COV in
E I .

Similarly, the skewness and kurtosis values of the PDFs of stability parameters (as shown in Fig.6) obtained
from MCS at flow velocities 125m/s and 135m/s are given in Table 6. Since the skewness values of stability
parameters: ζ2 and β1β2 do not lie between −0.5 and +0.5 at both flow velocities, hence the distributions
are not symmetric and also kurtosis values are significantly away from 3.0 except at 135m/s for the stability
parameter ζ2, which is nearly 3. Hence, the Gaussian distribution curve fit is not suitable for parametric
density curve fitting, and a non-parametric distribution curve fit (kernel density estimator having Gaussian
kernel [57]) is considered for fitting MCS data at flow velocities 125m/s and 135m/s for stability parameters
ζ2 and β1β2. However, for the stability parameter Fm , the skewness and kurtosis values are nearly close to
the reference distribution (Gaussian), hence the Gaussian distribution is considered to fit MCS data. From
Fig. 6, it can be seen that at flow velocity 125m/s, there is no negative region bounded by abscissa of stability
parameters. However, at 135m/s, there are negative regions bounded by abscissa of stability parameters, so
flutter phenomenon is encountered in the presence of uncertainty in GJ . From the figure, it is also observed
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Fig. 5 PDFs of stability parameters a ζ2 at 125m/s, b ζ2 at 135m/s, c β1β2 at 125m/s, d β1β2 at 135m/s, and e Fm at 125m/s, f
Fm at 135m/s for 5% COV in E I

that for stability parameters ζ2 and β1β2, the distribution characteristics changes with flow velocity, however
in the case of stability parameter Fm the distribution characteristics is invariant with flow velocity.

Figures 7 and 8 show the CDFs of flutter velocity of the wing obtained from FOSM, FORM, and MCS for
5% COV in E I and GJ respectively for various limit state functions. From Fig. 7, it is observed that the CDFs
of flutter velocity obtained from the FOSM method show small deviation in the lower tail region with MCS
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Fig. 6 PDFs of stability parameters a ζ2 at 125m/s, b ζ2 at 135m/s, c β1β2 at 125m/s, d β1β2 at 135m/s, and e Fm at 125m/s, f
Fm at 135m/s for 5% COV in GJ

for all limit state representations in the presence of uncertainty in E I . However, the CDFs of flutter velocity
obtained from FORM match well with MCS. The flutter velocities corresponding to CDF = 0.01 obtained
from FOSM, MCS, and FORM for various limit states are given in Table 7. The predicted flutter velocity
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Fig. 7 CDFs of flutter velocity of cantilever wing for various limit states a ζ2 = 0, b β1β2 = 0, and c Fm = 0 for 5% COV in
E I using FOSM, MCS and FORM methods: random variable modeling

Table 7 Flutter velocities corresponding to CDF = 0.01 for 5% COV in E I for various limit state functions

Limit states Flutter velocity in m/s

FOSM MCS FORM

ζ2 = 0 136.75 136.85 136.85
β1β2 = 0 136.75 136.85 136.85
Fm = 0 136.80 136.85 136.85

corresponding to CDF = 0.01 using the FOSM method depends on the form of limit state functions, so a lack
of invariance with the FOSM method is observed.

From Fig. 8 in the case of uncertainty in GJ , it is observed that the CDFs of flutter velocity obtained from
the FOSM method do not agree with MCS for limit state functions ζ2 = 0 and β1β2 = 0 particularly in
the lower tail region and agree with MCS for the limit state Fm = 0. However, the CDFs of flutter velocity
obtained from FORM closely agree with MCS for all limit states. The flutter velocity corresponding to CDF
= 0.01 obtained from FOSM, MCS, and FORM for various limit states are shown in Table 8. From the table
it can be observed that the predicted flutter velocity corresponding to CDF = 0.01 using the FOSM method
depends on the form of limit state functions, so a lack of invariance with the FOSM method is observed.

Figure 9 shows the CDFs of flutter velocity of the wing obtained from FORM for various limit state
functions in the presence of uncertainty in E I and GJ . From these figures, it is observed that the CDFs of
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Fig. 8 CDFs of flutter velocity of cantilever wing for various limit states a ζ2 = 0, b β1β2 = 0, and c Fm = 0 for 5% COV in
GJ using FOSM, MCS and FORM methods: random variable modeling

Table 8 Flutter velocities corresponding to CDF = 0.01 for 5% COV in GJ for various limit state functions

Limit states Flutter velocity in m/s

FOSM MCS FORM

ζ2 = 0 131.74 128.78 128.59
β1β2 = 0 132.22 128.78 128.59
Fm = 0 127.64 128.78 128.59

flutter velocity obtained from FORM agree well with each other as well as with MCS. At CDF = 0.01 for 5%
COV in E I , the predicted flutter velocity obtained from FORM for all limit state functions is 136.85 m/s, and
in the case of 5% COV in GJ , the predicted onset flutter velocity corresponding to CDF = 0.01 for all limit
state functions is 128.59 m/s. Hence, the proposed FORM algorithm is able to overcome the lack of invariance
problem in the prediction of flutter velocity. It is also noted that the computation time for the CDF of flutter
velocity using the FORM algorithm for the E I case for various limit state functions ζ2, β1β2, and Fm are 132,
141, and 252s respectively with serial processor using Matlab 2017a on HP Z800 workstation with 24 GB
RAMwhile MCS takes 8h 17min and 16s with 4 cores parallel processor. Hence, the FORM algorithm works
efficiently and effectively.
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Fig. 9 CDFs of flutter velocity of cantilever wing for 5% COV in a E I , b GJ for various limit state functions using FORM and
MCS: random variable modeling

Fig. 10 a Eigenvalues, b eigenfunctions of covariance kernel

5.2 Random fields

In the previous section, stochastic aeroelastic stability and flutter reliability analyses of a cantilever wing
were performed by modeling stochastic parameters as random variables. In this section, reliability analysis of
the wing is presented in which stiffness parameters are modeled as Gaussian random fields.

Figure10 shows the eigenvalues and eigenfunctions of exponential covariance kernel, which are used for
approximating Gaussian random fields. Figure10a shows the eigenvalues of covariance kernel with various
correlation lengths. From the figure, it is observed that, as correlation length increases, eigenvalues decay
rapidly with increasing index, n. Figure10b shows the first four eigenfunctions corresponding to lcor = l.
Figure11 shows the variation in COVs of various stability parameters with number of K–L expansion terms at
flow velocity 125m/s for correlation length l. From the figure, it is observed that the COVs of various stability
parameters converge from second terms onward. In further studies, the number of K–L expansion terms and
correlation length considered are 4 and l respectively.

Figures 12 and 13 show the CDFs of flutter velocity of the wing obtained fromFOSM, FORM, andMCS for
5%COV in E I andGJ respectively, modeled as randomfields for various limit state functions. From Fig. 12, it
is observed that the CDFs of flutter velocity obtained using the FOSMmethod for all limit state functions show
small deviation in the lower tail region with MCS in the presence of uncertainty in E I . However, the CDFs
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Fig. 11 Convergence of stability parameters due to 5% COV in a E I and b GJ with number of K–L expansion terms

Fig. 12 CDFs of flutter velocity of cantilever wing for various limit states a ζ2 = 0, b β1β2 = 0, and c Fm = 0 for 5% COV in
E I using FOSM, MCS and FORM methods: random field modeling
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Table 9 Flutter velocities corresponding to CDF = 0.01 for 5% COV in E I for various limit state functions

Limit states Flutter velocity in m/s

FOSM MCS FORM

ζ2 = 0 136.81 136.90 136.90

β1β2 = 0 136.82 136.90 136.90

Fm = 0 136.85 136.90 136.90

Fig. 13 CDFs of flutter velocity of cantilever wing obtained for limit states a ζ2 = 0, b β1β2 = 0, and c Fm = 0 for 5% COV in
GJ using FOSM, MCS and FORM methods: random field modeling

of flutter velocity obtained from FORM agree well with MCS. The flutter velocities corresponding to CDF =
0.01 obtained from FOSM, MCS, and FORM for various limit states are given in Table 9. The predicted flutter
velocity corresponding to CDF = 0.01 using the FOSM method depends on the form of limit state functions,
so a lack of invariance with the FOSM method is observed.

From Fig. 13 in the case of probabilistic uncertainty in GJ , it is observed that the CDFs of flutter velocity
obtained from the FOSM method do not agree with MCS for limit state functions ζ2 = 0 and β1β2 = 0
particularly in the lower tail region, and agree for the limit state Fm = 0. However, the CDFs of flutter velocity
obtained from FORM closely agree with MCS for all limit states. The flutter velocities corresponding to CDF
= 0.01 obtained from FOSM, MCS, and FORM for various limit state functions are shown in Table 10. The
onset of flutter velocity corresponding to CDF = 0.01 using the FOSM method depends on the form of limit
state functions, so a lack of invariance in the prediction with the FOSM method is observed.
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Table 10 Flutter velocities corresponding to CDF = 0.01 for 5% COV in GJ for various limit state functions

Limit states Flutter velocity in m/s

FOSM MCS FORM

ζ2 = 0 132.18 129.77 129.67

β1β2 = 0 132.58 129.77 129.67

Fm = 0 129.11 129.77 129.67

Fig. 14 CDFs of flutter velocity of cantilever wing for 5% COV in a E I , b GJ for various limit state functions using FORM and
MCS: random field modeling

Figure 14 shows the CDFs of flutter velocity of the wing using FORM for various limit state functions in
the presence of uncertainty in E I and GJ using random field model. From these figures, it is observed that the
CDFs of flutter velocity obtained from FORM agree well with each other and also with MCS. At CDF = 0.01
for 5% COV in E I , the predicted onset flutter velocity obtained from FORM for all limit state functions is
136.90 m/s. Similarly, in the case of 5% COV in GJ , the predicted onset flutter velocity corresponding to CDF
= 0.01 obtained from FORM for all limit state functions is 129.67 m/s. Hence, the proposed FORM algorithm
is able to overcome the lack of invariance problem in the prediction of flutter velocity that was noticed using the
FOSMmethod. It is also observed that the computation time for obtaining CDF data using the proposed FORM
algorithm in the case of E I for limit state functions ζ2, β1β2, and Fm are 239, 252, and 352s respectively with
serial processor using Matlab 2017a on HP Z800 workstation with 24 GB RAM while MCS takes 8h 19min
and 3s with 4 cores parallel processors for all three limit state functions handled together. Hence, the FORM
algorithm works efficiently and effectively.

Figure15 shows the comparison of CDFs of flutter velocity of the wing using random variable and random
field modeling approaches for various stiffness parameters. The effect of increasing correlation length (char-
acteristic parameters) on the CDF of flutter velocity of the wing is also shown in the figure. It can be observed
that, as the correlation length increases, the CDF of flutter velocity of the wing approaches random variable
case. Here, the flutter onset velocity predicted using random variable model is lower than random field model
in the lower tail region of CDF. Hence, a conservative estimate of flutter velocity is obtained using random
variable modeling approach.

6 Conclusions

In this paper, the stochastic aeroelastic stability and flutter reliability of a wing are presented in the frequnecy
domain. Various stability conditions are proposed for obtaining flutter onset in aeroelastic systems in the
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Fig. 15 Comparison of CDFs of flutter velocity of cantilever wing with parameters modeled as random variables and random
fields for 5% COV in a E I , b GJ for various correlation lengths using FORM

presence of uncertainties. The stability conditions are treated as limit state functions for flutter reliability
analysis. A general FORM algorithm is developed for flutter reliability analysis of a cantilever wing having
parametric uncertainties treated as either random variables or random fields. The developed FORM algorithm
is computationally efficient in comparison to MCS and shows invariance characteristics in predicting the CDF
of flutter velocity. Further, the CDFs of flutter velocity obtained with increasing correlation lengths of random
field move towards random variable modeling case. It is also observed that the CDF value in the lower tail
region using random field model is always less than random variable model at a given flow velocity. Among all
the stability conditions, flutter margin shows the best representation of flutter onset condition from uncertainty
quantification point of view, because its distribution characteristics (skewness and kurtosis values) don’t change
significantly with flow velocities and random parameters.
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