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Abstract The transmissibility of the forced resonance for the nonlinear vibration isolation system (VIS) cou-
pled with quasi-zero stiffness (QZS) and quadratic damping under base excitation are investigated. By utilizing
the averaging method, the approximate analytical solutions of primary resonance (PR) and 1/3 subharmonic
resonance (SR) for the nonlinear vibration isolator with QZS and quadratic damping are acquired. Employing
Lyapunov’s first method, the stability conditions of steady-state solutions for the nonlinear VIS with QZS and
quadratic damping are determined. According to the derived conditions for the existence of subharmonic res-
onance, it is proved that when the considered nonlinear VIS has subharmonic resonance, it only exists within
a certain excitation frequency range. The accuracy of the approximate analytical solutions for the amplitude-
frequency response, force transmissibility, and relative displacement transmissibility of the PR and SR of the
nonlinear VIS is confirmed by comparing them with the numerical results. The effects of QZS and quadratic
damping on transmissibility of both force and relative displacement of nonlinear VIS have been discussed.
The analysis results indicate that by choosing the appropriate QZS parameter or quadratic damping coefficient,
the subharmonic resonance of the nonlinear VIS under a certain base excitation can be completely eliminated.
When the amplitude of the base excitation increases to the extent that the system exhibits significant resonance
behavior, for the same coefficient value, the nonlinear VIS coupled with QZS and quadratic damping can
achieve smaller initial vibration isolation frequency and better amplitude suppression effect than that with
linear damping.

1 Introduction

One of the widely utilized vibration control techniques in engineering is passive vibration isolation. Nonlinear
vibration isolation systems (VIS) have drawn a lot of interest from academics because they can provide
superior vibration isolation properties than linear isolation systems [1–7]. Ibrahim [8] thoroughly evaluated
the development and application of nonlinear vibration isolators under different external excitation. Lu and
Chen [9] summarized the research and development of nonlinear vibration isolation theory and application
recently and introduced in detail the VIS with high-static-low-dynamic stiffness and its coupling form with
nonlinear damping. Ji et al. [10] reviewed the dynamics of mechanical metamaterials and origami structures
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along with some applications in vibration and sound control. Jing [11] reviewed the development of X-
structure/mechanism,which can provide high-static ultra-low dynamic stiffness, geometric nonlinear damping,
and low-static high-dynamic nonlinear inertia respectively or synchronously.

Many academics are interested in the nonlinear VIS with quasi-zero stiffness (QZS), which may accom-
plish broadband vibration isolation features in terms of vibration isolation with nonlinear stiffness. Scholars
mainly study the different structural realization forms within nonlinear VIS with QZS and the improvement of
vibration isolation performance. Among them, the implementation of negative stiffness structure mainly relies
on pre-compressed mechanical springs, magnetic or electromagnetic springs, air springs, and so on. Scholars
have conducted in-depth research on the VIS with QZS containing mechanical springs. Carrella et al. [12,
13] analyzed the statics characteristics of a nonlinear VIS with QZS, and derived the force transmissibility of
its main resonance, where the QZS is composed of a vertical linear stiffness spring and dual oblique springs
with linear stiffness. Zhou et al. [14] suggested a passive VIS with QZS by combining V-shaped lever, plate
spring and cross-shaped structure vibration isolation platform, and discussed the static and dynamical mechan-
ical properties of the VIS. Wen et al. [15] designed a nonlinear VIS with QZS by using a mechanism with
six objective springs and a coil spring, and adopted the semi-active control strategy to expand the effective
displacement range of the system. Shaw et al. [16] proposed a simple VIS with QZS, which consists of two
adjusters with adjustable stiffness and static load. To achieve superior ultra-low frequency vibration isolation
characteristics, Wang et al. [17] put two subordinate QZS mechanisms in parallel with a vertical connecting
rod, and constructed a new ultra-low-frequency VIS with QZS. Suman et al. [18] used QZS to construct a
nonlinear vehicle suspension, where the negative stiffness is constructed through the inclined spring. Chen
et al. [19] utilize a positive stiffness configuration consisting of a pair of torsion springs, diagonal rods, and
linear bearings, parallel to the negative stiffness provided by the diagonal rods connected to the linear spring
in the direction perpendicular to motion, to expand the effective displacement range of QZS. Zhao et al. [20]
presented a design of QZS isolator with three pairs of linear oblique springs. On the research of achieving
QZS bymagnetic springs [21–23] or electromagnetic springs [24–26], scholars have also mademany attempts.
Some scholars have also studied the use of air springs to construct quasi-zero stiffness [27, 28]. In addition,
there are some hybrid springs to achieve negative stiffness for QZS [29, 30].

In order to achieve amplitude attenuation and reduce the force transmissibility of the VIS in the effective
vibration isolation frequency band, the main methods currently used are dynamic vibration absorbers [31–33]
and nonlinear damping for vibration reduction. In the research of nonlinear damping,Yan et al. [34] summarized
the progress of nonlinear damping of electromagnetic mechanisms for QZS vibration isolators. Ma and Yan
[35] performed theoretical modeling and parameter analyses on the mass and damping effects of the nonlinear
electromagnetic shunt damping for the nonlinear VIS with permanent magnets. Huang et al. [36] investigated
the transmissibility of a VIS with non-polynomial form restoring force and real-power exponent fractional
damping under time-delayed cubic velocity feedback control. Ho et al. [37] designed of a single-degree-of-
freedom nonlinear VIS with QZS and cubic damping, and explored its vibration isolation performance via the
harmonic balance method. Dong et al. [38] designed a new QZS isolator coupled with geometric nonlinear
damping, which is realized by semi-active electromagnetic shunt damping, and studied the low-frequency
vibration isolation performance of the isolator subjected to base excitation. Gao and Teng [39] presented a
hydropneumatic VIS with high-static low-dynamic stiffness to isolate the low-frequency disturbance vibration
of heavy machinery. The designed VIS includes bellows structure, fluid damping and friction damping, and its
vibration isolation transmissibility is studied via the harmonic balance method. According to Lv and Yao [40],
damping coefficients have an impact on the PR’s force and displacement transmissibility of the VIS. They
also examined the vibration isolation performance of the VIS with nth power viscous damping under force
excitation. Cheng et al. [41] analyzed the PR’s transmissibility of both the force and displacement of the QZS
system with geometric nonlinear damping by applying the averaging method. Liu et al. [42] presented a QZS
isolator with cam-roller structure and horizontal damping and discussed its vibration isolation performance for
low-frequency excitation by using the harmonic balance method. Peng et al. [43] explored the impact of cubic
nonlinear damping on the displacement transmissibility and force transmissibility of passive VIS by using the
harmonic balance method. Lu et al. [44] assessed the vibration isolation performance of QZS isolators for
single-stage and two-stage with nonlinear damping formed by horizontal linear damping with that of isolators
with linear viscous damping only, and discovered that isolators with nonlinear damping have superior vibration
isolation performance under high-frequency force excitation.
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Fig. 1 System model of nonlinear VIS

In a nonlinear VIS with QZS, the nonlinear stiffness introduced by the realization of the QZSmay cause the
secondary resonance of the system under single-frequency excitation. For example, Liu and Yu [45] studied
the superharmonic resonance of the nonlinear VIS with QZS induced by force excitation. In addition, the
engineering implementation of quadratic damping is relatively simple, and it can be realized by hydraulic
damper under the assumption of ignoring the compressibility of the fluid [39, 46]. Moreover, the quadratic
damping can effectively suppress resonance amplitude without deteriorating the absolute displacement trans-
missibility in the high-frequency region [39]. Therefore, this paper focuses on the transmission characteristics
of displacement and force for the PR and 1/3 subharmonic resonance (SR) of nonlinear VIS with QZS caused
by the base displacement excitation, and uses the quadratic damping to passively control the resonance of
nonlinear VIS. In Sect. 2, the considered system model of nonlinear VIS with QZS and quadratic damping
is exhibited. In Sect. 3, PR’s approximate analytical solution for the nonlinear VIS with QZS and quadratic
damping is resolved through the averaging method. Moreover, this section includes a derivation of the stability
conditions of the steady-state solution. The approximate analytical solution of SR of the nonlinear VIS with
QZS and quadratic damping is obtained in Sect. 4, and the existence and stability conditions of the steady-state
periodic solution of SR for the nonlinear VIS with QZS and quadratic damping are derived. In Sect. 5, the
transmissibility of both force and relative displacement for PR and SR of the nonlinear VIS are deduced. In
Sect. 6, the findings are compared with numerical solutions to validate the applicability of the approximate
analytical solutions of the PR and SR. In Sect. 7, the amplitude attenuation and force isolation effect of QZS
parameter and quadratic damping are analyzed.

2 System model

The considered nonlinear VIS with QZS and quadratic damping is displayed in Fig. 1. The quadratic damping
is an important kind of damping caused by fluid or gas motion, which can be achieved through hydraulic
dampers [47, 48]. In the system, m indicates the mass,c andc1 indicate the linear viscous damping coefficient
and the quadratic damping coefficient, respectively, k and k1 represent the linear stiffness coefficients of the
vertical spring and two horizontal springs, respectively. Lh represents the horizontal spring’s length when the
mass is at the static balance position, and the original length of the horizontal spring is L0. x0 � A cosωt is
the displacement excitation from the base with amplitude A and angular frequency ω.

Let y � x − x0, the elastic restoring force provided by two horizontal springs in the vertical direction can
be represented as

fh � 2k1

⎛
⎝1 − L0√

L2
h + y2

⎞
⎠y. (1)

Accordingly, the motion equation of the nonlinear VIS with QZS and quadratic damping under base
excitation is given by

mẍ � Fr, (2a)
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Fr � −cẏ − c1 ẏ
2sgn(ẏ) − ky − fh, (2b)

where Fr is the resultant force transferred to the mass. And substitute x � y + x0 into Eq. (2a), which can
be reformulated as

mÿ − Fr � mAω2 cos(ωt). (3)

For Lh � 0.7L0 and y ≤ 0.2L0, Eq. (1) can be approximately expressed as [49]

fh ≈ 2k1

(
1 − L0

Lh

)
y +

L0

L3
h

k1y
3. (4)

Considering the following parameter transformation:ω2
0 � k

/
m, εκ � 2

(
1 − L0

/
Lh
)
k1
/
m, εμ � c/m,

εζ � c1
/
m,εα � k1L0

/(
mL3

h

)
, εg � Aω2, and εis small parameter, then Eq. (3) can be approximately

expressed as.

ÿ + ω2
0 y � εg cos(ωt) − ε

[
κy + μẏ + ζ ẏ2sgn(ẏ) + αy3

]
. (5)

By introducing the small parameter for parameter transformation, Eq. (5) formally meets the solving
requirements of the averaging method.

3 Primary resonance

Firstly, the PR’s approximate analytical solution of the nonlinear VIS under base excitation is solved through
the averaging method, and the stability of the steady-state solution is judged.

3.1 Approximate analytical solution

Consider the PR of nonlinear VIS with QZS and quadratic damping. By introducing

ω2 � ω2
0 + εσ1, (6)

and Eq. (5) can be re-expressed as

ÿ + ω2y � εP11 + εP12, (7a)

P11 � g cos(ωt) + (σ1 − κ)y − μẏ − αy3, (7b)

P12 � −ζ ẏ2sgn(ẏ). (7c)

The approximate periodic solution of Eq. (7a) is assumed as
{
y � a cosψ

ẏ � −aω sinψ
. (8)

In Eq. (8), ψ � ωt + θ , a and θ are slowly changing functions with respect to time.
By applying the averaging method, one could get

ȧ � − ε

Tω

∫ T

0
(P11 + P12) sinψdt , (9a)

aθ̇ � − ε

Tω

∫ T

0
(P11 + P12) cosψdt , (9b)

where T � 2π
/

ω.
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And the first part of Eq. (9) can be calculated as follows

ȧ1 � − ε

2πω

∫ 2π

0
P11 sinψdψ

� − ε

2πω

∫ 2π

0
[g cos(ϕ − θ) + (σ1 − κ)a cosψ

+μaω sinψ − αa3 cos3 ψ
]
sinψdψ

� − εμa

2
− εg

2ω
sin θ

, (10a)

aθ̇1 � − ε

2πω

∫ 2π

0
P11 cosψdψ

� 3εαa3

8ω
− aε(σ1 − κ)

2ω
− εg

2ω
cos θ

. (10b)

Assuming that a > 0, the second part of Eq. (9) can be obtained as

ȧ2 � − ε

2πω

∫ 2π

0
P12 sinψdψ

� − εζa2ω

2π

∫ π

0

(
sin2 ψ

)
sinψdψ

− εζa2ω

2π

∫ 2π

π

(− sin2 ψ
)
sinψdψ

� − 4εζa2ω

3π

, (11a)

aθ̇2 � − ε

2πω

∫ 2π

0
P12 cosψdψ � 0. (11b)

For a < 0, a similar calculation can be carried out. Finally, the second part of Eq. (9) can be uniformly
expressed as

ȧ2 � −4εζa3ω

3π |a| , (12a)

aθ̇2 � 0. (12b)

Substituting the original variables of the nonlinear VIS into Eqs. (10) and (12) to replace the variables with
ε, and then substituting Eqs. (10) and (12) into Eq. (9), one could get

ȧ � − ca

2m
− 4c1a3ω

3πm|a| − Aω

2
sin θ , (13a)

aθ̇ � −a
(
mω2 − k2

)
2mω

+
3k3a3

8mω
− Aω

2
cos θ , (13b)

where k2 � k + 2
(
1 − L0

/
Lh
)
k1 and k3 � k1L0

/
L3
h.

3.2 Steady-state solution and its stability

Let ȧ � 0 and θ̇ � 0 in Eq. (13), the steady-state motion equation for the PR of the nonlinear VIS with QZS
and quadratic damping can be acquired as

caω +
8c1a3ω2

3π |a| � −mAω2 sin θ , (14a)

aQ1 � −mAω2 cos θ , (14b)
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where Q1 �
[
mω2 − k2 − 3k3a2

4

]
. And a is the amplitude of steady-state solution, θ is the phase of steady-state

solution of PR.
According to Eq. (14), the amplitude-frequency equation and phase-frequency equation of the PR for the

nonlinear VIS with QZS and quadratic damping can be obtained as

a2Q2
1 + a2ω2

(
c +

8c1a2ω

3π |a|

)2

� m2A2ω4, (15a)

tan θ � cω + 8c1a2ω2

3π |a|
Q1

. (15b)

From Eq. (15a), the equivalent natural frequency of the system is 0, as a result of the QZS makes k2�0 by
introducing negative linear stiffness. The quadratic damping affects the amplitude-frequency response of the
PR of the system, which is related to the excitation frequency and amplitude, and the larger the amplitude, the
larger the damping value.

Next, analyze the stability condition of the steady-state periodic solution of the nonlinear VIS with QZS
and quadratic damping. Let a � a +�a and θ � θ +�θ , and substitute them into Eq. (13). And the linearized
equations can be gained as

d�a

dt
� −

(
c

2m
+
8c1a2ω

3πm|a|

)
�a − Aω cos θ

2
�θ , (16a)

d�θ

dt
�
(
3k3a

4mω
+

Aω

2a2
cos θ

)
�a +

Aω sin θ

2a
�θ. (16b)

By applying Eq. (14) to eliminate the trigonometric functions in Eq. (16), the characteristic equation of
the PR of the nonlinear VIS is obtained as

det

⎡
⎢⎣

− c

2m
− 2S2 − λ

aQ1

2mω

S1 − Q1

2mωa
− c

2m
− S2 − λ

⎤
⎥⎦ � 0, (17)

where S1 � 3k3a
4mω

, S2 � 4c1a2ω
3πm|a| .

Expanding the characteristic determinant in Eq. (17), it can be re-expressed as

λ2 +
( c

m
+ 3S2

)
λ +

c2

4m2 + 2S22 +
3cS2
2m

− S1aQ1

2mω
+

Q2
1

4m2ω2 � 0. (18)

Because of c/m + 3S2 > 0, the necessary and sufficient condition for asymptotic stability of PR of the
nonlinear VIS with QZS and quadratic damping will yield to

c2

4m2 + 2S22 +
3cS2
2m

− S1aQ1

2mω
+

Q2
1

4m2ω2 > 0. (19)

4 Subharmonic resonance

By taking the SR response of the nonlinear VIS with QZS and quadratic damping as an increment, the
approximate analytical solution for the SR of the system is computed through the averaging method, and the
existence and stability conditions of the SR steady-state solution are presented.
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4.1 Approximate analytical solution

In order to calculate the SR response, the incremental equation of nonlinear VIS is obtained based on the PR
response of the system under base excitation. Let

{
y � a cosψ + u

ẏ � −aω1 sinψ + u̇
, (20)

and substitute Eq. (20) into Eq. (5). Simplifying it by using the approximate periodic solution of the PR for
the nonlinear VIS under base excitation and eliminating its same order harmonic terms, it can be transformed
into

ü +
1

9
ω2u � ε[P21 + P22], (21a)

P21 � σ2u − κu − μu̇ − α(a cosψ + u)3 +
3

4
αa3 cosψ , (21b)

P22 � − ζ (−aω sinψ + u̇)2sgn(−aω sinψ + u̇)

+ ζ (−aω sinψ)2sgn(−aω sinψ)
, (21c)

where εσ2 � ω2
/
9 − ω2

0.
The periodic solution of Eq. (21a) is assumed as

u � b cosϕ, (22a)

u̇ � −bω

3
sin ϕ, (22b)

where ϕ � ω
3 t + ϑ .

On the basis of averaging method, one could get

ḃ � − 3ε

T1ω

∫ T1

0
(P21 + P22) sin ϕdt , (23a)

bϑ̇ � − 3ε

T1ω

∫ T1

0
(P21 + P22) cosϕdt , (23b)

where T1 � 6π
/

ω.
For the first part of Eq. (23), one could have

ḃ1 � − 3ε

2πω

∫ 2π

0
P21 sin ϕdϕ

� − 3ε

2πω

∫ 2π

0

{
(σ2 − κ)b cosϕ +

1

3
μbω sin ϕ

− α[a cos(3ϕ − 3ϑ + θ) + b cosϕ]3

+
3

4
αa3 cos(3ϕ − 3ϑ + θ)

}
sin ϕdϕ

� − εμb

2
− 9εαab2

8ω
sin(θ − 3ϑ)

, (24a)

bϑ̇1 � − 3ε

2πω

∫ 2π

0
P21 cosϕdϕ

� 9εαb

8ω

(
2a2 + b2

) − 3bε(σ2 − κ)

2ω

+
9εαab2

8ω
cos(θ − 3ϑ)

. (24b)
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To solve the second part of Eq. (23), expand the sign function using the first-order Taylor formula [50]:

sgn(z + �z) � sgn(z) + 2δ(z)�z, (25)

where δ(z) represents the Dirac delta function. It should be noted that only when �z → 0, the error of the
first-order Taylor formula expansion can tend to 0.

When |u̇| is small relative to |aω sin ϕ|, according to Eq. (25), P22 can be approximated as

P22 � − ζ
[−2u̇aω sinψ + u̇2

]
sgn(−aω sinψ)

− 2ζ (−aω sinψ + u̇)2δ(−aω sinψ)u̇
. (26)

By using the Fourier series expansion, the Dirac function in Eq. (26) can be expanded as.

δ(−aω sinψ) � v0 +
∞∑
n�1

(vn cos nψ + wn sin nψ), (27)

where v0, vn and wn are the Fourier coefficients. And the period of this function is T2 � π/ω.
The Fourier coefficients in Eq. (27) can be calculated as follows

v0 � 1

T2

∫ T2/2

−T2/2
δ(−aω sinψ)dt

� 1

π|a|ω
∫ π/ 2

−π/ 2
δ(sinψ)dψ

� 1

π|a|ω
∫ 1

−1

δ(sinψ)

cosψ
dsinψ

� 1

π|a|ω

, (28a)

vn � 2

T2

∫ T2/2

−T2/2
δ(−aω sinψ) cos nψdt

� 2

π|a|ω
∫ 1

−1

δ(sinψ)

cosψ
cos nψd sinψ

� 2

π|a|ω

, (28b)

wn � 2

T2

∫ T2/2

−T2/2
δ(−aω sinψ) sin nψdt � 0. (28c)

Therefore, Eq. (27) can be re-expressed as

δ(−aω sinψ) � 1

π|a|ω +
2

π|a|ω
∞∑
n�1

cos(nψ). (29)

Similarly, the sign function in Eq. (26) can be expanded by Fourier series, which is

sgn(−aω sinψ) � − 4a

(2n+1)π|a|
∞∑
n�0

sin[(2n+1)ψ]. (30)

Substituting Eq. (29) and Eq. (30) into Eq. (26), and calculating the second part of Eq. (23), we can get

ḃ2 � − 3ε

2πω

∫ 2π

0
P22 sin ϕdϕ

� − 2εζa2bω

π |a| − εζb3ω

12π |a| +
εζab2ω

6π |a| cos(θ − 3ϑ)

, (31a)
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bϑ̇2 � − 3ε

2πω

∫ 2π

0
P22 cosϕdϕ

� εζab2ω

6π |a| sin(θ − 3ϑ)

. (31b)

Combining Eqs. (24) and (31), and replacing the variables with ε by the original system parameters of the
nonlinear VIS with QZS and quadratic damping, one could have

ḃ � − cb

2m
− 9ab2k3

8mω
sin(θ − 3ϑ) − 2c1a2bω

πm|a| − c1b3ω

12πm|a| +
c1ab2ω

6πm|a| cos(θ − 3ϑ), (32a)

bϑ̇ � 9bk3
(
2a2 + b2

)

8mω
− 3b

(
mω2

/
9 − k2

)

2mω
+
9ab2k3
8mω

cos(θ − 3ϑ) +
c1ab2ω

6πm|a| sin(θ − 3ϑ). (32b)

4.2 Steady-state solution of SR

The steady-state motion amplitude and phase of the SR of the nonlinear VIS with QZS and quadratic damping
are denoted as b and ϑ , respectively. Let ḃ � 0 and ϑ̇ � 0 in Eq. (32), the steady-state equations of motion of
the nonlinear VIS are obtained as

Q2 � b

√(
9ak3
4

)2

+

(
c1ω2

3π

)2

cos
(
θ − 3ϑ + β

)
, (33a)

Q3 � b

√(
9ak3
4

)2

+

(
c1ω2

3π

)2

sin
(
θ − 3ϑ + β

)
. (33b)

where Q2 � cω + 4c1a2ω2

π |a| + c1b
2
ω2

6π |a| , Q3 � 3
(
mω2

9 − k2
)

− 9k3
(
2a2+b

2
)

4 ,

β � arctan (27k3π|a|)/(4c1ω2
)
.

Accordingly, the amplitude-frequency and phase-frequency response equation for the SR of the nonlinear
VIS can be expressed as

Q2
2 + Q2

3 � b
2

(
81a2k23
16

+
c21ω

4

9π2

)
, (34a)

tan
(
θ − 3ϑ + β

) � Q3

Q2
. (34b)

From Eq. (34a), the role of the quadratic damping on the SR amplitude-frequency response is related to
the excitation frequency and the resonance amplitude.

Therefore, the approximate analytical solution of the SR of the nonlinear VIS with QZS and quadratic
damping is rewritten as

y � a cos
(
ωt + θ

)
+ b cos

(
ωt
/
3 + ϑ

)
, (35)

where, the values of a and θ can be solved according to Eq. (15), while the values of b and ϑ can be determined
by Eq. (34).
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4.3 Existence conditions and stability conditions

Firstly, the existence conditions of SR steady-state solution of nonlinear VIS are deduced. Let z � b
2
, the

amplitude-frequency equation of the nonlinear VIS is rearranged to

A1z
2 + B1z + C1 � 0, (36)

where A1 � c21ω
4

36π2a2
+

81k23
16 , B1 � c1cω3

3π |a| +
11c21ω

4

9π2 − 3k3
2

(
mω2 − 9k2

)
+

243k23a
2

16 , C1 �
(
cω + 4c1a2ω2

π |a|
)2

+ 9
(
mω2

9 − k2 − 3k3a2

2

)2
.

According to the conditions for the existence of positive real roots of univariate quadratic algebraic equa-
tions, it can be obtained that the necessary conditions for the existence of SR of the nonlinear VIS with QZS
and quadratic damping is

3

2

(
mω2 − 9k2

)
>

c1cω3

3π |a|k3 +
11c21ω

4

9π2k3
+
243k3a2

16
, (37a)

[
c1ω2

9πa

(
mω2 − 9k2

)
+

9πa

2c1ω2 Q4

]2
<� 81π2a2Q2

4

4c21ω
4

+

(
c1cω3

3π |a| +
11c21ω

4

9π2 +
243k23a

2

16

)2

−
(

c21ω
4

9π2a2
+
81k23
4

)(
cω +

4c1a2ω2

π |a|

)2

− 9k23c
2
1ω

4a2

4π2 − 6561k43a
4

16

,

(37b)

where Q4 � 8c21ω
4k3

3π2 + k3c1cω3

π|a| − 243k33a
2

16 . It can be seen from Eq. (37) that when there is SR in the nonlinear
VIS with QZS and quadratic damping, it only exists in a certain excitation frequency range.

Then, investigate the stability of the steady-state solution of SR for the nonlinear VIS. Substituting b �
b + �b and ϑ � ϑ + �ϑ into Eq. (32), the linearized equations can be attained as

d�b

dt
� U1�b +U2�ϑ , (38a)

d�ϑ

dt
� U3�b +U4�ϑ , (39b)

where U1 � −
(

c
2m + 2c1a2ω

πm|a| + c1b
2
ω

4πm|a|
)

− 9abk3
4mω

sin
(
θ − 3ϑ

)
+ c1abω

3πm|a| cos
(
θ − 3ϑ

)
,

U2 � 27ab
2
k3

8mω
cos

(
θ − 3ϑ

)
+ c1ab

2
ω

2πm|a| sin
(
θ − 3ϑ

)
,

U3 � 9k3b
4mω

+ 9ak3
8mω

cos
(
θ − 3ϑ

)
+ c1aω

6πm|a| sin
(
θ − 3ϑ

)
,

U4 � 27abk3
8mω

sin
(
θ − 3ϑ

) − c1abω
2πm|a| cos

(
θ − 3ϑ

)
.

The characteristic equation of the SR of nonlinear VIS is further obtained as

det

[
U1 − λ2 U2
U3 U4 − λ2

]
� 0. (39)

By expanding the characteristic determinant, the characteristic equation of SR of nonlinear VIS with QZS
and quadratic damping can be rewritten as

λ22 − (U1 +U4)λ2 +U1U4 −U2U3 � 0, (40)

where U1 +U4 � − c
m − 4c1a2ω

πm|a| − c1b
2
ω

3πm|a| .

Since−(U1 +U4) > 0, it can be obtained that the asymptotic stability condition of the steady-state solution
for the SR of the nonlinear VIS with QZS and quadratic damping is

U1U4 −U2U3 > 0. (41)
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5 Transmissibility of primary resonance and subharmonic resonance

On the basis of the dynamic motion equation of the nonlinear VIS displayed in Fig. 1, the resultant force
transmitted from the foundation to the mass block is Fr. Therefore, the force transmissibility and relative
displacement transmissibility of the nonlinear VIS exposed to the base excitation can be obtained by

η f � ‖Fr‖∥∥mAω2 cos(ωt)
∥∥ , (42a)

ηr � ‖y‖
‖A cos(ωt)‖ , (42b)

where ‖ ‖ represents modulus of vector.
According to the approximate periodic solution of the PR, the force transmissibility of the PR for the

nonlinear VIS with QZS and quadratic damping exposed to the base excitation is represented as

η1 � ‖Fr1‖
mAω2 , (43a)

Fr1 � − caω sinψ + c1a
2ω2 sin2 ψsgn

(−aω sinψ
)

+

[
k + 2k1

(
1 − L0

Lh

)]
a cosψ +

L0

L3
h

k1a
3 cos3 ψ

, (43b)

where ψ � ωt + θ .
Correspondingly, PR’s relative displacement transmissibility for the nonlinear VIS subjected to the base

excitation can be given as

ηr1 � |a|
A

. (44)

According to the approximate analytical solution of the SR, the force transmissibility of the SR for the
nonlinear VIS with QZS and quadratic damping subjected to the base excitation can be obtained as

η2 � ‖Fr2‖
mAω2 , (45a)

Fr2 � c

[
−aω sinψ − bω

3
sin ϕ

]
+ c1

(
−aω sinψ − bω

3
sin ϕ

)2

sgn

[
−aω sinψ − bω

3
sin ϕ

]

+

[
k + 2k1

(
1 − L0

Lh

)](
a cosψ + b cosϕ

)
+
L0

L3
h

k1
(
a cosψ + b cosϕ

)3
, (45b)

where ϕ � ωt
/
3 + ϑ .

Correspondingly, the relative displacement transmissibility of the SR of the nonlinear VIS subjected to the
base excitation is given as

ηr2 �
∥∥a cosψ + b cosϕ

∥∥
A

. (46)

6 Verification by numerical solutions

A set of parameters of the nonlinear VIS are chosen as follows: m � 30 kg, c � 50 N•s/m, c1 � 50 N•(s/m)2,
k1 � 500 kN/m, L0 � 0.2 m, k � 2

(
L0
/
Lh − 1

)
k1 � 42.857 kN/m, Lh

/
L0 � 0.7, A � 0.005 m. According

to Eq. (3), the amplitude-frequency response curve of the nonlinear VIS with QZS and quadratic damping
is drawn by the Runge–Kutta method, which is displayed in Fig. 2. The abscissa in the figure represents the
excitation to natural frequency ratio of the original linear system, namely γ � ω

/
ω0. According to Eq. (15)

and Eq. (35), the amplitude-frequency curves of the nonlinear VIS can also be obtained by the approximate
analytical solutions of the PR and SR, separately. And according to the stability conditions of PR and SR, the
stable solutions and unstable solutions are obtained respectively.According to Fig. 2, the approximate analytical
solution and the numerical solution yielded similar amplitude-frequency response curves for the PR and SR of
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Fig. 2 Comparison of amplitude-frequency response curves

the nonlinear VIS. However, when the amplitude is greater than 0.2L0, the deviation of approximate analytical
will gradually increase compared with the numerical solution. There is an obvious multi-solution phenomenon
in the PR response region of the nonlinear VIS with QZS and quadratic damping. And the starting frequency of
the SR is shifted to the PR region. The numerical solution also reveals that the system contains other lower order
subharmonic resonance except for 1/3 subharmonic resonance. The SR of the nonlinear VIS with QZS and
quadratic damping only exists in a certain excitation frequency range, which is consistent with the conclusion
of Eq. (37).

According to Eq. (3), the force transmissibility curve and the relative displacement transmissibility curve
of the nonlinear VIS transmitted from the foundation to the mass block are drawn by the numerical solution,
which are shown in Figs. 3 and 4, individually. According to Eqs. (43) and (45), the approximate analytical
solution is used to draw the force transmissibility curves of the PR and SR of the system, which are shown
in Fig. 3. According to Eqs. (44) and (46), the relative displacement transmissibility curves of the PR and SR
of the nonlinear VIS are plotted via the approximate analytical solution, which are displayed in Fig. 4. As
demonstrated in Fig. 3, there is also a strong agreement between the approximative analytical and numerical
solutions for the force transmissibility of the PR and SR of the nonlinear VIS with QZS and quadratic damping.
The occurrence of SRwill make the force isolation effect of the nonlinear VISworse, and even cause the system
to lose the force isolation effect. As shown in Fig. 4, it can be seen that the approximate analytical and numerical
solutions of the relative displacement transmissibility of the nonlinear VIS are also well fitted. Moreover, the
relative displacement transmissibility curve and amplitude-frequency response curve of the system have the
same variation law, only the ordinate becomes the ratio of the amplitude response of steady state to the excitation
displacement.

7 Analysis of vibration control effect

Based on the approximate analytical solutions, the impacts of the QZS parameter and quadratic damping on
the force transmissibility and relative displacement transmissibility for the nonlinear VIS are analyzed.

7.1 Effect of QZS parameter

When the quadratic damping coefficient c1 � 50 N•(s/m)2, the PR force transmissibility curve and the relative
displacement transmissibility curve of the original linear system (represented as L0 � 0 m) are drawn respec-
tively according to the approximate analytical solutions, which are shown in Fig. 5. At the same time, the force
transmissibility curves and relative displacement transmissibility curves of the PR and SR of the nonlinear
VIS with QZS and quadratic damping are obtained analytically, for the original lengths of the QZS horizontal
springs are L0 � 0.2 m, L0 � 0.4 m and L0 � 1 m respectively. As shown in Fig. 5a, the initial vibration
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Fig. 3 Comparison of force transmissibility

Fig. 4 Comparison of relative displacement transmissibility

isolation frequency of the system is significantly reduced due to the introduction of QZS. On the contrast with
the original linear system, the nonlinear VIS with QZS and quadratic damping can obtain a smaller initial
vibration isolation frequency even when the system has subharmonic resonance. As the original length of the
QZS horizontal spring increases, the maximum force transmissibility decreases gradually. When the original
length of the horizontal spring increases to a certain extent, the nonlinear VIS with QZS can effectively isolate
the force caused by the given base excitation begin with a frequency close to 0. From Fig. 5b, it could be found
that the introduction of QZS significantly reduces the relative displacement transmissibility of the VIS at high
frequencies, but increases the relative displacement transmissibility at low frequencies. With the increase of
the original length of the QZS horizontal spring, the PR peak gradually decreases, and the SR region also
gradually decreases until it disappears. When the original length of the horizontal spring increases to a certain
extent, the maximum relative displacement transmissibility of the nonlinear VIS with QZS subjected to the
base excitation can be reduced to 1. At this time, it means that the nonlinear VIS does not produce resonance
phenomena.



6390 J. Niu et al.

Fig. 5 Effects of different QZS parameters (crosses for the unstable solutions)

Fig. 6 Effects of different quadratic damping

7.2 Effect of quadratic damping

Set the original length of the QZS horizontal spring to L0 � 0.4 m, the force transmissibility curves and
relative displacement transmissibility curves of the PR and SR for the nonlinear VIS with QZS can be drawn
according to the approximate analytical solution for the quadratic damping coefficients c1 � 0 N•(s/m)2, c1 �
50 N•(s/m)2 and c1 � 100 N•(s/m)2 respectively, as shown in Fig. 6. To make the comparison more clearer,
only the stable solutions of the nonlinear VIS with QZS are shown in the figures. From Fig. 6a it can be found
that, with the increase of the quadratic damping coefficient, the initial vibration isolation frequency of the
nonlinear VIS with QZS gradually decreases, and the force transmissibility of the nonlinear VIS within the
effective vibration isolation frequency range will increase slightly. As shown in Fig. 6b, with the increase of
the quadratic damping coefficient, not only the SR of the nonlinear VIS with QZS can be eliminated, but also
the maximum relative displacement transmissibility of the PR can be effectively reduced. Furthermore, the
increase of quadratic damping will not worsen the relative displacement transmissibility in the high-frequency
region.

To better illustrate the elimination of 1/3 subharmonic resonance, the bifurcation diagram of the relative
displacement transmissibilitywith quadratic damping is drawn for the frequency ratios γ � 0.12 and γ � 0.22,
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Fig. 7 Bifurcation of relative displacement transmissibility with quadratic damping (red circle denotes primary resonance, blue
circle denotes subharmonic resonance, black solid line denotes the corresponding unstable solution)

Fig. 8 Comparison of linear damping and quadratic damping for A � 0.005 m (crosses for the unstable solutions)

as shown in Fig. 7. It can be seen that as the quadratic damping increases, both the 1/3 subharmonic resonance
branch in the middle and the upper branch of the primary resonance will gradually disappear.

In order to compare the roles of linear damping and nonlinear damping, the original length of the QZS
horizontal spring is set to L0 � 0.4 m and the base excitation amplitude is set to A � 0.005 m. When the
system includes only linear damping for c � 150 N•s/m and c1 � 0 N•(s/m)2, and the system includes
quadratic damping for c � 50 N•s/m and c1 � 100 N•(s/m)2, the force transmissibility curve and the relative
displacement transmissibility curve of the nonlinear VISwithQZS can be obtained, as shown in Fig. 8. It can be
found that, when the excitation amplitude is too small to cause resonance in the nonlinear VIS with QZS, only
using linear damping can obtain lower initial vibration isolation frequency and better relative displacement
transmissibility than quadratic damping. The quadratic damping can achieve lower force transmissibility at
low frequencies in the effective isolation frequency range, but the force transmissibility of a nonlinear VIS
with QZS and quadratic damping at high frequencies is slightly larger than that of only linear damping.

Increase the amplitude of the base excitation to A� 0.012 m, and keep other parameters unchanged. Again,
the approximate analytical solutions are used to draw the transmissibility curves for the force and relative
displacement of the nonlinear VIS with QZS and with or without quadratic damping, as shown in Fig. 9. Only
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Fig. 9 Comparison of linear damping and quadratic damping for A � 0.012 m

the stable solutions of the nonlinear VIS are shown in Fig. 9. It can be found that, when the nonlinear VIS with
QZS is subjected to a large amplitude base excitation sufficient to cause significant resonance response, utilizing
quadratic damping can obtain a lower beginning vibration isolation frequency and better relative displacement
transmissibility than linear damping. Moreover, compared with only linear damping with the same coefficient
value, the nonlinear VIS with QZS and quadratic damping can obtain better amplitude suppression effect
and smaller subharmonic resonance region when the system has significant resonance response. Therefore,
considering the uncertainty of the foundation excitation amplitude, it is necessary to introduce quadratic
damping in order to obtain a lower initial isolation frequency.

8 Conclusions

The PR and SR of the nonlinear VIS with QZS and quadratic damping are investigated through the averaging
method. It can be inferred from the amplitude-frequency response equation of the nonlinear VIS that the
resonance amplitude and excitation frequency have a role in how the quadratic damping affects the amplitude-
frequency response characteristics of PR or SR. Additionally, amplitude suppression caused by quadratic
damping is alsomore pronounced the bigger the steady-state amplitude is. The approximate analytical solution’s
stability is assessed, and the SRof the nonlinearVISwithQZSand quadratic damping’s existence conditions are
deduced. It is proved that when the SR of the system exists, it only exists in a certain excitation frequency range.
By comparing with the amplitude-frequency response curve, the transmissibility curves for force and relative
displacement of the nonlinear VIS obtained by the numerical solution, the correctness of the approximate
analytical solutions of the PR and SR is verified.

By comparing the transmissibility for the force and relative displacement of nonlinear VIS with different
parameters, it can be found that for a given base excitation, the larger the QZS horizontal spring’s original
length results in a smaller PR peak value and smaller force transmissibility. The SR can also be eliminated
when the horizontal spring’s initial length is increased to a certain level. At the same time, when the quadratic
damping is increased to a certain extent, the SR of the nonlinear VIS with QZS can also be eliminated. When
the quadratic damping coefficient has the same value as the linear damping coefficient, the nonlinear VIS
with QZS and quadratic damping can achieve better amplitude suppression effect and smaller initial isolation
frequency in the presence of significant resonance response. While the nonlinear VIS with QZS using linear
damping alone can achieve good isolation effects without resonance response.
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