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Abstract The present study, for the first time, investigates the vibration and flutter analyses of a doubly curved
panel composed of functionally graded porous material contained by piezoelectric layers in supersonic flow.
In this regard, the first-order piston theory for aerodynamic loading and Reddy’s third-order shear deforma-
tion theory for doubly curved panel analysis is used. The governing equations of motion are obtained using
Hamilton’s principle and Maxwell’s equation. The Galerkin method is used to discretize the equations of
motion. Three types of piezoelectric layers are used, in both open-circuit and closed-circuit electrical bound-
ary conditions. The FG porous material with three types of porosity structure is investigated, including uniform
distribution, X-shaped distribution, and V-shaped distribution. Also, the effect of the power of the FG porous
material and the porosity coefficient on the frequencies and the flutter boundaries of spherical, cylindrical,
doubly curved shell with Ry, = —R, and plate structures are investigated. The comparison of the spherical
panel, doubly curved panel, cylindrical panel, and plate shows that the spherical panel has the highest and the
plate has the lowest stability regions. Also, as the radius to length of the panel increases, the critical flutter
aerodynamic pressure increases and the flutter frequency decreases. Furthermore, the effects of piezoelectric-
ity, electrical and mechanical boundary conditions, geometric parameters, and the radii of curvatures on the
flutter boundaries and flutter frequencies of FG porous doubly curved panels are investigated in detail.

1 Introduction

Aeroelastic instability can occur in both static and dynamic cases. One of the phenomena of dynamic instability
discussed here is called flutter. Flutter is a type of dynamic instability of flying objects that results from the
interaction of elastic, inertial, and aerodynamic forces. This phenomenon is a type of unstable vibrations of
self-stimulation in which the structure receives its required energy from airflow and usually leads to accidental
failure of the structure. The Flutter occurs when the aerodynamic forces of two vibration modes combine to
give rise to this phenomenon. The vibration and instability characteristics of structures in supersonic flow have
been analyzed in numerous studies. Krumhaar [1] studied the use of linear piston theory for cylindrical shells.
The aeroelastic stability of the plates and shells was investigated by Dowell [2]. Pidaparti [3] performed the
flutter analysis of the cantilevered curved composite panels. Cunningham et al. [4] studied the effects of various
parameters such as ply orientation, geometric parameters, and boundary conditions on the dynamic behaviour of
doubly curved composite panels. Kumar et al. [5] investigated the dynamic instability of the composite doubly
curved panels. Zhang et al. [6] studied the flutter analysis of airfoils in supersonic flow using a local piston
theory. Oh and Kim [7] investigated the dynamic instability of the cylindrical composite panels in supersonic
flow. Hadadpour et al. [8] inspected the flutter characteristics for plates made of functionally graded material
(FGM) in supersonic flow. Chorfi and Houmat [9] analyzed the nonlinear vibrations of the doubly curved shell.
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Hosseini and Fazelzadeh [10] investigated the aerothermoelastic and free vibration analysis of FGM panels.
The vibration analysis of doubly curved panels was researched by Kiani etal. [11]. Aeroelastic characteristics of
panels with different boundary conditions and neglecting and considering the shear deformation are investigated
by Li and song [12]. Shen et al. [13] inspected the Nonlinear dynamic behaviour of a doubly curved panel.
Wattanasakulpong and Chaikittiratana [14] investigated the vibration analysis of FGM doubly curved shell.
Ganji and Dowell [15] predicted the flutter boundaries for two-dimensional flow. Graver et al. [16] studied
the flutter behaviour of composite plates subjected to yawed supersonic flow. The flutter of composite doubly
curved sandwich panels was investigated by Malekzadehfard et al. [17]. Sankar et al. [18] explored the flutter
boundaries of doubly curved sandwich panels with carbon nanotube (CNT) reinforced face sheets.

Song et al. [19] researched the vibration characteristics of composite plates. Zare Jouneghani et al. [20]
performed the vibration analysis of FG porous doubly curved panels. Rezaei et al. [21] investigated the
vibration behaviour of plates composed of functionally graded porous materials. The vibration behaviour of
doubly curved panels composed of functionally graded composite and carbon nanotube (CNT) was performed
by Pouresmaeeli et al. [22]. Lie et al. [23] researched the dynamic stability of cylindrical panels reinforced
with carbon nanotubes. Shahverdi et al. [24] investigated the aerothermoelastic analysis of functionally graded
plates. Navazi and Haddadpour [25] performed the aeroelastic stability of panels composed of functionally
graded materials. Kiani et al. [26] inspected the vibration analysis of composite conical panels reinforced with
functionally graded carbon nanotubes. Mehar et al. [27] inspected the vibration characteristics of composite
curved panels reinforced by carbon nanotubes. The aeroelastic analysis of curved composite panels was
inspected by Zhou et al. [28]. Lin et al. [29] studied the nonlinear aeroelastic behaviour of the composite plate
surrounded by a piezoelectric material layer. The aeroelastic behaviour of plates made of porous materials was
inspected by Saidi et al. [30]. The flutter characteristics of thick porous plates were investigated by Bahaadini
et al. [31]. Muc et al. [32] inspected the flutter of plate and shell structures. Arani et al. [33] studied the
aeroelastic stability analysis of cylindrical panels reinforced with carbon nanotubes.

The flutter behavior of curved panels composed of porous material was investigated by Aditya et al. [34].
They studied the influences of parameters such as material properties, boundary conditions, and geometric
properties on the stability of the system. Bahaadini et al. [35] inspected the dynamic stability of fluid-conveying
thin-walled rotating pipes. Majidi et al. [36] studied the flutter analysis of trapezoidal plates reinforced by
carbon nanotubes. Esmaeili et al. [37] performed the vibration analysis of composite laminated doubly curved
shells reinforced by graphene platelets. An and Sun [38] researched the aeroelastic behaviours of cylindrical
composite panels. Ye et al. [39] inspected the aeroelastic analysis of the viscoelastic panel. Rahmanian and
Javadi [40] studied the dynamic instability of cylindrical shells made of FG porous material. Adamian et al.
[41] investigated the vibration characteristics of a doubly curved panel reinforced by graphene nanoplatelets.
The flutter behaviour of cylindrical panels reinforced by the graphene platelets was researched by Zhou et al.
[42]. The parameter studies are carried out, revealing the influences of the pore, and graphene platelets on
the flutter behaviour of the cylindrical panels. The dynamic instability of doubly curved shells reinforced
with functionally graded carbon nanotubes was researched by Amin Yazdi [43]. He showed that the influence
of panel imperfection on flutter aerodynamic pressure is more considerable than functionally graded carbon
nanotube volume fractions and distributions. Subramani et al. [44] performed the dynamic characteristics of the
spherical sandwich shell panel with carbon nanotubes reinforced. Majidi et al. [45] investigated the aeroelastic
behaviour of spinning cylindrical shells composed of functionally graded material reinforced with graphene
nanoplatelets using the first-order shear deformation theory. Abdollahi et al. [46] performed the aeroelastic
analysis of trapezoidal sandwich plates with functionally graded porous face sheets and honeycomb cores in
supersonic airflow. Merdaci et al. [47] studied the dynamic response of plates with various porosity distributions.
Houshangi et al. [48] studied the flutter analysis of sandwich conical shells. Chen et al. [49] inspected the
aeroelastic behaviour of composite plates surrounded by a piezoelectric layer. Arani et al. [S0] researched the
supersonic flutter behaviour of sandwich plates. Khorshidi et al. [51] investigated the vibration and stability
of rectangular plates in contact with sloshing fluid on one side and under supersonic aeroelastic load on the
other side.

Piezoelectric materials are the best choice for use in intelligent mechanical structures in the future due to
their coupling mechanical and electrical properties. This is because there is a coupling between the mechanical
and electrical properties of the piezoelectric material. In addition, lightweight and ductility are also special
properties of these materials. Many researchers have studied the use of these materials in structures under fluid
flow. Crawley and Luis [52] investigated the use of piezoelectric materials in intelligent structures. Zhou et al.
[53] derived the flutter aerodynamics pressure for isotropic plates with piezoelectric layers. Song et al. [54]
studied the flutter boundaries of the composite laminated plates with the piezoelectric layer. Li. [55] investigated
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Fig. 1 Coordinate system and geometry of a doubly curved panel and schematic of three types of porosity distribution

the influences of piezoelectric materials to improve the flutter characteristics of the plates. Tsushima and Su
[56] investigated the aeroelastic instability of highly flexible piezoelectric wings. Li et al. [57] showed that the
use of piezoelectric materials increases the flutter velocities of the supersonic beams. Xue et al. [58] inspected
the flutter characteristics of plates made of functionally graded piezoelectric material (FGPM) in supersonic
airflow. Wang et al. [59] studied the vibration of a plate surrounded by two piezoelectric layers. The vibration
behaviour of FGM plates with piezoelectric layers was performed by Farsangi et al. [60]. Almedia et al.
[61] studied the aeroelastic stability boundary of composite panels caused by the piezoelectric actuator. Zhang
et al. [62] investigated the aerothermoelastic characteristics of composite panels with piezoelectric layers. Tian
et al. [63] performed the nonlinear aeroelastic characteristics of a functionally graded piezoelectric material
(FGPM) plate. Tham et al. [64] studied the vibration analysis of functionally graded carbon nanotube-reinforced
composite (FG-CNTRC) doubly curved shallow shells surrounded by piezoelectric layers.

To the best of the author’s knowledge, the piezoelectricity effects on the flutter analysis of the doubly
curved panels have not been studied, yet. In this study, for the first time, the flutter boundaries for a doubly
curved panel made of FG porous materials surrounded by piezoelectric layers subjected to supersonic flow have
been investigated. The doubly curved shell analysis has the feature that by changing the radius of curvature,
analyses of cylindrical shell, spherical shell, and plate can be performed. In this regard, considering Reddy’s
third-order shear deformation theory and first-order piston theory, the governing equations of motion are
obtained using Hamilton’s principle and Maxwell’s equation. The Galerkin method is used to discretize the
equations of motion. To study the effects of piezoelectricity, three types of piezoelectric layers are investigated
in both open-circuit and closed-circuit electrical boundary conditions. Also, the FG porous material with three
types of porosity structure including uniform distribution, X-shaped distribution, and V-shaped distribution
is investigated. Moreover, the effect of the power of the FG porous material and the porosity coefficient
on the frequencies and the flutter boundaries are investigated. Flutter frequencies and flutter boundaries are
compared for spherical, cylindrical, doubly curved shell with Ry, = —R, and plate. Finally, the effects of
mechanical boundary conditions, geometric parameters, and radii of curvatures of the middle surface on
the flutter boundaries and flutter frequencies of FG porous doubly curved panels are investigated in detail.
The results show that increasing the porosity coefficient reduces the stable range. Furthermore, open circuit
electrical conditions cover a larger stable range. Also, using PZ4 piezoelectric layers results in the highest
flutter boundaries and frequencies.

2 Mathematical formulation

Figure 1, shows the FG porous doubly curved panel with length a, width b, and total thickness H = 2(h +h p)
where 2h and £, are thickness of FG porous core and the thickness of each piezoelectric layers, respectively.

The radii of principal curvatures of the middle surface are assumed to be R, and R,. The Cartesian coor-
dinate system is used. Based on Reddy’s third-order shear deformation theory assumptions for doubly curved
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panels, consistent the mid-surface displacements (u, v, w), mid-surface rotations (I/IX, wy), and displacements
on a generic point of the panel (ux, Uy, uz) are the association as (Reddy [65]):

z 3 Jw(x,y,t)
ux(-x’y7z9t)= 1+— u(x9y,t)+21/’x(%yvt)_cf Wx(X,y,t)"‘—
R, ax
z 3 Jw(x,y,t)
uy(x,y,z,t) =1+ — Jv(x,y,0) + 2y (x,y,1) —cz”| ¥y (x,y,0) + ————
R, ay
”z(x,y’Z,f)=w(X,y,f) (D
where ¢ stands for the time variable. The constant ¢ is given by ¢ = #), which is obtained by satisfying the

shear-free boundary conditions on the top and bottom surfaces of the shell as follows: (Reddy. [65], Murakami
[70], Sciuva [71]).

0xz|1:ig =0, Uyz‘zzig =0 @)

The linear strain—displacement relations are obtained as follows:

9 9 9 92 9
Sxx:<—u+i)+zﬂ—CZ3< ¢x+_w_ u )

dx Ry 0x ox 9x2 R, dx
PR (UL SRR 31ﬂy+32w_ dv
yy ay Ry 8y ay 8y2 Ryay
€2=0

ou dv oYy 0y
= 2 = _— 4+ — + + —
Vay Exy (E)y 8x> Z( ay ax
9 2
e wa+wy+28w_ du  dv
dy ax 0xdy  R,dx R,y

9
e = 2esc = (1= 57) (v 52 = )
Jw v
Yy = 28y, = (1 — BZ?) (wy + Fr R—y) (3)

Here, €y, and &y, are the normal strains; yyy, yx; and yy, are the shear strains and the constant § is defined
as:

4
p=3c= 2 “)
The stress components are expressed as:
Oxx On Qi O 0 0 Exx
Oyy Op 0O» 0 0 0 Eyy
oxy =10 0 Qe O 0 26y (5)
Oxz 0 0 0 Oss 0 2ey;
oy; 0 0 0 0 (o ¢y,
These are defined as:
E(2)
On=90n= 2
vE(2)
Qiz=0n=7_""73
Qs = 055 = 06 = 5011 — Q) = 7 - (©)
# = Css = Lo = 5 (L 12_2(1+u)
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The properties of FG porous layers can be written as:

h n
P=P,+ (P — Pp) <%> - g(P, + P,) homogeneous distribution (7.a)
p=pysp— (Y — e (1P22]) v distribut (1)
= - — ) — = istribution .
P TN o 2T T foutt
z+h\" e 27 o
P=P,+ (P — Pp) ) E(P, + Pp) m X distribution (7.c)

The forms of porosity distribution for homogeneous, V and X distribution are given in Fig. 1. Equation (7.a)
shows the homogeneous distribution of porosity, Eq. (7.b) shows that the porosity distribution is V type, and
Eq. (7.c) shows that the porosity distribution is X type. In Eq. (7), P represents the property of the material,
e, and n represents the porosity and power law index.

Also, Pp, and P; represent the material properties on the bottom and top surfaces of the panel, respectively.
(Ebrahimi and Jafari [66], Wattanasakulpong and Ungbhakorn [68]). In the present research, the materials on
the bottom and top surfaces of the shell are ceramics and metal, respectively.

The constitutive equation for the piezoelectric materials is expressed as Eq. (8). (Wang et al. [59]).

Oxx ciy ¢z 0 0 O Exx 0 0 ez
Oyy cip c11 O 0 0 Eyy 0 0 ey E,
oy; ¢=| 0 0 css5 00 Yz ( —| 0 e5 0 E, ®)
Oxz 0 0 0 e 0 Yz e;s 00 E,
Oxy 0 O 0O O (c11 —c12)/2 Vay 0O 0 O
gxx
DX 0 0 0 e1s 0 Evy EU 0 0 Ex
Dyt=|0 0 es 0 o|l{y.t+]0 En0 |lE )
D, e ¢330 0 0 Yxz 0 0 &3 ||E:
Vxy
In which
2 2
_ c _ ¢
ci=cin— -2, Cn=cp- -1
€33 €33
2
_ C13 = —_ e
31 = e3 — —e33, B33 = B33+ = (10)
Cc33 33

In Eq. (9), the electrical displacement and electric field in the piezoelectric layer are denoted by D; and E;
(i = x, y, z) respectively. Besides, c11, c12, €13, ¢33 and c¢s5 are piezoelectric elastic moduli; e31, e33 and ey5
are piezoelectric constant and E1;, and E33 are dielectric permittivity.

The electric field can be expressed as Eq. (11). So that @ is the electric potential.

o 0P 0P
Ex=—-—, Ey=——, E;=—— (11)
ax ay 0z

In Eq. (12), ® is defined for closed circuit conditions where ¢(x, y, t) is the electric potential in the
mid-surface of piezoelectric layers.

e 2
¢(x,y,t)[1— (%) ] (h<z=<h+hp)

q) 9 V9K -
(et —z—h—h,/2)\?

(12)
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The electric potential function for open circuit condition is expressed as
2—h—hp/2\* 4@ —h)
¢<x,y,t)[1—( - /2”/) -
P P
‘ h<z<h+hp)
- e ; My 9y ( =z= P
&1 {g;+R +3;’+R +[h+hp—c(h+hp) ]((;é _R(j‘;)x y Rf?ay)](z_h)
= _ 2
® ey o) = 3 | —c(h+h, ) Viw .
z—h—hp/2 4(z+h)
¢,y |1— Y -
/2 hyp kb "
. - <z<-—
. du 3 . Ay 9 vy ] p===
] ot R +a§+*_[h+h1’_‘(h+h )](8)( - RX'Z)X-FT)‘_R)»%)') (z+h)
E33 +c(h+h) V2w
(13)
(14)

Poo Ugo

According to the first-order piston theory, the acrodynamic pressure load is expressed as (Dowell. [67])
ow(x,y,t )
wx, y.0)

Mgo -2 1 dw(x,y,t)
MZ —1Us ot

0x

1

AP = —
MZ, —
where, M, Usx and ps represent the Mach number, velocity, and density of airflow, respectively. The
following simplification for high Mach numbers is utilized: (Dowell [67])
1/2
Mo =2(  _n / b )" (15.2)
=|— .a
MZ, —1\0/MZ — 1 AMoo
UZ 3
o= P Pt (15.b)
Dy /M2, — 1 2pch

(16)

where, A is the non-dimension aerodynamic pressure
Based on Hamilton’s principle, the governing equations are obtained as

[5)
/(8T —8U —8V)dt

In Eq. (16), the variational form of strain energy, kinetic energy, and virtual work of an aeroelastic force is
7)

demonstrated by U, 8T and §V, respectively. So that, they can be expressed as

h+h)
sU // / Oxx8&xx + Oyy8€yy + 07,08, + 0xy8Yxy + Oy 0Vxy + oyZSy}z}dAdz
A —h—h,
1 9%u 1 %, 1 3w
§Tdt = I+—I+ L)—+\L+—DLh—c|l+—L —c| B+ —1L )
Juman==[ [[{ o g zre) G e (o oo o)) o = o) e o
+ 1+21+11 (et B NV (e )2 s
— —bh|— —c — —c — v
TR TRE? a2 TR } R~ *)) or2 TR, ) ayor?
I 1 c 92u NG 2 w
+ _(11 + lez —eh- 4 14)—2 (I2 = 2cly +c*Is) PP +(—cly+c IG)W](S%
r I3 RAYE wy 5\ Bw
+ _(1, + & —ch _CIT,)ﬁ (B —2¢ly + 2 lg) +(—cly+c 16)a o |5V
92w I u Iy d3v 3
+llo=— —c|(+— I+ — + Iy —cl
|52 C[( 3 RX>(3x312) < 3 Ry><8y812> s —c 6)<8x812>
3y *w *w
+(Iy — cl, 2 ) - + Sw)dA 18
(4 ‘6)<ayat2) <6x2812 aﬂaﬂ)ﬂ w) (18)
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The virtual work of aeroelastic forces (§V') can be represented as:
hth,
8V = / APSwdz (19)
—h—h,

Substituting Eqs. (17), (18) and (19) into Hamilton’s principle, the governing equations of motion are
derived as:

sy Nex | INgy + 9w () B p 1,
dx dy ox Ay R, Ry
1+21+1182” L+ PRI\ Ui R S WA (20.2)
= — —h—c — —c — .a
0T R )2 T\ TR, TR ) a2 TR ) axor2
Ny, ON 39S,y 9S8 1
5U;J+J+_ Pw B Fp Ly
dy dx R dy ox R, R,
1+21+11 Pv (e Ly AN AN (20.b)
—_— —_— —C - —C -_— —_— .
07 R a2 T\ R, STRY)) a2 TR, ayar?
M 8Mxy 3Scx Sy
Sy + — + + — BP
Vx Ix dy ¢ 9x dy Ox — PPy
(e e - Sg) 2 S (b—2cly+ 1)821/’” +( 1+21)83w (20.c)
— —C _ —F — ZC C —C C .
TR 2T TR ) a2 T\ 4TG0 MR PP TS
OM,, My Sy 08y,
Sy + - + + — BP
i dax ay ¢ ax ay Oy = Phy
I Iy 9%v N 5o\ w
=\h+——-—ch—c— |—+ (I —2cls + "I + (—cly+ 71 20.d
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d 0 a a
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Substituting Eq. (21) into Eq. (20), the governing equations can be presented as
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v :acy
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dx2 axay ax2  9x3  R.0x2 8x8y 8x8y Ry8x8y
1 c 0u %y Bw
=(h+—hL—cli— —1I) — + (I, — 2cly + *1 L4 (—cly+ 2,
<1 sz Cl3 R )82 (2 Clg +C 6) 8t2 +( Cclg+c¢C 6)8x3t2
(22.0)
324 32y 2 52 2
0°v 0" Y« 7Yy
af1 afz af382+af4v+af588 +afs ox2
azwy PBw 3w
+61f73_y2 +afgyy +af9m +af108—y3 +af118—
d 32 32 32 33 32 32 33 32
+ le_¢+T3Z I/fx+ vy + Ty, ¢x+ w ! + lﬂy+ v _ d
dy 0xdy  dy? dxdy  0x%dy  R.9xdy  dy>  9y>  R,dy?

B] a2 32 92 33 92 a2 33 92

—c TIZ3—¢+T3Z3 ﬂ+ vy + 7143 Vs + v o_ - + vy + ®_ v
ay 0xdy  0y? dxdy 0x2dy R.9xdy 9y? 9y’ Ryay2
( 3¢ T (a%px . a2wy) T (a%px 3w Pu Yy Bw % ))

Ts— — + b— — ————
> dy dxdy  9y? dxdy 0x2dy R dxdy 9y  dy>  R,dy?

—p T52%+T72 821ﬂx+82wy + Ty 821/fx+ Pw _Pu +82wy+83_w_32_v
“ay 7 \axdy  9y? “\oxdy  9x20y R.dxdy 9yr  9y?  R,d)?

3w
dyodt?

I L\ 9% 2\ 02y 2
=(I1+-=—ch—c— | — + (I = 2cly + c*Ig) —=> + (—cly + c*1,
(1 R, 3 Ry> ar? (5 4 ) 02 (=l )

(22.d)
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5w:ag1 + g2837u+ag ﬁ+agal+ag 337v+ag8371)+ag %+ag 831/,)(
3x3 3 9xdy?2 49y Sax29y 69y3 T ox 8 9x3
+ag9837¢ +ag, %+ag (! +ag O +ag 34—w+ag ¥
ax20y O 5y H79y3 129x203y B3 9x4 149y4
+a O +a 82—w+a 82w+a w+T82 +T(83%+ 83%)
815 9x20y2 816 a2 817 9,2 818 5 952 7 953 9x20y
+Tg(33% + tw - 8u + 0y + o - Gl ) —ﬂ(T51282¢ +T (
ax3  ox*  R.9x3  9x2dy  9x%0y%  R,3x2dy 0x2 72

T 831/rx+84w 33u 83% 9%w 8 T 929
82\ a3 T axd T Redx? 8x28y 9x20y>  R,0x20y >ay2

. a3¢x+a3¢y T By, dtw 93 ERV *w 33u
0xdy2  0y3

+ — + + -
oy3 8y4 Rydy3 = 0xdy?  9x23y*  R,dxdy?

T 8310)6 83¢y T 31/fy 9% w 33 331ﬂx 9w 3u
+ 1722 + 182 3 7+ s+ 755 5
dy 8y RyBy dxdy dx=dy R,0x0dy

32 3 S 3? 3 a4
+c<le3<—¢+ ¢)+T3Z3( Vr , 0 %+ Vs 1py>+T413<ﬂ+—w—7

+
axdy?  9y3

ax2  9y? dx3  ax23y  9xdy?  9y3 ax3

By, tw Bv By, Ftw B Py, dtw 33u

+ + +— + + —
szay 9x293y? R3x28y ay3 ay Ryay3 0x0y2  3x20y2  R,0x0y?

ou w w w u w w w
- = +— )+ =+ - = +— |+[—+—=—))+AP
ax R, dy Ry ax Ry dy Ry
32w 33u 4 33v 33y,
=Ily— I+ — L+ — || — 1y — cl
Yo T [(” )(axaz2)+(3+Ry)<ayar2>+<“ ”)(axatz)
(—ere) (20} - g (D, 2w
47 ) Byar2 \ox20:2 " By2or2
The constant quantities in Eq. (22), have been defined in “Appendix A”.

The mechanical boundary conditions can be expressed as
Simply supported boundary conditions (S)

at x=0,a
u=0,v=0,¢%y=0,Myy —cPry =0,w=0,P,y, =0

at y=0,b
u=0,v=0vY,=0,Myy —cPyy=0,w=0,Py, =0

Clamped boundary conditions (C)
at x=0,a
ow
u=0v=0,v,=0,¢9,=0,w=0,—=0
ax
at y=0,b
0
w=0,0=0y, =0y, =0w=0,-—— =0
ax
The variables have to satisfy Maxwell’s equation (Farsangi et al. [69])

—h h+hp

/ %.mufvﬁdz:

—h—h, h

83%
8x23y

9%
dy?

(22.¢)

(23.2)

(23.)

(24.2)

(24.)

(25)



Vibration and dynamic instability analyses of functionally graded porous doubly curved panels 6141

Substituting Eq. (3) and (9), into Eq. (25) yields

M, 0w u Yy, 3w 8v) <82¢ 82(15)
+—2 -S| —=+—=

8¢S | — + — — — — —— +
¢ 1( ox  9x2 R dx dy  dy>  Rydy ax2  9y?

S N 3w N 33 N 02w N u N 3w N 3 N %w
o\ ox3 R.3x2  3x29y Ryax2 9xdy?  Ry0y?  9y3 Ryay2
33 Py, 93 33 3 a* 3 3y,
+$ Vx + Yy + Vx + vy +S Y + W u + vy
9x3  9x20y 9xayr  9y3 ax3  ax* R Ox3  09x23y
9w 93v 3y, 3w 33u By, dtw 3%
+ — + + — + + —
dx29y? Ry8x23y axdy?  9x23y?  R,0xdy?  9y3 oyt Ryay3

9 Yy 9 92 9 9 92 9
+S3<%+ﬂ)_s4<wx+_w_ u +ﬂ+_w_ v>_S5¢_
X

dy dx  0x2  Rdx dy  dy>  Rydy (26)
The electrical boundary conditions at x =0, a, y = ﬂ:g—’ are:
¢0,y,1) = ¢(a,y,t) =0 (27)
and
—h h
/ Dy(x,y,z,t)dz + / Dy(x,y,z,t)dz =0 (28)
—h—h, h+h,,

In "Appendix B", the definitions of constant quantities in Eq. (26) have been presented.

3 Solution technique

The Galerkin method is used to discretize the partial differential equations into ordinary equations. The modal
expansions are assumed to approximate the aeroelastic stability analysis of a doubly curved panel made of FG
porous as follows. (Fung [75])

u(xayst) = Qlfqu’ U(-x’y’t) - ¢uns wx(x’yst) = Qiqu//)ﬂ

(29)
VUy(x,y,t) = d’gTb}“Iwy, w(x,y, 1) = ®iq,, ¢, y.1) =Diqy

where ¢q,,, q,, 9y 9y, Qu and 94 denote the generalized coordinates; ®,, ®,, ®y,, <I>1/,y, $, and
@, expressed the unknown displacements that satisfy boundary conditions. The unknown displacements
(u, v, Yy, Yy, w, d)) can be represented as

n/ ’

w6, 3,0 =g, =Y " Gunn(O)Pum () Vun(y)

n=1m=1

/ /
n m

VYD =BT g, =D Gunn (O @um () Pun(y)

n=1m=1

n m

Ve, 3 = @0 gy =) Gemn(DPm () Yran ()

n=1m=1

n om

wy(x’ v, t) = ¢1€yq¢/y = Z Z Qymn(t)(pym(x)l/fyn(y)

n=1m=1

’ ml

w(x,y, 1) = ¢5)qw = Z Z Gumn () Quwm (X)) Ywn (¥)

n=1m=1
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n m

Py ) =PEgs =" Gomn(OPpm(X)Vgn(y) (30)

n=1m=1

where m’ and n’ are the truncation of the Galerkin expansion (or the number of modes). It is shown in Table.
2 that Eq. (30) converges in the sixth mode. So,

m=n=6 3D

The unknown displacements that satisfy appropriate simply supported (S) and clamped (C) boundary
conditions can be written as

Simply supported (S):
L/ X\ . [/ T
Ors(x,y) = sm(r T) s1n(s Ty) (32)
Clamped (C):

@rs(x,y) = (cosh(k;x) — cos(kix))
— D (sinh(k;x) — sin(k;x))(cosh(k; y) — cos(k;y))
— D;j(sinh(k; y) — sin(k;y))

(33)
where
o sinh(k;) — sin(k;)
' cosh(k;) — cos(k;)
k1 =4.7300, ky =7.8532, k3 =10.9956, k4 = 14.1316,
ks = 172887, i>5=k = (i + 1)%
The Galerkin method is used to discretize form of governing equations which can be given as

Mqgt)+Cq(t)+Keq(t) =0 (34)

In Eq. (34), the overall vector of generalized coordinates is expressed by ¢q =

T
[qZ q{ qit qiy qg) qg] . Furthermore, K., M and C represent the stiffness, mass and damp-
ing matrices, respectively. So, the stiffness matrix can be represented as

Kii Ki» Ki3 Kiu Kis K q.
K> Kx» Ky Ky K Ko q,

K31 K3 K33 K3 K35 Kse v | _ (35)
Ky Ko Kiy3 Kyy Kys Ky qy,
Ksi Ks» Ks3 Kss Kss Ksg 9w
Kei Ke2 Koz Kea Kes Kes 94
The above equation can be rewritten as
Kiig+Kpgy,=0 36)
K219+ Kesqy =0
K1 K Kz Kisu Kis
Ky Ky Ky Ky Ko
= _ | Ks1 K3 K33 Kz Kjs _{ }T
Kn= Ku Ko Koy Ka Kgs |77 90 90 Qe 9y Gw (372)
Ks1 Ks» Ks3 Ksq4 Kss
K¢1 Koo K¢z Kot Kos
Ki»=[Kis K K3 Kis Ksol” (37b)

Ky =[Ke1 Ko Ko3 Kos Kes] (37¢)
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where
K,=K — Klzfgﬁlle (38)
The state vector Z(t) = {q(¢), q'(t)}T is defined and the Eq. (34) can be rewritten as
Z(t) = DZ(1), (39)
where
b= [—M(EIKE —AZ—IC}’ (40

I is the identity matrix. _
Finally, substituting the state vector Z(r) = Ze®" into Eq. (39) yields

(D —iwD)Z = 0. (41)

From Eq. (41), the eigenvalues w’s are obtained which are generally complex quantities and written
as a form, ® = wg + iw;. So w; represents the natural frequency of the system and wg is a real part.
Dynamic instability occurs when the real part of the eigenvalue sign becomes positive. The aerodynamic
pressure associated with this signal change is represented by the critical flutter aerodynamic pressure, A.,.
This phenomenon is caused by the merging of two modes of torsion and bending, which is known as the flutter
frequency, w., (Saidi et al. [30]).

4 Numerical results

The dimensionless parameters can be defined as

Q Dn 1\ p 26,1 (42)
= — |, = ——
2p ha* " 3(1 - v,z)

To evaluate the accuracy of the results obtained for vibration and dynamic instability analyses of FG Porous
doubly curved Panels, a comparison has been made with some published results (e.g. [9, 21, 31, 72-74]). In
Table 1, acomparison between the obtained results and those reported in the references (Matsunaga. [72], Chorfi
and Houmat [9]) for FGM curved shells under simply supported boundary conditions has been made. For this
validation, the material of the shell is considered according to the mentioned references, (Al/Al,O3). The
thickness of the piezoelectric layers and porosity coefficient is considered (h, = 1071m ) and (e = 1071°)
in order to obtain a curved shell similar to the mentioned references with a very good approximation. As it can
be found from Table 1, good correlation between the results of the present analysis and the results obtained in
the previous references can be seen. Also, the flutter aerodynamic pressure ., and flutter frequency (w,,) for
an isotropic square plate have been compared with the results presented by Prakash and Ganapathi [74] and
Akbari et al. [73] in Table 2. It should be mentioned that Akbari et al. [73] used the generalized differential
quadrature method (GDQM) and Prakash and Ganapathi [74] used the finite element method (FEM) for flutter
analysis.

The non-dimensional frequencies @ = wh+/ppy/E,; of an SCSC and SSSS FG porous plate for
power-law indices, porosity distributions, thickness-side ratios, various aspect ratios and porosity parame-
ters have been compared with the results have been provided by Rezaei et al. [21], in Table 3. In Table
4, the flutter frequency w,, and flutter aerodynamic pressure A.- of SSSS, CSCS and CCCC porous plate
(b/a =1, hp/2h =0.05 and 2h/a = 0.1) have been compared with the results have been presented by
Bahaadini et al. [31]. As can be seen from these tables, there is a good agreement between the presented
results and the results of previous research. The material properties of FG porous core and piezoelectric layers
are prepared in Tables 5 and 6. Then the flutter boundaries for this system are studied using the Galerkin
method. Table 7 shows the influence of different types of porosity coefficients and power-law index on the
flutter aerodynamic pressure and flutter frequency. The effects of various piezoelectric layers, radii of principal
curvatures of the middle surface (RX, Ry), FG porous distributions, power-law index, porosity coefficient,
doubly curved panel thickness, electrical conditions (open condition and closed condition) and mechanical
boundary conditions on the flutter boundaries of FG porous doubly curved panel are studied in Figs. 2, 3, 4,
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Table 1 The comparison of the natural frequency, for a FGM (Al/Al,O3) shell (a)* = wh %, ,a/h=10,a/b= 1)
b/Ry a/Rx k Matsunaga. [72] Chorfi and Houmat. [9] Present study
Spherical shell 0.5 0.5 0 0.0751 0.0762 0.07586
0.5 0.0657 0.0664 0.06602
1 0.0601 0.0607 0.06052
4 0.0503 0.0509 0.05061
10 0.0464 0.0471 0.04676
Cylindrical shell 0 0.5 0 0.0622 0.0629 0.06227
0.5 0.0535 0.0540 0.05372
1 0.0485 0.0490 0.04860
4 0.0413 0.0419 0.04160
10 0.0390 0.0395 0.03930
Hyperbolic paraboloid shell —-0.5 0.5 0 0.0563 0.0580 0.05661
0.5 0.0479 0.0493 0.04810
1 0.0432 0.0445 0.04393
4 0.0372 0.0385 0.03791
10 0.0355 0.0368 0.03598
Plate 0 0 0 0.0578 0.0577 0.05777
0.5 0.0492 0.0490 0.04916
1 0.0443 0.0442 0.04430
4 0.0381 0.0383 0.03826
10 0.0364 0.0366 0.03657

Table 2 The comparison of the flutter aerodynamic pressure A, and flutter frequency (w,,) for an isotropic square plate

SSSS CCcCcC
Acr Wer Acr Wcr
Prakash and Ganapathi. [74] (FEM) 511.11 42.90 852.34 65.38
Akbari et al. [73](GDQM) , , 511.15 43.29 851.27 65.73
Present study m = ”/ =7 511.1881 42.8496 851.3446 65.4805
m/ = ”/ =6 511.1753 42.8371 851.3283 65.4770
mo=n = 5 512.9601 43.7523 852.8126 64.6348
m = "/ =4 503.1282 39.9621 843.7691 59.8216
m/ = ’1/ =3 550.3125 41.1745 890.1642 62.3678
m =n"=2 373.7461 36.5123 713.8873 57.4896

Table 3 The comparison of the non-dimensional frequency, @ = wh/ o,/ Em% =005 ¢ =1

Boundary conditions e n=0 n=05 n=1
Even Uneven Even Unevenn  Even Uneven
SSSS 0 Rezaeietal. [21] 0.029119 0.029119  0.024673  0.024673  0.022237 0.022237
Present study 0.029108  0.029108  0.024661  0.024661  0.022232 0.022232
0.2 Rezaeietal. [21] 0.030033 0.029989  0.024558  0.025237  0.021038 0.022473
Present study 0.030011  0.029971  0.024532  0.025225 0.021022 0.022451
0.4 Rezaeietal. [21] 0.031371 0.031006 0.024230 0.025896  0.0187173  0.022694
Present study 0.031342 0.031003  0.024227 0.025882 0.018764 0.022681
CSCS 0 Rezaeietal. [21] 0.042402 0.042402 0.035954  0.035954  0.032414 0.032414
Present study 0.042401  0.04201 0.035932  0.035932  0.032402 0.032402
0.2 Rezaeietal. [21] 0.043732 0.043659 0.035796 0.036768  0.030686 0.032754
Present study 0.043715 0.043647 0.035783  0.036752  0.030675 0.032741

0.4 Rezaeietal [21] 0.045681 0.045127 0.035333 0.037719  0.026542 0.033073
Present study 0.045673  0.045112  0.035321  0.037701  0.026531 0.033061
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Table 4 The comparison of flutter aerodynamic pressure and flutter frequency of symmetric porous plate
(eo = 0.35, 2h/a = 0.15)
Boundary condition I%Z Condition Acr Wer
cccce 0 - Bahaadini et al. [31] 432.730 48.814
Present study 432.730 48.814
0.05 Closed Bahaadini et al. [31] 570.572 49.066
Present study 570.572 49.066
Open Bahaadini et al. [31] 614.08 51.385
Present study 614.08 51.385
0.1 Closed Bahaadini et al. [31] 720.224 49.795
Present study 720.224 49.795
Open Bahaadini et al. [31] 859.860 56.195
Present study 859.860 56.195
CSCS 0 - Bahaadini et al. [31] 392.376 43.252
Present study 392.376 43.252
0.05 Closed Bahaadini et al. [31] 521.270 43.456
Present study 521.270 43.456
Open Bahaadini et al. [31] 557.692 45.165
Present study 557.692 45.165
0.1 Closed Bahaadini et al. [31] 665.675 44.147
Present study 665.675 44.147
Open Bahaadini et al. [31] 755.854 47.710
Present study 755.854 47.710
SSSS 0 - Bahaadini et al. [31] 349.715 38.601
Present study 349.715 38.601
0.05 Closed Bahaadini et al. [31] 466.580 38915
Present study 466.580 38915
Open Bahaadini et al. [31] 496.104 40.290
Present study 496.104 40.290
0.1 Closed Bahaadini et al. [31] 596.875 39.620
Present study 596.875 39.620
Open Bahaadini et al. [31] 651.492 41.865
Present study 651.492 41.865
Table 5 The material properties of the piezoelectric layer
Property Piezoelectric layer
(PZT-4) (PZT-5A) (PZT-5H)
c11 (GPa) 132 121 151
c12 (GPa) 71 75.4 98
¢33 (GPa) 115 111 124
c13 (GPa) 73 75.2 96
css (GPa) 26 21.1 26.5
es1 (em™2) — 4.1 — 5.4 —5.1
e33 (cm™2) 14.1 15.8 27
eis (cm™?) 10.5 123 17
11 (nFm™") 7.124 8.107 15
E33 (nFm~') 5.841 7.346 13.27
p (kgm*3) 7500 7700 7400
Table 6 Material properties of FG material
E (GPa) o (Kg/m?) v
Al 70 2702 03
Al O3 380 3800 0.3
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Fig. 2 Flutter boundary versus Ry /a for different circuit conditions for (PZT —4, b/a =1, hy/2h =0.05, n=1, e=0.1)
a critical aerodynamic pressure, b critical frequency

5,6,7,8,9, 10, 11. In Figs. 2,3,4,5,6,7, 8,9, 10, 11. The diagrams show the boundary between dynamic
stability and instability. In a stable area, these vibrations are dumped, ie the air acts as a damper, while in an
unstable region, the oscillations grow exponentially, leading to a flutter phenomenon.

In these figures, the effects of various piezoelectric layers, radii of principal curvatures of the middle surface
(Rx, Ry), FG porous distributions and power-law index on the flutter boundaries of FG porous doubly curved
panels are investigated.

In Fig. 2 The influences of open circuit conditions and closed circuit conditions on the flutter boundaries
of FG porous doubly curved panels in supersonic flow are performed. It can be seen from Fig. 2 that the open
circuit condition predicts a higher stability boundary than the closed circuit condition. The effects of different
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Fig. 3 Flutter boundary versus R, /a for different Piezoelectric layers for (b/a = 1, h,/2h = 0.05, n = 1, e = 0.1) a critical
aerodynamic pressure, b critical frequency

piezoelectric layers on the flutter boundaries of FG porous doubly curved panels are studied in Fig. 3. From
Fig. 3, can be observed that the PZT — 4 predicts the highest flutter boundaries for the FG porous doubly
curved panel. In Fig. 4, the effects of mechanical boundary conditions on the flutter boundaries of the system
are investigated. It can be seen from Fig. 4 that the clamped boundary conditions predict the highest stability
boundaries. It also has the least stability with simply supported boundary conditions. Figure 5 shows the
effects of the power-law index on the flutter boundaries. It can be seen from Fig. 5 that increasing the power-
law index reduces the stability. Figure 6 shows the influences of porosity coefficient on the flutter boundaries.
It can be observed from Fig. 6 that increasing the porosity coefficient reduces the stability. The effects of panel
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Fig. 4 Flutter boundary versus Ry /a for different mechanical boundary conditions for (b/a = 1, h,/2h = 0.05, n = 1,
e = 0.1) a critical aerodynamic pressure, b critical frequency

dimensions on the flutter boundaries of FG porous doubly curved panels have been investigated in Figs. 7, 8, 9.
Figure 7 indicates the variation of flutter boundaries for different aspect ratios. The results show that increasing
the aspect ratios reduces the stability boundary. In Fig. 8, the influences of the core panel’s thickness on the
stability of the system are studied. It can be observed from Fig. 8 that increasing the thickness-length ratios
decreases the stability. Figure 9, shows the effects of piezoelectric layer thickness on the flutter boundaries.
Examination of the results shows that increasing the thickness of the piezoelectric layer increases the stability
of the system. The effects of different FG porous materials on the flutter boundaries of FG porous doubly
curved panels are studied in Fig. 10. It is clear from Fig. 10 that the use of V distribution raises the flutter
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Fig. 5 Flutter boundary versus R, /a for the different power-law index for (b/a = 1, h,/2h = 0.05, e = 0.1) a critical
aerodynamic pressure, b critical frequency

boundaries. Figure 11, shows the influences of a different curved panel on the flutter boundaries. A comparison
of the curves in Fig. 11 shows that the spherical panel has the highest stability. Figure 10 shows that the stability
boundary of the spherical panel is higher than that of the doubly curved panel (Ry = 2Ry ), cylindrical panel,

(Ry = —Ry) and plate.
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Table 7 The influence of different types of porosity coefficient and power-law index on the flutter aerodynamic pressure and
flutter frequency of SSSS FG porous doubly curved panels (b/a = 1, hp/2h= 0.05 and 2h/a = 0.1)

Condition Aero-elastic parameter e=0 e=0.1 e=02

Spherical panel Closed Aer 890.465 630.212 344.843
Wer 55.387 48.072 36.452

Open her 943.785 685.124 403.867

Wer 56.947 50.0615 40.546

Doubly curved panel (Ry = 2Ry) Closed Aer 886.175 626.346 341.912
Wer 54.841 47.56 36.115

Open her 939.243 682.158 400.011

Wer 56.442 49.832 39.151

Cylindrical panel Closed Aer 881.875 622.317 338.134
Wer 54.412 47.033 35.971

Open her 934.012 677.312 395.883

Wer 56.143 49.567 38911

Ry = —Ry Closed her 871.965 613.754 330915
Wer 54.143 46.934 35.841

Open Aer 923.233 666.932 387.331

Wer 56.021 49.382 38.781

Plate Closed Aer 846.226 591.843 315.872
Wer 53.924 46.128 35.447

Open Aer 897.756 645.146 371.688

Wer 55.817 49.113 38.142

5 Conclusion

In this study, the flutter boundaries for a doubly curved panel made of FG porous materials surrounded by
piezoelectric layers subjected to supersonic flow have been investigated. The governing equations of motion
are obtained from Hamilton’s principle and Maxwell’s equation. In this regard, first-order piston theory and
Reddy’s third-order shear deformation theory are used. The Galerkin method is used to discretize the equations
of motion. Based on the present research, the following results have been obtained:

1.

2.

A comparison of the spherical panel, doubly curved panel with Ry, = 2R, and Ry, = —R,, cylindrical
panel, and plate shows that the spherical panel has the highest and the plate has the lowest stability regions.
As the radius to length of the panel increases, the critical flutter aerodynamic pressure increases and the
flutter frequency decreases.

The open-circuit electrical boundary condition predicts a higher flutter boundary as well as a higher flutter
frequency than the closed-circuit electrical boundary condition. Also, the highest and lowest critical flutter
aerodynamic pressure and flutter frequency are related to CCCC and SSSS mechanical boundary conditions,
respectively.

By examining three piezoelectric materials, the PZT-4 type has the highest flutter boundary and flutter
frequency, and the PZT-5A type has the lowest critical flutter aerodynamic pressure and flutter frequency.
Also, increasing the ratio of piezoelectric layer thickness to panel thickness increases the critical flutter
aerodynamic pressure and flutter frequency.

The stability of the system decreases by increasing the thickness to length, the width-length ratio, the power
law index and the porosity coefficient.

Examination of different material distributions shows that V-distribution predicts the highest flutter bound-
ary and flutter frequency.
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Appendix A

In Eq. (20), the terms expressing inertia and the resulting forces and moments are expressed as follows:
h+hy,

(o, I, I, I3, 14, 16) = / p(2)(1,z, 2,23, z6)d (A.1)

—h—hp
h+hp

(NXX’NX)”N)’)’) = / (UXXsOx)rs O'yy)dZ
—h—h,
h+hp

(Mxx’Mxy’Myy)= / (UXXvaxyyayy)ZdZ
—h—h,
h+h,

(0+. 0y) = f (0xz. 0y:)dz
—h—h,
h+hp

. 3
X - ’ >
(Sxs Sys Syy) (0xxs Oxy, Oyy) 2 dz
—h—h,
h+h

(PX’ Py) = / (sz’ayz)zzdz (A.2)
—h—h,

The stiffness coefficients are presented in Eq. (21) as follows:
h+hy

(MAm—/@w&MHZ/MMMM

h+hy,

A66—/Q66d2+2 / (c11 —c12)dz
h

(B11, B12, Bes) = /(Qn, 012, Oge)zdz

@mQL%OZ/@meQw%%Z

h+h,

(D11, D12, Do) = /(Qn, 01y, Qe)z2dz +2 / (€11,C12, (€11 — €12))2%dz

h+hp

(E11,E12)—/(Q11,Q12)(Z —czY)dz+2 / @11.e12) (2> — cz*)dz

—h h+hp

E¢o = /(Q66)(Z —cCz )dZ+2 / (c11 —012)(Z —cz4)dz

—h
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—h h+hp
(Fi1, Fi2) = /(Qn, Qp)eztdz +2 / @n,ci)ez’dz +n3
—h h
—h h+hp
—h h
—h h+hp
Ass = /(Q66)(1 — B22)dz++2 / ess(1 — B22)dz
—h h

~h
(G11,G12,Geg) = /(Qn, 012, Qg6)2°dz
—h

h+hp

—h
(Hy1, Hpp) = / (011, 010)(z* — ¢z%)dz +2 / @11,¢12) (2% — ¢z%)dz
—h h

—h h+hp
Hoo = [ (Qe)(e* = c2¥)az 42 [ @ =2 = cx)ez
—h h

h+h)

—h
(Ln,le)=/(Q11,Q12)C26d2+2 / (€11,C12)cz%dz
Zh h

—h h+hp
—h h
—h h+hy,
Ss5 = /(Q&) (2 — Bzh)dz +2 / Css (22 — Bzt)dz
—h h
The constant quantities in Eq. (22), can be expressed as follow:

F H T T T
aby = Aqq +2Ci+c2 1 + 71 — —8+,3 822 —c 423

R, R? R?2 R2 R2

F H
aby = Age + ZCﬁ + 62 66

R, R2

1
aby = —5 (BDss — Ass)
RX
c
abs = A1z + Aes + R—(F12 + Feo)
y
+ < (F1y + Feg) + il (Hip + Heg) + T> + —— (—Tx + T, Tuss)
- - —c
R. 12 + Fe6 R 12 + Hee 2 ReR, 8 822 423

abs = By — P+t 20 Uy Bt Ten) + (T + Ta)
R, R, Ry Ry R, )

G H
abg = Beg — c| Feo — 06) _ Czﬁ
Ry Ry

1
aby = R—(Ass — BDss)

X

(A.3)
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C
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X
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For open-circuit condition:
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Appendix B

In Eq. (26), the definitions of constant quantities are expressed as follows:
For open-circuit condition:

(L (ETh 2 2 by (TEmh=hp/2 2
v e = Hy/2
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/ 615(1 — ﬂzz)dz + / 615(1 — ,Bzz)dz

h —h—h,

S
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