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Abstract We develop a general nonlinear theory of thermo-electrodynamics. We show that two theories
constructed in our previous works, namely the linear theory of thermo-electrodynamics and the nonlinear
theory of electromagnetism, can be obtained from the general nonlinear theory proposed in the present paper.
We also make some assumptions about how our model can be used to describe the fields corresponding to
strong and weak interactions. Our approach is based on using of the Cosserat continuum of a special type as
a mechanical model and some analogues between mechanical and physical quantities.

1 Introduction

It is well known that, until the late nineteenth century, the idea of using mechanical models to describe physical
processes was dominant in science. Many mechanical models of thermal, electrical, magnetic and electromag-
netic processes were proposed at that time. These models are known as the ether models, see [1]. Such famous
scientists as Volta, Ampère, Poisson, Ørsted, Young, Fresnel, Stokes, Navier, Cauchy, Green, Strutt, Neumann,
Weber, Gauss, Riemann, Thomson, Maxwell, Helmholtz, Kirchhoff, FitzGerald et al contributed to the cre-
ation of the ether models. It is important to note that all mathematical models of the ether constructed in the
nineteenth century are based on translational degrees of freedom. Such models can be found in the studies
published at the turn of the 20th/21st centuries, when the interest in mechanical models of physical processes
began to revive, see, e.g., [2–27]. At the same time, some scientists of the nineteenth century, e.g., Kelvin,
Fitzgerald and Maxwell, came up with an idea of using models based on rotational degrees of freedom [1].
In the 20th and 21st centuries, the description of electromechanical and magnetomechanical effects using
continuum models with rotational degrees of freedom was performed in works of many authors. We can refer,
e.g., to one-component continuum models [28–35] and two-component continuum models [36–39]. We can
also refer to [40–42], where analogues between curved beams and electrical circuits are used to design the
multi-physics metamaterials.

Zhilin was the first scientist of twentieth century who created models of physical processes based on con-
tinua with rotational degrees of freedom andwho called thesemodels the ether models. In 1996, Zhilin gave the
lecture “Reality andmechanics” at XXIII Summer School “Nonlinear Oscillations inMechanical Systems” (St.
Petersburg, Russia), where he showed that based on the continuum possessing only rotation degrees of freedom
one can obtain the Schrödinger equation and the Klein–Gordon equation. In 2000, Zhilin gave the lecture “The
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main direction of the development of mechanics for XXI century” at XXVIII Summer School–Conference
“Advanced Problems in Mechanics” (St. Petersburg, Russia), where he presented a continuum model with
only rotation degrees of freedom as a model of electromagnetic field in vacuum. Both lectures were published
in [11]. In 2005, Zhilin created a nonlinear theory of electromagnetic field, which was published in [43,44]. A
brief outline of the above Zhilin works can be found in [45]; the biography and scientific contributions of Zhilin
are presented in [46–48]. Beginning in 2010, we have published a series of works [49–55] developing Zhilin’s
ideas applied to modeling thermodynamic processes and a series of works [56–64] developing Zhilin’s ideas
applied to modeling electromagnetic processes and mutual influence of thermodynamic and electromagnetic
processes. The idea of describing physical phenomena using mechanical models based on rotational degrees
of freedom was also developed by other authors, see [65–69]. A discussion of various models of the ether,
both classical and modern, can be found in [70].

Papers [60,63,64] are directly related to the subject of the present study, so we discuss the results of these
papers in more detail. In [64], we have proposed a linear theory of thermo-electrodynamics, which is based
on the Cosserat continuum of a special type. This theory describes electric, magnetic and thermal effects in
dielectrics and in conductors. In contrast to Maxwell’s electrodynamics, the proposed theory is in agreement
with Kirchhoff’s laws for electrical circuits. In addition, the proposed theory describes the mutual influence of
thermal and electromagnetic processes. In the framework of the theory, we have obtained the entropy balance
equation and the heat conduction equation containing Joule heat. We have also obtained the generalized
Maxwell–Faraday equation containing the temperature gradient. Thus, the proposed theory contains three
mutually orthogonal vectors: the electric field vector, the magnetic field vector and the temperature gradient.
This is in agreement with two experimentally observed effects: the Ettingshausen effect and the Nernst–
Ettingshausen effect. In [60], we have proposed a nonlinear theory of electromagnetism. In this paper, we
show that the proposed theory can be based on two different models. Both the models are based on the
Cosserat continuum, but one of them assumes the true moment stress tensor to be antisymmetric, whereas
another model assumes the energy moment stress tensor to be antisymmetric. In the case of the linear theory,
the difference between thesemodels disappears. The study performed in [60] did not allow us to give preference
to one of the aforesaid models. In [63], we have developed and generalized the nonlinear theory based on these
models. As a result, we not only have introduced mechanical analogues of all known quantities characterizing
the state of electromagnetic field, but also have introduced some additional quantities: a voltage density vector,
a magnetic charge density vector, a magnetic flux tensor, an electromagnetic current density tensor, and an
electromagnetic induction tensor. In the framework of this theory, we have generalizedMaxwell’s first equation
writing it in tensor form. We have also generalized the charge balance equation writing it in tensor form, so
that the trace of this equation gives us the electric charge balance equation, and the vector invariant of this
equation gives us the magnetic charge balance equation. Despite the significant development of the theory, we
could not find convincing arguments in favor of one of our models. In [63], we concluded that only a further
generalization of the theory would allow us to choose between the two models.

The purpose of the present study is to create a general nonlinear theory of thermo-electrodynamics, from
which we can obtain, as special cases, the linear theory of thermo-electrodynamics developed in [64], and the
nonlinear theory of electromagnetism developed in [63]. It is important to note that attempt to combine the
linear theory of thermo-electrodynamics [64] and the nonlinear theory of electromagnetism [63] shows that
only the model based on the use of the true moment stress tensor allows this to be done. Thus, in the present
paper we make a choice between the two models. In addition, we make some assumptions about how our
model can describe the fields corresponding to strong and weak interactions.

2 The classical nonlinear theory of the elastic Cosserat continuum

2.1 Kinematics of the continuum

There are two approaches to describe the kinematics of continua: thematerial (Lagrangian) description [71–73]
and the spatial (Eulerian) description [74–76]. Below, we employ the spatial description. Let vector r identify
the position of some point of space. We introduce the following notations: v(r, t) is the velocity vector field;
u(r, t) is the displacement vector field; P(r, t) is the rotation tensor field, and ω(r, t) is the angular velocity
vector field. In the spatial description, the kinematic relations have the form

v = δu
δt

,
δP
δt

= ω × P,
δ

δt
= d

dt
+ v · ∇. (1)
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Here the operator
δ

δt
is the material time derivative, and the operator

d

dt
is the total time derivative. In order

to clarify the concept of the total time derivative [77,78], it is necessary to introduce the frame of reference.
Let us imagine in a point O three rigidly connected, mutually orthogonal pointers (“arrows”), e1, e2, e3. The
set {O, e1, e2, e3} is called a “frame.” The body of reference is defined by a frame to which a set of points
(in space) have been added, whereby a rigid body motion of all the points together with the frame is allowed.
The position of the points is labeled relatively to the frame by establishing the reference coordinate system
x1, x2, x3 with origin O: r∗ = x1e1 + x2e2 + x3e3, where −∞ < (x1, x2, x3) < +∞. The frame and the
reference coordinate system determine the reference body. They are “immutable.” In order to describe motion,
wemust be able to measure not only distance but also time. Hence, we need a “clock.” The reference body with
a “clock” is called the “frame of reference.” Let f (x1, x2, x3, t) be a function of the reference coordinates
and of time. By the definition, the total time derivative of f is

d f (x1, x2, x3, t)

dt
= lim

Δt→0

f (x1, x2, x3, t + Δt) − f (x1, x2, x3, t)

Δt
, (2)

under the condition that the reference coordinates x1, x2, x3 are held constant and there is an increment
in the function only because of the increment in time. We note that in addition to the reference coordi-
nate system one is free to choose any mathematical coordinate system in which the equations are specified.
However, the reference coordinate system is a distinctive one since it determines the frame of reference.
Let f (x(x1, x2, x3, t), y(x1, x2, x3, t), z(x1, x2, x3, t), t) be a composite function of several variables,
namely x , y, z. Then the total time derivative of f is

d f

dt
= ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
+ ∂ f

∂z

dz

dt
+ ∂ f

∂t
. (3)

In accordance with Eq. (3), the total time derivative is the partial derivative with the reference coordinates held
constant.

2.2 Inertia characteristics and dynamic structures of the continuum

Within the spatial description, it is customary to refer the inertia characteristics to an elementary volume fixed
in space and containing an ensemble of particles. As the medium moves, different particles pass through the
elementary volume, with each of these particles having its own mass and tensor of inertia. That is why, the
question arises as to how the tensor of inertia of the elementary volume can be introduced. Here we use the
approach that is discussed in detail in [79–84].We introduce the following notations: ρ(r, t) is themass density
of the continuum at a given point of space at the current time; J(r, t) is the specific inertia tensor of the particles
which occupy an elementary fixed volume V in space near the point identified by the position vector r at the
current time. Following the ideas of [79–85], we define ρ and J as

ρ =
∑N

i=1mi

V
, J =

∑N
i=1 Ĵi

∑N
i=1 mi

, (4)

where N is the number of particles in the elementary volume, and these particles possess massesmi and inertia
tensors Ĵi . Further, we consider an isotropic continuum. Therefore, we assume that

J(r, t) = J (r, t)E, (5)

where J (r, t) is the specific moment of inertia, E is the second-rank identity tensor.
The kinetic energy, the linear momentum vector and the angular momentum vector constitute the dynamic

structures of the continuum. The specific kinetic energy of the continuum has the form

K = 1

2
v · v + 1

2
J ω · ω. (6)

The specific linear momentum and the specific angular momentum of the continuum are

K1 = v, K2 = r × v + J ω, (7)

where the specific angular momentum is calculated with respect to the origin of the reference frame. We
note that the first term in the expression for the specific angular momentum is called the specific moment of
momentum and the second term is called the specific proper angular momentum.
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2.3 The balance equations

Below we formulate four balance equations: the mass balance equation, the first law of the Eulerian dynamics,
the second law of the Eulerian dynamics, and the energy balance equation. The mass balance equation can be
written as:

δρ

δt
+ ρ ∇ · v = 0. (8)

In order to formulate the first and the second laws of the Eulerian dynamics, we need to introduce the stress
vector τ n and the moment stress vector Tn modeling the surrounding medium influence on the surface S of
the elementary volume V. By standard reasoning, we introduce the concept of stress tensor τ associated with
the stress vector τ n and the concept of moment stress tensor T associated with the moment stress vector Tn .
These tensors are defined by the relations τ n = n · τ and Tn = n · T where n denotes the unit outer normal
vector to the surface S. We note that the stress tensor τ and the moment stress tensor T have the meaning of
the Cauchy stress tensors or, what is the same thing, the true stress tensors. Now, we can write the first law of
the Eulerian dynamics (the linear momentum balance equation) and the second law of the Eulerian dynamics
(the angular momentum balance equation) as

∇ · τ + ρf = ρ
δv
δt

, ∇ · T + τ× + ρL = ρ J
δω

δt
, (9)

where f is the external force per unit mass, L is the external moment per unit mass, ( )× denotes the vector
invariant of a tensor that is defined for an arbitrary dyad as (ab)× = a × b.

Now, we turn to the energy balance equation. Assuming that the energy supply from external sources is
absent, we formulate the energy balance equation as

d

dt

∫

(V)

ρ(K + U) dV =
∫

(S)

(
τ n · v + Tn · ω

)
dS −

∫

(S)

(n · v) ρ(K + U)dS, (10)

where U is the specific internal energy. By standard reasoning, taking into account Eqs. (6), (8), (9), we can
reduce Eq. (10) to the local form

ρ
δU

δt
= τ T · · (∇v + E × ω

) + TT · · ∇ω, (11)

where the double contraction is defined as ab · · cd = (b · c)(a · d), the cross product of a second-rank tensor
and a vector is defined as follows: if A = ab then A × c = ab × c = a(b × c). Further, we use the energy
balance equation (11) to define the concept of strain tensors and to obtain the Cauchy–Green relations.

2.4 The strain tensors

In modern literature, one can find different definitions of the strain tensors. Below we use the definitions
adopted in [11,43,86,87].

Definition 1 The tensors on which the stress tensor and the moment stress tensor perform work are called the
strain tensors. Namely, the tensor on which the stress tensor performs work is called the stretch tensor; the
tensor on which the moment stress tensor performs work is called the wryness tensor.

For convenience and brevity, we introduce the stretch tensor g and the wryness tensor Θ by the formulas

g = E − ∇u, ∇P = Θ × P, (12)

and then, we show that these are the quantities that appear in the energy balance equation. In order to show
the difference in properties of the stretch tensor and the wryness tensor, we consider some consequences of
Eq. (12). It is not difficult to see that the stretch tensor satisfies the equation

∇ × g = 0, (13)
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which is known as the strain compatibility equation. The wryness tensor satisfies the equation

∇ × Θ = 1

2
ΘT × × Θ, (14)

which also has the meaning of the strain compatibility equation. The proof of Eq. (14) based on the second
equation in (12) can be found in [60]. The distinguish between Eq. (13) and Eq. (14) is evident. We emphasize
that it is this difference that is the main reason that we create mechanical models of the electromagnetic field
based on a continuum with rotational degrees of freedom. Taking the trace of Eq. (14)

∇ · Θ× = 1

2

(
(trΘ)2 − Θ · · Θ

)
. (15)

Taking the vector invariant of Eq. (14) gives

∇ · (Θ − trΘ E)T = Θ · Θ×. (16)

We note that Eqs. (15), (16) play an important role in the proposed model of electromagnetic field.
As shown in [11,43], the velocity gradient and the angular velocity gradient are related to the stretch tensor

and the wryness tensor as

δg
δt

= −(∇v) · g, δΘ

δt
= ∇ω − Θ × ω − (∇v) · Θ . (17)

If translational velocity v is assumed to be equal to zero, from Eqs. (14), (17) it follows that

d

dt

(
1

2
ΘT × × Θ

)

= −∇ · (E × Θ × ω). (18)

In order to prove Eq. (18), it is sufficient to take the time derivative of Eq. (14), to take the curl of the second
equation in (17), and eliminate the time derivative of ∇ · Θ from the obtained equations. Taking the trace of
Eq. (18), we arrive at

d

dt

[
1

2

(
(trΘ)2 − Θ · · Θ

)]

= −∇ ·
[
ω · (Θ − trΘ E)

]
. (19)

Taking the vector invariant of Eq. (18) yields

d

dt
(Θ · Θ×) = ∇ · (

ω × Θ + Θ×ω
)
. (20)

We refer to Eqs. (14), (15), (16) and Eqs. (18), (19), (20) in Sect. 5.4, where we briefly outline the nonlinear
theory of non-conductive materials.

2.5 The reduced energy balance equation and the Cauchy–Green relations

In order to transform the energy balance equation (11) to a form convenient for obtaining the Cauchy–Green
relations, we introduce the energy stress tensor τ e and the energy moment stress tensor Te as

τ e = gT · τ · P, Te = gT · T · P, (21)

and also the energy stretch tensor ge and the energy wryness tensor Θe as

ge = g−1 · P, Θe = g−1 · Θ · P. (22)

Then, taking into account Eqs. (17), (21), (22), we can reduce Eq. (11) to the form

ρ
δU

δt
= τ T

e · · δge
δt

+ TT
e · · δΘe

δt
. (23)

This form of the energy balance equation is called the reduced energy balance equation. The transformations
needed to go from Eqs. (11) to (23) can be found in [53]. Thus, we have proved that Eq. (12) actually introduces
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the strain tensors, and it becomes clear why tensors (21) are called the energy stress tensor and the energy
moment stress tensor and also why tensors (22) are called the energy stretch tensor and the energy wryness
tensor.

The energy balance equation (23) allows us to determine the arguments of the functionU. If the continuum
is assumed to be elastic, then from Eq. (23) it follows that the specific internal energy is the function of two
arguments, the energy stretch tensor and the energy wryness tensor: U = U

(
ge, Θe

)
. Since in the case of

elastic continuum the stress tensor and the moment stress tensors do not depend of the strain rates, by standard
reasoning we arrive at the Cauchy–Green relations

τ e = ρ
∂U

(
ge, Θe

)

∂ge
, Te = ρ

∂U
(
ge, Θe

)

∂Θe
. (24)

In order to obtain the constitutive equations, it is necessary to specify the function U
(
ge, Θe

)
. Indeed, the

conditions of stability of the material impose certain restrictions upon the choice of function U
(
ge, Θe

)
.

Now, we have the closed system of equations (1), (8), (9), (12), (21), (22), (24) that describes the classical
elastic Cosserat continuum.

The above method of derivation of the constitutive equations is convenient if we deal with arbitrary stress
tensors and an arbitrary moment stress tensors. This method is also convenient if we impose some restrictions
on the energy stress tensor τ e and the energymoment stress tensorTe. However, if we impose some restrictions
on the true stress tensor τ and truemoment stress tensorT themethod of derivation of the constitutive equations
needs to be modified.

Now, we return to the energy balance equation (11). In order to represent this equation in a form convenient
for obtaining new Cauchy–Green relations, we introduce the following quantities characterizing the stresses:

τ r = gT ·
(
τ + T · ΘT

)
· P, Tr = PT · T · P, (25)

and the following quantities characterizing the strains:

gr = g−1 · P, Θr = PT · Θ · P. (26)

Taking into account Eqs. (17), (25), (26), we can reduce Eq. (11) to the form

ρ
δU

δt
= τ T

r · · δgr
δt

+ TT
r · · δΘr

δt
. (27)

The derivation of Eq. (27) can be found in “Appendix A.” If the continuum is assumed to be elastic, then from
Eq. (27) it follows that U = U

(
gr , Θr

)
. By standard reasoning, we arrive at the Cauchy–Green relations

τ r = ρ
∂U

(
gr , Θr

)

∂gr
, Tr = ρ

∂U
(
gr , Θr

)

∂Θr
. (28)

Specifying the functionU
(
gr , Θr

)
, we can obtain the constitutive equations. As a result, we have an alternative

form of the closed system of equations describing the classical elastic Cosserat continuum, namely Eqs. (1),
(8), (9), (12), (25), (26), (28).

We note that gr = ge, but τ r does not coincide with τ e. Furthermore, in contrast to tensor τ e, tensor τ r
depends not only on the stress tensor τ , but also on the moment stress tensor T. We also note that tensor
Tr and tensor Θr are in fact the rotated tensor T and the rotated tensor Θ , respectively. Therefore, tensor
Tr possesses the same properties as tensor T. If tensor T is symmetric, then tensor Tr is also symmetric. If
T is antisymmetric, then Tr is also antisymmetric. That is why, the method of derivation of the constitutive
equations based on the energy balance equation (27) is convenient if we impose some restrictions on the true
moment stress tensor T.
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3 A modified nonlinear theory of the elastic Cosserat continuum

3.1 Non-geometric interpretation of the strain tensors

The system of equations describing the behavior of the Cosserat continuum consists of the mass balance
equation, two equations of motion (the first and the second laws of the Eulerian dynamics), the constitutive
equations, the kinematics relations and the equations for the strain tensors. Material parameters are contained
in the constitutive equations. All other equations have the same form for any materials. In contrast to the mass
balance equation and the equations of motion, which can be written in both differential form and integral form,
the kinematics relations and the equations for the strain tensors are always formulated in differential form. All
of the above refers to the classical approach.

In [88], we have proposed a new approach to the definition of the stretch tensor for the continuumpossessing
only translational degrees of freedom. In [64,89], we have developed this approach for the linear Cosserat
continuum possessing only rotational degrees of freedom. Now, we develop this approach as applied to the
nonlinear Cosserat continuum, which has both rotational and translational degrees of freedom. The main
feature of our approach is that we do not consider the strain tensors to be purely geometric characteristics. An
important circumstance is that the strain tensors satisfy not only the differential equations, but also the integral
equations having the form of balance equations. Below we prove this assertion.

We start with the equations directly relating the gradients of the translational and angular velocities to
the strain tensors. Our goal is to obtain the integral form of these equations. In order to do so, we transform
Eq. (17) by using the definition of the material time derivative given by Eq. (1) to the form

dg
dt

= −∇(v · g), dΘ

dt
= −∇(v · Θ − ω) + Θ × (v · Θ − ω). (29)

The derivation of Eq. (29) can be found in “Appendix B.” Now, we rewrite Eq. (29) as

dg
dt

= −∇ · Jg, dΘ

dt
= −∇ · JΘ + � , (30)

where the third-rank tensors Jg and JΘ , and the second-rank tensor � have the form

Jg = E (v · g), JΘ = E (v · Θ − ω), � = Θ × (v · Θ − ω). (31)

Integrating Eq. (30) over the fixed volume V and using the divergence theorem yields

d

dt

∫

(V)

g dV = −
∫

(S)

n · Jg dS,
d

dt

∫

(V)

Θ dV = −
∫

(S)

n · JΘ dS +
∫

(V)

� dV. (32)

It is evident that both equations in (30) and both equations in (32) have the form of balance equations. The
first equations in (30) and (32) are the local and the integral forms of the stretch tensor balance equation. The
second equations in (30) and (32) are the local and the integral forms of the wryness tensor balance equation.
The third-rank tensors Jg and JΘ play the role of the fluxes of the stretch tensor and the wryness tensor,
respectively. The second-rank tensor � plays the role of the rate of production of the wryness tensor. In order
to clarify the physical meaning of vectors v · g and v · Θ − ω, which determine the flux tensors Jg and JΘ , we
turn to the kinematics relations (1). In view of Eq. (12), the kinematics relations can be rewritten as

du
dt

= v · g, dP
dt

= (ω − v · Θ) × P. (33)

Since the total time derivative of some quantity characterizes the rate of change of this quantity at a given point
of space, from Eq. (33) it follows that vector v · g characterizes the rate of change of the displacement vector
field at a given point of space, and vector ω − v · Θ characterizes the rate of change of the rotation tensor
field at a given point of space. We note that both equations in (33) can be considered as balance equations
where fluxes are equal to zero. In this case, the right-hand sides of these equations can be treated as the rate of
production of the displacement vector and the rate of production of the rotation tensor, respectively.

Thus, we have obtained the balance equations for the strain tensors, the displacement vector and the rotation
tensor. As a result, these quantities become, in some sense, similar to such quantities as mass, momentum,
angular momentum and energy. However, since the balance equations for the strain tensors, the displacement
vector and the rotation tensor are obtained by identical transformations, these quantities have not lost their
geometric meaning.
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3.2 Modified balance equations for the strain tensors

It is known that the balance equation for some quantity can contain a term having the meaning of the rate of
supply of this quantity from an external source. It seems logical to us to add such terms to the balance equation
for the stretch tensor and to the balance equation for the wryness tensor. In [88], we have done so in the case
of the continuum possessing only translational degrees of freedom, where we have modified the stretch tensor
balance equation. In [64], we have applied this idea in the case of the linear Cosserat continuum possessing
only rotational degrees of freedom, where we have modified the wryness tensor balance equation. Now, we
are going to develop this idea as applied to the case of the nonlinear Cosserat continuum possessing rotational
and translational degrees of freedom.

Let us modify the balance equations (30) as follows:

dg
dt

= −∇ · Jg + Υ g,
dΘ

dt
= −∇ · JΘ + � + Υ Θ, (34)

where the additional terms Υ g and Υ Θ are the rate of supply of the stretch tensor from an external source
and the rate of supply of the wryness tensor from an external source, respectively. As stated in [88], these
additional terms can be used, i.e., for modeling chemical reactions which result in changes in mechanical
states and mechanical properties of solids, and also for describing phase transitions and structural changes that
occur both with a change in mass and without a change in mass. Furthermore, these terms provide additional
opportunities to take into account the interrelation of thermal and mechanical processes.

In view of Eq. (31), we can rewrite Eq. (34) as

dg
dt

= −∇(v · g) + Υ g,
dΘ

dt
= −∇(v · Θ − ω) + Θ × (v · Θ − ω) + Υ Θ. (35)

We pay attention to an important circumstance. If we replace Eq. (29) by Eq. (35), then we must either
reject kinematics relations (1) or reject geometric relations (12). Here we reject Eq. (12). In this case, we
should consider the first and the second equations in (35) as definitions of the stretch tensor and the wryness
tensor, respectively; and also we should consider the first and the second equations in (1) as definitions of
the displacement vector and the rotation tensor, respectively. With this approach, the velocity vector and the
angular velocity vector play the role of the main variables. Since we reject Eq. (12), equations (1) and (33)
become non-equivalent. This is due to the fact that kinematics relations (33) were obtained from kinematics
relations (1) in view of geometric relations (12). Thus, now we can use the kinematics relations only in the
form of Eq. (1).

Let us reduce Eq. (35) to the form containing the material time derivatives of the stretch tensor and the
wryness tensor. We emphasize that we cannot just add the term Υ g to the first equation in (17) and the term
Υ Θ to the second equation in (17). This is because differential equations (29) were obtained from differential
equations (17) in view of geometric relations (12). Now, we cannot use geometric relations (12) since they are
not valid. After simple transformations, see “Appendix B,” we obtain

δg
δt

= −(∇v) · g − v × (∇ × g) + Υ g,

δΘ

δt
= ∇ω − Θ × ω − (∇v) · Θ − v ×

(

∇ × Θ − 1

2
ΘT × ×Θ

)

+ Υ Θ.
(36)

Here the double cross product is defined as ab× × cd = (b× c)(a× d). We note that Eq. (36) can be written
as

δg
δt

= −(∇v) · g + Υ ∗
g,

δΘ

δt
= ∇ω − Θ × ω − (∇v) · Θ + Υ ∗

Θ, (37)

where tensors Υ ∗
g and Υ ∗

Θ play the role of the source terms. These tensors are related to the source terms Υ g
and Υ Θ by the formulas

Υ ∗
g = −v × (∇ × g) + Υ g, Υ ∗

Θ = −v ×
(

∇ × Θ − 1

2
ΘT × × Θ

)

+ Υ Θ. (38)

It is easy to see that both equations in (37) differ from the corresponding equations in (17) only by the presence
of the source terms Υ ∗

g and Υ ∗
Θ .



Thermo-electrodynamics of conductive media 6213

Now, it is not clear to us which source terms are preferable to use when constructing the theory of the
generalized Cosserat continuum: Υ g and Υ Θ or Υ ∗

g and Υ ∗
Θ . However, we do not need to address this issue

now, since below we consider a model based only on rotational degrees of freedom. In such a case, Υ ∗
g = Υ g

and Υ ∗
Θ = Υ Θ .

3.3 The reduced energy balance equation in the case of the modified strain tensors

In the case of the modified strain tensors, the integral form of the energy balance equation (10) and the local
form of the energy balance equation (11) remain valid since these equations do not depend on the strain tensors.
Now, we transform the energy balance equation (11) in view of Eq. (37). If we use the energy strain tensors
ge and Θe, we obtain

ρ
δU

δt
= τ T

e · · δge
δt

+ TT
e · · δΘe

δt
+

[
g−1 ·

(
τ T + Θ · TT

)]
· · Υ ∗

g − TT · · Υ ∗
Θ. (39)

If we use the strain tensors gr and Θr , we arrive at the following equation

ρ
δU

δt
= τ T

r · · δgr
δt

+ TT
r · · δΘr

δt
+

[
g−1 ·

(
τ T + Θ · TT

)]
· · Υ ∗

g − TT · · Υ ∗
Θ. (40)

The derivation of Eqs. (39) and (40) can be found in “Appendix C.” It is easy to see that the right-hand sides
of Eqs. (39) and (40) contain the additional terms compared with Eqs. (23) and (27), respectively. Because of
these additional terms, Eqs. (39) and (40) do not allow us to determine the arguments of the function U, even
if the continuum is assumed to be elastic. This means that using Eq. (39) or Eq. (40) as a starting point we
cannot arrive at the Cauchy–Green relations (24) or the Cauchy–Green relations (28), respectively.

Further, for simplicity sake, we assume that
[
g−1 ·

(
τ T + Θ · TT

)]
· · Υ ∗

g − TT · · Υ ∗
Θ = 0. (41)

We note that the source terms Υ ∗
g and Υ ∗

Θ should be specified by constitutive equations, which can be chosen
arbitrary. Scalar equation (41) can be considered as an equation specifying one component of tensorΥ ∗

g or one
component of tensor Υ ∗

Θ . The physical meaning of this equation is that it imposes a restriction on the energy
exchange caused by the source terms Υ ∗

g and Υ ∗
Θ . If the source terms satisfy this equation, then the energy of

the considered continuum can be redistributed between its degrees of freedom, but the energy exchange due
to Υ ∗

g and Υ ∗
Θ between the considered continuum and its surrounding is absent. Indeed, in view of Eq. (41),

the energy balance equation (39) turns into Eq. (23), and the energy balance equation (40) turns into Eq. (27).
In this special case, the above reasoning regarding the Cauchy–Green relations remains valid. Namely, if the
continuum is elastic, i.e., U = U

(
ge, Θe

)
or U = U

(
gr , Θr

)
, then the Cauchy–Green relations take the form

of Eq. (24) or Eq. (28), respectively. Below we consider only the special case given by Eq. (41).
Thus, we arrive at two nonlinear theories of the modified elastic Cosserat continuum. The first theory is

described by Eqs. (1), (8), (9), (21), (22), (24), (37), (38) under restriction (41). The second theory is described
by Eqs. (1), (8), (9), (25), (26), (28), (37), (38) under restriction (41). We note that we consider the modified
Cosserat continuum to be elastic due to the Cauchy–Green relations (24) and (28), which allow us to obtain
the constitutive equations as in the case of an elastic material. However, thanks to a special choice of the
constitutive equations for tensors Υ ∗

g and Υ ∗
Θ , the modified Cosserat continuum can possess some properties

of a viscoelastic continuum. This peculiarity of the modified Cosserat continuum is very important for further
physical interpretations.

4 The Cosserat continuum of a special type

4.1 The modified theory of the Cosserat continuum possessing only rotational degrees of freedom

Below, we outline a simplified version of the theory presented in Sect. 3. The simplification consists in rejecting
translational degrees of freedom in the modified theory of the Cosserat continuum. In other words, below we
assume that v = 0, u = 0, g = E, ρ = const , and Υ g = 0. In this case, the material time derivative
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coincides with the total time derivative, the mass balance equation and the stretch tensor balance equation turn
into identities.

The kinematics relation between the rotation tensor and the angular velocity vector (1) takes the form

dP
dt

= ω × P. (42)

The angular momentum balance equation (9) is written as

∇ · T + τ× + ρL = ρ J
dω

dt
. (43)

The wryness tensor balance equation (36) is reduced to the form

dΘ

dt
= ∇ω − Θ × ω + Υ Θ. (44)

The simplifying restriction (41) turns into the equation

TT · · Υ Θ = 0. (45)

An additional simplification of the theory consists in the assumption that the specific internal energy does
not depend on tensor ge = gr . In this case, two types of the Cauchy–Green relations are simplified as follows.
The Cauchy–Green relations (24) are reduced to the form

τ = 0, T = d
(
ρU(Θe)

)

dΘe
· PT , Θe = Θ · P. (46)

The Cauchy–Green relations (28) are written as

τ = −T · ΘT , T = P · d
(
ρU(Θr )

)

dΘr
· PT , Θr = PT · Θ · P. (47)

Certainly, the system of the basic equations includes either Eq. (46) or Eq. (47).
The linear momentum balance equation (9) takes the form of the quasi-static equation

∇ · τ + ρf = 0. (48)

In order to close the system of equations, we should specify the external moment ρL, tensorΥ Θ , characterizing
the rate of supply of the wryness tensor from an external source, and either the specific internal energy
U = U

(
Θe

)
or the specific internal energy U = U

(
Θr

)
.

We note that, in the case of the Cauchy–Green relations (46), the stress tensor τ is equal to zero. Then,
according to Eq. (48), the external force f must be equal to zero. In the case of the Cauchy–Green relations (47),
the stress tensor τ is completely determined by the quantities associatedwith rotational degrees of freedom, and
it is not equal to zero. Thus, although the theory ignores translational degrees of freedom, it includes nonzero
stress tensor τ . In this case, the linear momentum balance equation (48) determines the external force f at
which translational motion of the continuum is absent. Thus, the presence of the external force f in the linear
momentum balance equation (48) allows us to avoid any theoretical contradictions between the expression
for τ and assumption v = 0. Certainly, it would be more correct to take into account translational degrees of
freedom rather than introduce such an external force. We are going to include translational degrees of freedom
in our model in future research. But in this paper, we focus our attention on other issues and therefore avoid
overcomplicating the model, which is already quite complex.
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4.2 The choice between two models

In [60,63], we consider two nonlinear models, where we use the classical equation relating the wryness tensor
to the angular velocity vector, i.e., the equationwithout the term characterizing the rate of supply of the wryness
tensor from an external source. Constructing one of these models, we assume that

Te = −Me × E. (49)

Constructing another model, we assume that

T = −M × E. (50)

In all our previous works, where we compare the equations of the Cosserat continuum with the equations
of electrodynamics and thermodynamics, we eliminate the rotation tensor and obtain the system of the basic
equations that includes the angular momentum balance equation, the equation relating the wryness tensor to
the angular velocity vector, and the constitutive equations. When we impose the restriction on the true moment
stress tensor, see Eq. (50), we use vector M, tensor Θ , vector ω and vector K = ρ Jω as the main variables,
and we match these quantities to electrodynamic ones. When we impose the restriction on the energy moment
stress tensor, see Eq. (49), we use vectorMe, tensorΘe, vectorΩ = PT ·ω and vectorKe = ρ JΩ as the main
variables, and we match these quantities to electrodynamic ones. In [60,63], we could not give preference to
one of the models since we arrived at the same results when using each of them. In [64], where we firstly
added the rate of supply of the wryness tensor from an external source to the wryness tensor balance equation,
we considered the linear approximation. In the linear case, the true moment stress tensor coincides with the
energy moment stress tensor, so we do not face the problem of choosing between the two models.

Now, the question arises: can we generalize the nonlinear models proposed and developed in [60,63] to the
case of the modified definition of the wryness tensor, given by Eq. (44)? In fact, the question is whether we can
eliminate the rotation tensor from the system of basic equations, so that the result would be a closed system of
equations in variablesM, Θ , ω,K in the case of restriction (50) or in variablesMe, Θe, Ω ,Ke in the case of
restriction (49). The problem is as follows. If we add the source term to the wryness tensor balance equation,
we can no longer use the relation∇P = Θ ×P. At the same time, if we rewrite the angular momentum balance
equation in terms of variables Me, Θe, Ω , Ke, we can eliminate the rotation tensor from this equation only
if we use the relation ∇P = Θ × P. This fact is shown in “Appendix D.” Thus, in the case of the nonlinear
model with the source term in the wryness tensor balance equation, we cannot eliminate the rotation tensor
from the system of the basic equations if we impose restrictions on the energy moment stress tensor. That is
why, below we consider only the model based on restrictions imposed on the true moment stress tensor.

4.3 Assumptions regarding the constitutive equations

Now,we are going tomake a fewadditional assumptions regarding theCosserat continuumwithout translational
degrees of freedom,which is presented in the previous section. These assumptions allow us to obtain an original
model based on the Cosserat continuum. Below, in Sect. 5, we give a physical interpretation of the proposed
model by introducing thermodynamic and electrodynamic analogues of mechanical quantities.

Hypothesis 1 The moment stress tensor T has the following structure:

T = TE − M × E, (51)

where the scalar quantity T characterizes the spherical part of tensorT and the vector quantityM characterizes
the antisymmetric part of tensor T.

Hypothesis 2 The source term in the balance equation for the wryness tensor Θ has the following structure:

Υ Θ = 1

3
ΥΘE − 1

2
Υ Ψ × E, (52)

where the scalar quantity ΥΘ characterizes the spherical part of tensor Υ Θ and the vector quantity Υ Ψ

characterizes the antisymmetric part of tensor Υ Θ .
In fact, we choose the structure of the source term in the wryness tensor balance equation (44) by the

analogy with the structure of the moment stress tensor.
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Hypothesis 3 The spherical part of the source term Υ Θ is related to its antisymmetric part as

T ΥΘ + M · Υ Ψ = 0. (53)

This equation has the same physical meaning as Eq. (45).

Hypothesis 4 The specific internal energy has the following form:

ρU = ρU∗ + T∗(Θ − Θ∗) + 1

2
CΘ(Θ − Θ∗)2 + 1

2
CΨ Ψ r · Ψ r , Θ = trΘ, Ψ r = PT · Ψ , Ψ = Θ×,

(54)

where U∗, T∗ and Θ∗ are the reference values of U , T and Θ , respectively, constants CΘ and CΨ are the
stiffness parameters.

In view of Eq. (54), we obtain the following constitutive equations:

T = T∗ + CΘ (Θ − Θ∗), M = CΨ Ψ , τ = −T ΘT + M × ΘT . (55)

Derivation of these constitutive equations can be found in “Appendix E.”

Hypothesis 5VectorΥ Ψ characterizing the antisymmetric part of the source termΥ Θ is proportional to vector
M characterizing the antisymmetric part of the moment stress tensor:

Υ Ψ = −κ M, (56)

where parameter κ is assumed to be constant.
Constitutive equation (56) was firstly used in [64]. In the cited paper, it is shown that, adopting constitutive

equation (56), we arrive at the model that is in some sense similar to Maxwell’s model of a viscoelastic
continuum based on rotational degrees of freedom, which was used in [62]. We also refer to [89], where
different approaches to construction of mathematical models of viscoelastic materials are discussed.

Hypothesis 6 The external moment ρL is the moment of linear viscous damping proportional to the proper
angular momentum:

ρL = −βK, K = ρ Jω. (57)

Here K is the proper angular momentum per unit volume, β is the coefficient of damping. Coefficient β is
assumed to be constant.

The external moment ρL given by Eq. (57) models the dissipation of energy of the continuum. This
dissipation is caused by the interaction of the considered continuum with some other continuum, which is
ignored in the proposed model. The structure of moment ρL is chosen in accordance with the results obtained
by solving two model problems, see [50,51].

4.4 The system of the basic equations

Here, we present the system of the basic equations that we are going to discuss in the next sections. The
angular momentum balance equation rewritten in terms of the proper angular momentumK and quantities T ,
M determining the moment stress tensor, takes the form

∇T − ∇ × M = −M ·(Θ − trΘ E
) − T Θ× − ρL + dK

dt
. (58)

In virtue of Eq. (52), the balance equation for the wryness tensor is written as

dΘ

dt
= ∇ω − Θ × ω + 1

3
ΥΘE − 1

2
Υ Ψ × E. (59)

The constitutive equations are

T = T∗ + CΘ (trΘ − Θ∗), M = CΨ Θ×, K = ρ Jω, Υ Ψ = −κ M, ρL = −βρ Jω. (60)

The expression for the spherical part of the source term, which follows from Eq. (53), has the form

ΥΘ = −M · Υ Ψ

T
. (61)

Thus, we have the closed system of equations describing the physically linear, but geometrically nonlinear
theory of the Cosserat continuum of a special type.
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4.5 Consequences of the wryness tensor balance equations

Now, we consider some consequences of Eq. (59) relating the wryness tensor to the angular velocity vector.
Taking the trace of Eq. (59) yields

d(trΘ)

dt
= ∇ · ω − Θ× · ω + ΥΘ. (62)

Taking into account Eq. (62), we can transform Eq. (59) to the form

d(Θ − trΘ E)

dt
= ∇ · (Eω − ωE) + (

ω × Θ + Θ×ω
)T − 2

3
ΥΘE − 1

2
Υ Ψ × E. (63)

The transformation can be found in “Appendix F.” We note that Eq. (63) is equivalent to Eq. (59). Indeed, if
we know tensor Θ , we can find tensor Θ − trΘ E, and vice versa. Taking the vector invariant of Eq. (59)
gives

∇ × ω = ω · (Θ − trΘ E) − Υ Ψ + dΘ×
dt

. (64)

We will discuss the physical meaning of Eqs. (62), (63), (64) and all other equations given in this section after
introducing thermodynamic and electrodynamic analogues of mechanical quantities.

Now, we turn to less obvious consequences of Eq. (59). First of all, performing some transformations of
Eq. (59), see “Appendix F,” we obtain

d

dt

(
1

2
ΘT × × Θ

)

= −∇ · (E × Θ × ω) +
[

∇ × Θ − 1

2
ΘT × ×Θ

]

× ω

−1

3
ΥΘ(Θ − trΘ E)T − 1

2
(E × Θ − Θ×E) · Υ Ψ . (65)

Taking the trace of Eq. (65) gives

d

dt

[
1

2

(
(trΘ)2 − Θ · · Θ

)]

= −∇ ·
[
ω · (Θ − trΘ E)

]
+

[
∇ · (Θ − trΘ E)T − Θ · Θ×

]

·ω + 2

3
ΥΘ trΘ + 1

2
Υ Ψ · Θ×. (66)

Taking the vector invariant of Eq. (65) yields

d

dt
(Θ · Θ×) = ∇ · (

ω × Θ + Θ×ω
) +

(

∇ × Θ − 1

2
ΘT × ×Θ

)T

· ω + 1

3
ΥΘ Θ× + 1

2
(Υ Ψ · Θ + Θ · Υ Ψ ) . (67)

We note that the left-hand side of Eq. (66) contains the second scalar invariant of tensor Θ . The left-hand
side of Eq. (67) contains vector quantity Θ · Θ×, which is also invariant of tensor Θ . By an invariant of the
second-rank tensor, we mean a scalar or vector quantity, which does not depend on the choice of basis. Further,
we use term “the first vector invariant” of tensor Θ for vector Θ× and term “the second vector invariant” of
tensor Θ for vector Θ · Θ×. Although these terms are not generally accepted, we believe that they are quite
relevant, as they reflect the essence of these quantities.

Next, performing some additional transformations of Eq. (59) and taking into account Eq. (65), see
“Appendix F,” we arrive at

d

dt

[

∇ × Θ − 1

2
ΘT × × Θ

]

+
[

∇ × Θ − 1

2
ΘT × × Θ

]

× ω

= 1

3

[
(∇ΥΘ) × E + ΥΘ(Θ − trΘ E)T

]
+ 1

2

([
(∇ · Υ Ψ )E − ∇Υ Ψ

]T + (
E × Θ − Θ×E

) · Υ Ψ

)
. (68)
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Taking the trace of Eq. (68), we obtain

d

dt

[

∇ · Θ× − 1

2

(
(trΘ)2 − Θ · · Θ

)]

+
[
∇ · (Θ − trΘ E)T − Θ · Θ×

]
· ω

= ∇ · Υ Ψ − 2

3
ΥΘ trΘ − 1

2
Υ Ψ · Θ×.

(69)

Adding up Eq. (66) and Eq. (69) yields

d

dt
(∇ · Θ×) = −∇ ·

[
ω · (Θ − trΘ E)

]
+ ∇ · Υ Ψ . (70)

Taking the vector invariant of Eq. (68), we get

d

dt

[
∇ · (Θ − trΘ E)T − Θ · Θ×

]
+

(

∇ × Θ − 1

2
ΘT × ×Θ

)T

· ω

= −2

3
∇ΥΘ + 1

2
∇ × Υ Ψ − 1

3
ΥΘ Θ× − 1

2
(Υ Ψ · Θ + Θ · Υ Ψ ) .

(71)

Adding up Eqs. (67) and (71) gives

d

dt

[
∇ · (Θ − trΘ E)T

]
= ∇ · (

ω × Θ + Θ×ω
) − 2

3
∇ΥΘ + 1

2
∇ × Υ Ψ . (72)

All the above equations are used in order to give a physical interpretation of the mechanical model proposed
in the present paper.

5 A physical interpretation of the proposed theory

5.1 Mechanical analogues of thermodynamic and electromagnetic quantities

Following [49–52], we interpret quantity T , characterizing the spherical part of the moment stress tensor, as
a mechanical analogue of absolute temperature Ta and trace of the wryness tensor as a mechanical analogue
of entropy per unit volume Θa . Thus, we have

Ta = 1

a
T, Θa = a trΘ, (73)

where a is the normalization factor. In the literature on classical thermodynamics and continuum mechanics,
specific entropy is often used. If we deal with the ponderable matter, entropy per unit volume Θa and specific
entropy ϑa are related to each other as Θa = �ϑa , where � is the mass density of the ponderable matter, not
the mass density of the ether. In the present paper, we ignore translational degrees of freedom associated with
the ether and we ignore all mechanical processes associated with the ponderable matter. This means that both
the mass density of the ether ρ and the mass density of the ponderable matter � are considered to be constant.
That is why, without loss of generality, we can write all known thermodynamic formulas using the entropy per
unit volume instead of the specific entropy.

Following [56,57,60], we introduce the analogues of electromagnetic quantities as follows: the moment
stress vectorM is the analogue of the electric field vector E; the volume density of proper angular momentum
K is the analogue of the magnetic induction vector B; the vector invariant of the wryness tensor Θ× is the
analogue of the electric induction vectorD; the angular velocity vector ω is the analogue of the magnetic field
vectorH. Thus, we have the relations

E = 1

χ
M, B = 1

χ
K, D = χΘ×, H = χω, (74)

where χ is the normalization factor. In addition, following [62,64], we introduce some additional analogues.
We consider vectorΥ Ψ , characterizing the antisymmetric part of the source term in the wryness tensor balance
equation, as the analogue of the conducting current density vector Jc; the external moment per unit volume ρL
as the analogue of the conducting voltage density vector Vc; the angular velocity vector ω as the analogue of
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the entropy flux vector hΘ ; and scalar ΥΘ , characterizing the spherical part of the source term in the wryness
tensor balance equation, as the analogue of the entropy production per unit volume per unit time qΘ . Thus, we
have

Jc = −χΥ Ψ , Vc = − 1

χ
ρL, hΘ = −aω, qΘ = aΥΘ. (75)

The physical meaning of the quantities in the first, third and fourth equations in (75) is clear. The appearance of
vector ω simultaneously in the third equation in (75) and in the fourth equation in (74) needs to be explained.
It will be done in Sect. 5.3. The treatment of the source term ΥΘ as the entropy production requires ΥΘ to be
non-negative. This condition is satisfied due to the hypotheses given by Eqs. (53), (56). Now, we focus our
attention on the conducting voltage density vectorVc. This is a quantity specific for electrodynamics developed
on the basis of our mechanical model. In the proposed version of electrodynamics, vector Vc is presented in
the modified Maxwell–Faraday equation (Maxwell’s second equation). Vector Vc plays the same role in this
equation as vector Jc plays in Maxwell’s first equation. The simplest constitutive equation for the conducting
voltage density vector Vc is similar to Ohm’s law for the conducting current density vector Jc. The only
difference is that vector Vc is proportional to the magnetic field vector H, whereas vector Jc is proportional
to the electric field vector E. Due to the presence of vectorVc in the modified Maxwell–Faraday equation, the
linearized equations of out electrodynamics are three-dimensional analogues of Kirchhoff’s laws for electrical
circuits. In addition, due to the presence of vector Vc the linearized equations of our electrodynamics can be
reduced to the three-dimensional analogue of the telegraph equation, which is usually used to describe the
electromagnetic processes in transmission lines. All the equations mentioned above can be found in Sect. 5.3.
A more detailed explanation of the physical meaning of vector Vc can be found in [62,64].

Now, following [60,63], we introduce the analogue of the electric charge density Q, the analogue of the
positive electric charge density Q+ and the analogue of the negative electric charge density Q− as

Q = χ

2

((
trΘ

)2 − Θ · · Θ
)

, Q+ = χ

2

(

(trΘ)2 + 1

2
Θ× · Θ×

)

, Q− = −χ

2
Θs · · Θs, (76)

where index s denotes the symmetric part of a tensor. Next, following [63], we introduce four physical concepts,
which are absent in classical electrodynamics, but play an important role in the proposed theory.

– Qm is the magnetic charge density vector. It is introduced by the analogy with the electric charge density.
Just like the electric charge density, the magnetic charge density vector satisfies the conservation law and
the Gauss law.

– Dm is the entropy and electromagnetic induction tensor. It is introduced by the analogy with the electric
induction vector. Just like the electric induction vector is presented in the Gauss law for the electric charge
density, the entropy and electromagnetic induction tensor is presented in the Gauss law for the magnetic
charge density vector.

– Jm is the electromagnetic current density tensor. It is introduced by the analogy with the electric current
density vector. Just like the electric current density vector is presented in the conservation law for the
electric charge density, the electromagnetic current density tensor is presented in the conservation law for
the magnetic charge density vector.

– Hm is themagnetic flux tensor. It is the third-rank tensor, which can be represented bymeans if themagnetic
field vector and the unit tensor. The physical meaning of the magnetic flux tensor will be discussed below.

In [63], we define the aforementioned quantities Qm , Dm , Jm and Hm as

Qm = χ Θ · Θ×, Dm = χ
(
Θ − trΘ E

)
,

Jm = −χ
(
ω × Θ + Θ×ω

)T
, Hm = χ

(
ωE − Eω

)
.

(77)

In addition, following [60,63], we introduce the analogue of the internal current density vector JI and the
analogue of the internal voltage density vector VI as

JI = χ ω ·(Θ − trΘ E
)
, VI = − 1

χ

[
M ·(Θ − trΘ E

) + T Θ×
]
. (78)

As will be shown in Sect. 5.4, vectors JI and VI play the same role in Maxwell’s first and second equations
as vectors Jc and Vc, respectively, and in this sense JI is the current density vector and VI is the voltage
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current density vector. However, it is important not to confuse the internal current density vector JI with
the conducting current density vector Jc and also the internal voltage density vector VI with the conducting
voltage density vector Vc, because these vectors are defined by different formulas and have different physical
meaning. In contrast to vectors Jc and Vc, vectors JI and VI are not specified by constitutive equations
containing material constants. As seen from Eqs. (73), (74), (77), (78), vectors JI and VI are nonlinear
characteristics of electromagnetic field, which are completely determined by the entropy and electromagnetic
induction tensorDm and a number of well-known electrodynamic and thermodynamic quantities:

JI = 1

χ
H · Dm, VI = − 1

χ

(

E · Dm + a

χ
TaD

)

. (79)

We emphasize that vector JI is proportional to the magnetic field vectorH, whereas vector Jc is proportional
to the electric field vector E. Similarly, vector VI is proportional to the electric field vector E, whereas vector
Vc is proportional to the magnetic field vectorH. The fact that vector JI is proportional to the magnetic field
vector H gives us reason to suppose that the internal current density vector JI is in some sense related to
the so-called Ampère molecular currents, i.e., the currents that take place inside atoms and are responsible
for magnetic effects at the macro level. In this case, it seems logical to associate the internal voltage density
vectorVI withmolecular voltages that characterize the electric states of atoms, in which themolecular currents
take place. However, it should be noted that classical Maxwell’s equations do not contain terms responsible
for permanent magnets, do not contain the Ampère molecular currents, and do not contain vectors JI and
VI . Therefore, when discussing the internal currents inherent our model, we can assume these currents are
something similar to the Ampère molecular currents, but we cannot say with certainty that these currents are
exactly theAmpèremolecular currents. The distinction between vectorJc and vectorJI and also the distinction
between vector Vc and vector VI are discussed in more detail in Sect. 5.5, where we focus our attention on
the role played by these vectors in differential equations of the proposed theory.

We are deeply convinced that quantitiesQm ,Dm , Jm ,Hm , which are absent in classical electrodynamics,
are the real physical quantities, and differential equations relating these quantities to each other (see Sect. 5.4)
describe real physical processes and phenomena. In our opinion, the magnetic charge density vector Qm
characterizes a property inherent in some elementary particles and a state of microscopic permanent magnets,
just as the electric charge density Q characterizes a property inherent in the charged elementary particles and
a state of the charged microscopic bodies. We believe that the influence of the magnetic charge density vector
Qm on the magnetization is performed by means of the entropy and electromagnetic induction tensorDm . In
[63], we discuss in detail our guesses about how exactly this influence might occur. In addition, we note that
the magnetic charge density vector Qm has nothing to do with magnetic monopoles, which are discussed in
various literary sources. We are convinced that magnetic charges should be described by vector quantities, not
by scalars. This is what fundamentally distinguishes our approach to describing magnetic phenomena from
the known approaches.

In order to explain the name of tensor Dm and its physical meaning, we give two algebraic relations
following from Eqs. (73), (74), (77):

Θa = − a

χ

trDm

2
, D = (Dm)× , (80)

In accordance with Eq. (80), tensor Dm includes the entropy per unit volume Θa and the electric induction
vectorD. Let us represent tensorDm in the form

Dm = −2χ

3a
Θa E − 1

2
D × E + devDs

m, (81)

where Ds
m is the symmetric part of tensor Dm . Equation (81) makes it obvious that, besides the entropy per

unit volume Θa and the electric induction vector D, tensor Dm also includes some additional characteristics
of electromagnetic field and/or thermal field, which are contained in the deviator of its symmetric part. As
seen from Eq. (79), these additional characteristics influence on vectors JI and VI , which play an important
role in electrodynamic processes. As it will be shown in Sect. 5.4, tensorDm is related to the magnetic charge
density vector Qm by a differential equation having the form of the Gauss law. In other words, tensorDm and
vector Qm are related to each other by the equation similar to that relates the electric induction vector D and
the electric charge density Q.
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In order to explain the physical meaning of tensors Jm andHm , we give several algebraic relations, which
follow from Eqs. (73), (74), (77):

JI = (Jm)× , Jm = − 1

χ

[
H ×

(
Dm + χ

a
ΘaE

)
+ DH

]T
, Hm = HE − EH. (82)

As seen from Eq. (82), the electromagnetic current density tensor Jm , as well as the internal current density
vector JI , is proportional to the magnetic field vectorH, and the antisymmetric part of tensor Jm is completely
determined by vector JI . Therefore, we can consider tensor Jm as a generalization of vector JI . As it will
be shown in Sect. 5.4, the magnetic charge density vector Qm satisfies the conservation law, where tensor Jm
plays the role of the current density tensor. As seen from the last equation in (82), the third-rank tensor Hm
is completely determined by the magnetic field vector H. This tensor is introduced in order to formulate a
generalized Maxwell’s first equation, which relates to each other tensors H, Jm and Dm , see Sect. 5.4.

Finally,we introduce threemorephysical quantities that takeour theorybeyond the thermo-electrodynamics.
They are a generalized charge density tensorQg , a generalized induction tensorDg , and a generalized current
density tensor Jg . In the framework of our mechanical model, we define these quantities as

Qg = χ

2
ΘT × × Θ, Dg = χ E × Θ, Jg = χ E × Θ × ω. (83)

In order to clarify the physical meaning of the introduced quantities, we pay attention to relations between the
charge densities

Q = trQg, Qm = (
Qg

)
× , (84)

relations between the inductions

D = Dg · ·E, DT
m = Dg · ×E, (85)

and relations between the current densities

JI = Jg · ·E, JTm = Jg · ×E. (86)

Thus, tensor Qg can be treated as the generalized charge density tensor because it contains the electric charge
density and the magnetic charge density vector; tensor Dg can be treated as the generalized induction tensor
because it contains the electric induction vector and the electromagnetic induction tensor; tensor Jg can be
treated as the generalized current density tensor because it contains the internal current density vector and the
electromagnetic current density tensor. Differential equations relating quantitiesQg ,Dg , Jg will be discussed
in Sects. 5.6 and 5.4. In Sect. 5.4, we also discuss a quantum mechanical interpretation of tensorsQg ,Dg , Jg .

In this section, we have introduced a lot of quantities related to the wryness tensor. These quantities are
not independent. Some of the algebraic equations relating these quantities to each other are given above, all
other equations can be found in “Appendix G.” In the main text of the paper, we mention the relations, the
physical meaning of which is quite clear. These are, e.g., the relation between the electric charge density
and the generalized charge density tensor, the relation between the magnetic charge density vector and the
generalized charge density tensor, the relation between the entropy and the entropy per unit volume and the
entropy electromagnetic induction tensor, the relation between the electric induction vector and the entropy
and electromagnetic induction tensor. At the same time, there are a number of relations the physical meaning
of which remains vague. We believe that in the future these relations may be useful for explaining certain
physical phenomena. That is why, we present such relations in “Appendix G.”

5.2 The basic equations in terms of physical quantities

Now, we rewrite the basic equations presented in Sect. 4.4 in terms in physical quantities using the analogues
suggested in Sect. 5.1.

In virtue of Eqs. (73), (74), (75), (78), (77), the angular momentum balance equation (58) can be rewritten
as

a

χ
∇Ta − ∇ × E = VI + Vc + dB

dt
, (87)
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where the internal voltage density vector VI has the form

VI = − 1

χ

(

E · Dm + a

χ
TaD

)

, D = (Dm)× . (88)

As mentioned above, the wryness tensor balance equation (59) can be replaced by the equivalent equation
(63). In view of Eqs. (74), (75), (77), the wryness tensor balance equation (63) takes the form

− ∇ · Hm = Jm − 1

2
Jc × E + 2χ

3a
qΘE + dDm

dt
, (89)

where the magnetic flux tensorHm and the electromagnetic current density tensor Jm can be represented as

Hm = HE − EH, Jm = − 1

χ

[
H ×

(
Dm + χ

a
ΘaE

)
+ DH

]T
, Θa = − a

χ

trDm

2
. (90)

In view of Eqs. (73), (74), (75), the constitutive equations (60) take the form

Ta = T ∗
a + CΘ

a2
(Θa − Θ∗

a ), E = CΨ

χ2 D, B = ρ J

χ2 H, Jc = κ χ2E, Vc = βρ J

χ2 H, (91)

and Eq. (61) can be rewritten as

qΘ = E · Jc
Ta

. (92)

Although Eqs. (87), (88), (89), (90), (91), (92) contain electrodynamic and thermodynamic quantities,
these equations are not very similar to the equations of electrodynamics and thermodynamics. Therefore, we
start by considering two special cases. The first one is the linear thermo-electrodynamics of conductive media.
The second one is a nonlinear thermo-electrodynamics of non-conductive media. Under certain simplifying
assumptions, both theories can be reduced to the well-known equations of thermodynamics and electrodynam-
ics. After discussing the special cases, we will return to the system of equations (87), (88), (89), (90), (91),
(92) and discuss a number of its consequences, which clarify the physical meaning of the basic equations.

5.3 The linear theory describing thermal and electromagnetic processes in conductive media

In this section, we show that the basic equations of the linear theory describing thermal and electromagnetic
processes in conductive media can be obtained by linearizing the equations presented in the previous section.
We also show that all other equations of the linear theory can be obtained in view of the analogues given in
Sect. 5.1 as mathematical consequences of the basic equations.

We start with Eq. (89). In the linear approximation this equation is written as

− ∇ · Hm = −1

2
Jc × E + 2χ

3a
qΘE + dDm

dt
. (93)

Let us divide Eq. (93) into three parts: the antisymmetric part, the deviator of the symmetric part and the
spherical part. The antisymmetric part of Eq. (93) is determined by the vector invariant of this equation. In
view of the second equation in (88) and the first equation in (90), it takes the form

∇ × H = Jc + dD

dt
. (94)

Equation (94) coincides with Maxwell’s first equation

∇ × H = J + dD

dt
, (95)

if the electric current density vector J is assumed to be the conducting current density vector Jc.
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In view of Eq. (90), the deviator of the symmetric part of Eq. (93) can be written as

d(devDm)

dt
= dev(∇H). (96)

Equation (96) allows us to find devDm if we know magnetic field vectorH.
The spherical part of Eq. (93) is characterized by the trace of this equation. Taking into account Eqs. (73),

(75), (77), we can transform the trace of Eq. (93) to the form

dΘa

dt
= −∇ · hΘ + qΘ. (97)

Equation (97) is the entropy balance equation. This equation is well known and can be found in the literature
on non-equilibrium thermodynamics and continuum mechanics. We emphasize that we obtain Eq. (97) using
the analogue for the angular velocity vector ω given by the third equation in (75), and we obtain Eq. (94) using
the analogue for the angular velocity vector ω given by the last equation in (74). Comparing the third equation
in (75) and the last equation in (74) we see that

hΘ = − a

χ
H. (98)

At first glance, Eq. (98) seems strange. However, the entropy balance equation contains only the potential part
of the entropy flux vector hΘ , whereas Maxwell’s first equation contains only the vortex part of the magnetic
field vectorH. Therefore, there is no contradiction in Eq. (98).

Now, we turn to Eq. (87). In the linear approximation, this equation takes the form

a

χ
∇Ta − ∇ × E = Vc + dB

dt
. (99)

If we suppose that Ta = const or the term containing∇Ta can be ignored for some other reason, we can reduce
Eq. (99) to the form

− ∇ × E = Vc + dB

dt
. (100)

Comparing Eq. (100) with the Maxwell–Faraday equation (Maxwell’s second equation)

− ∇ × E = dB

dt
, (101)

we see that Eq. (100) contains two terms that constitute theMaxwell–Faraday equation, and also the conducting
voltage density vector Vc. The presence of the terms constituting the Maxwell–Faraday equation allows us
to treat Eq. (100) as the generalized Maxwell–Faraday equation. We note that the conducting voltage density
vector Vc plays the same role in the generalized Maxwell–Faraday equation (100) as the conducting current
density vector Jc plays in Maxwell’s first equation (94). Below, we show that due to the presence of vector
Vc in Eq. (100), the system of equations (94), (100) can be considered as a three-dimensional analogue of
Kirchhoff’s laws for electrical circuits.

Let us return to Eq. (99). On the one hand, we can consider this equation as the generalized Maxwell–
Faraday equation that takes into account thermal effects. On the other hand, in view of Eq. (98) and also the
third and the last equations in (91), we can rewrite Eq. (99) in terms of the entropy flux vector hΘ as

β−1 dhΘ

dt
+ hΘ = − a2

βρ J
∇Ta + χa

βρ J
∇ × E. (102)

In virtue of the relation between the entropy flux vector hΘ and the heat flux vector h, which has the form
h = TahΘ when the linear approximation is considered, Eq. (102) can be rewritten as

β−1 dh
dt

+ h = −a2T ∗
a

βρ J
∇Ta + χaT ∗

a

βρ J
∇ × E. (103)
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If we neglect the last term on the right-hand side of Eq. (103), this equation takes the form of the Maxwell–
Cattaneo–Vernotte law relating the heat flux vector to the temperature gradient

τh
dh
dt

+ h = −λ∇Ta, (104)

where τh is the heat flux relaxation constant, λ is the thermal conductivity.
In order to determine the parameters of our model we should compare the constitutive equations obtained

in the framework of our model with the well-known constitutive equations. We start with the comparison of
the first three equations in (91) with the constitutive equations

Ta = T ∗
a + T ∗

a

�cv

(Θa − Θ∗
a ), D = εε0E, B = μμ0H, (105)

where � is the density of mass of a material, cv is the specific heat at constant volume; ε0 and μ0 are the
permittivity and the permeability of vacuum; ε and μ are the relative permittivity and the relative permeability
of a material. As a result, we have the following expressions for the parameters characterizing the elastic and
inertia properties of the mechanical model:

CΘ = a2T ∗
a

�cv

, CΨ = χ2

εε0
, ρ J = χ2μμ0. (106)

Comparing the coefficients in Eqs. (103) and (104), we infer that

β = 1

τh
, β = a2

χ2

T ∗
a

λμμ0
. (107)

We note that from Eq. (107) it follows that

τh = χ2

a2
λμμ0

T ∗
a

. (108)

On the one hand, Eq. (108) gives the temperature dependence of the heat flux relaxation constant. On the other
hand, this equation allows us to find the fundamental constant χ2/a2 if we have reliable experimental data
on the values of the heat flux relaxation constant in a wide temperature range. Unfortunately, no such data is
currently available.

Next, we take into account Ohm’s law

Jc = σ E, (109)

where σ is the electrical conductivity, and the Wiedemann–Franz law

λ

σ
= LTa, (110)

where L is the Lorenz number, which is a fundamental constant, i.e., the constant which cannot depend on
any parameters of a material. Following [64], we introduce two different electrical conductivities, σd and σc,
such that σd is the coefficient in Ohm’s law and σc is presented in the Wiedemann–Franz law. Thus, instead
of Eqs. (109), (110), we have

Jc = σd E,
λ

σc
= LTa . (111)

Comparing the fourth equation in (91) with the first equation in (111) and eliminating λ from the second
equation in (107) by means of the second equation in (111), we obtain the following expressions for the
parameters characterizing the viscous properties of the mechanical model:

κ = σd

χ2 , β = 1

σc μμ0 (Lχ2/a2)
. (112)
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In view of Eqs. (106), (112), the last two constitutive equations in (91) take the form

Jc = σd E, Vc = 1

σc (Lχ2/a2)
H. (113)

Let us compare the constitutive equations (113) with each other. The first equations relates the conducting
current density vector Jc to the electric field vector E and contains the electrical conductivity σd ; the second
one relates the conducting voltage density vectorVc to the magnetic field vectorH and contains the electrical
conductivity σc. These equations are, in fact, Ohm’s law for the electric current density and the analogue of
Ohm’s law for the electric voltage density, respectively. In order to clarify the physical meaning of parameters
σd and σc, we rewrite Eqs. (94) and (100) taking into account the constitutive equations (113). As a result, we
have

∇ × H = σd E + εε0
dE

dt
, −∇ × E = 1

σc (Lχ2/a2)
H + μμ0

dH

dt
. (114)

We draw attention to that equations (114) have the same structure as Kirchhoff’s laws for electrical circuits

∂ I

∂z
= −

(

GV + C ∂V

∂t

)

,
∂V

∂z
= −

(

RI + L∂ I

∂t

)

, (115)

where z is the spatial coordinate, I is the electric current, V is the electric voltage, L is the inductance, C is
the capacitance, G is the shunt conductance, R is the series resistance. If we suppose that the magnetic field
vectorHmatches the electric current I and the electric field vector Ematches the electric voltage V , then we
can infer that

G ↔ σd , R ↔ 1

σc (Lχ2/a2)
. (116)

We emphasize that it is precisely due to the presence of vectorVc in the generalizedMaxwell–Faraday equation
(100), our theory turns out to be in agreement with Kirchhoff’s laws for electrical circuits.

If we eliminate I from system (115), we arrive at the telegraph equation

∂2V

∂z2
= RG V + (LG + RC)

∂V

∂t
+ LC ∂2V

∂t2
. (117)

Equation (117) is well known and widely used to describe the electromagnetic processes in transmission lines.
Ifwe eliminate vectorH from system (114) and ignore the potential part of the electric field vector assuming

that ∇ · E = 0, then we obtain

ΔE = σd

σc(Lχ2/a2)
E +

(

σd μμ0 + εε0

σc(Lχ2/a2)

)
dE

dt
+ εε0μμ0

d2E

dt2
. (118)

It is evident that Eq. (118) is the three-dimensional analogue of the telegraph equation (117). At the same time,
from classical Maxwell’s equations it follows the simpler equation

ΔE = σd μμ0
dE

dt
+ εε0μμ0

d2E

dt2
. (119)

Both Eqs. (118) and (119) are valid for the vortex part of the electric field vector since they are obtained under
the assumption ∇ ·E = 0. In order to derive the equation for the potential part of vector E, we should take the
divergence of Eq. (114). As a result, we have

d(∇ · E)

dt
+ σd

εε0
∇ · E = 0. (120)

It is easy to see that Eq. (120) for∇ ·E is not the wave equation and it does not contain derivatives with respect
to the space coordinates at all. This means that ∇ · E propagates in space instantly.
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Now, we return to Eq. (102) for the entropy flux vector hΘ . In view of Eqs. (106), (107), this equation
takes the form

τh
dhΘ

dt
+ hΘ = − λ

T ∗
a

(
∇Ta − χ

a
∇ × E

)
. (121)

Taking the divergence of Eq. (121), eliminating ∇ · hΘ from the obtained equation by means of the entropy
balance equation (97) and taking into account the first constitutive equation in (105), we arrive at the hyperbolic-
type heat conduction equation

ΔTa − �cv

λ

dTa
dt

− τh�cv

λ

d2Ta
dt2

= −T ∗
a

λ
qΘ − τhT ∗

a

λ

dqΘ

dt
. (122)

Using the approximate form of Eq. (92), namely

qΘ ≈ E · Jc
T ∗
a

, (123)

we can rewrite Eq. (122) as

ΔTa − �cv

λ

dTa
dt

− τh�cv

λ

d2Ta
dt2

= −1

λ
E · Jc − τh

λ

d(E · Jc)
dt

. (124)

Thus, we obtain the hyperbolic-type heat conduction equation with Joule heat E · Jc. If τh → 0, Eq. (124)
turns into the classical heat conduction equation with Joule heat.

In addition, we give two equations, which relate the divergence of the magnetic induction vector to ther-
modynamic quantities. The first one follows from Eqs. (97), (98) and the third equation in (105). It has the
form

∇ · B = χμμ0

a

(
dΘa

dt
− qΘ

)

. (125)

The second one can be obtained from Eq. (125) in view of the first equation in (105) and Eq. (123). It is written
as

∇ · B = χμμ0

aT ∗
a

(

�cv

dTa
dt

− E · Jc
)

. (126)

As seen from Eq. (126), we can obtain the well-known equation ∇ ·B = 0 if we suppose that
dTa
dt

= E · Jc
�cv

.

The physical meaning of this relation is that Joule heat is completely spent on changing the temperature at a
given point in space.

Summing up the results of this section, we draw attention to the important features of the proposed linear
theory of thermo-electrodynamics. First, the entropy balance equation (97) contains the source term (123) that
describes the conversion of electrical energy into thermal energy due to Joule heat. Second, the generalized
Maxwell–Faraday equation (100) contains the electric voltage density Vc. Thanks to this, the generalized
Maxwell’s equations are in agreement with Kirchhoff’s laws for electrical circuits. Third, the generalized
Maxwell–Faraday equation (99) contains the temperature gradient, the constitutive equation for the heat flux
vector (103) contains the curl of the electric field vector, and the potential part of the magnetic induction vector
is related to the thermodynamic quantities by Eqs. (125), (126). This opens up new possibilities for describing
thermoelectric, thermomagnetic, and thermoelectromagnetic effects. A more detailed description of the linear
theory of thermo-electrodynamics can be found in [64].
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5.4 The nonlinear theory describing electromagnetic and thermal processes in non-conductive media

In this section, we briefly outline the nonlinear theory that can be obtained from the equations presented in
Sect. 5.2 by neglecting the dissipative terms, i.e., by assuming that

κ = 0, β = 0. (127)

Under assumptions (127), the last two equations in (91) and Eq. (92) take the form

Jc = 0, Vc = 0, qΘ = 0. (128)

Thus, in this section, we consider the conservative theory that follows from the general theory under the
conditions (128).

We start with the closed system of equations of the theory of thermo-electrodynamics of non-conductive
media. This system can be obtained from Eqs. (87), (88), (89), (90), (91), (92) in virtue of Eq. (128). This
system includes two balance equations

− ∇ · Hm = Jm + dDm

dt
,

a

χ
∇Ta − ∇ × E = VI + dB

dt
, (129)

three constitutive equations

E = 1

εε0
D, B = μμ0H, Ta = T ∗

a + T ∗
a

�cv

(
Θa − Θ∗

a

)
, (130)

and also five algebraic equations expressing auxiliary variables in terms of the main variables

Hm = HE − EH, Jm = − 1

χ

[
H ×

(
Dm + χ

a
ΘaE

)
+ DH

]T
,

VI = − 1

χ

(

E · Dm + a

χ
TaD

)

, D = (Dm)× , Θa = − a

χ

trDm

2
. (131)

We note that the nonlinear electrodynamics developed in [63] can be obtained from the system of equations
(129), (130), (131) if Ta = T ∗

a and at the same time cv → ∞. We emphasize that all equations given in
this section are important because their consideration allows us to substantiate why our theory can be treated
as thermo-electrodynamics. At the same time, only Eqs. (129), (130), (131) should be used in order to solve
specific problems of thermo-electrodynamics. All other equations are not needed to solve the problems because
these equations are not independent and can be obtained from Eqs. (129), (130), (131).

Now, we turn to Eq. (89). In view of Eq. (128), this equation is reduced to the form

− ∇ · Hm = Jm + dDm

dt
. (132)

We divide the tensor equation (132) into three parts, as done above for the linear theory of conductive media.
The antisymmetric part of Eq. (132) is determined by its vector invariant. In view of the second equation in
(88) and the first equation in (90), the vector invariant of Eq. (132) takes the form

∇ × H = JI + dD

dt
, JI = (Jm)× . (133)

Equation (133) coincides withMaxwell’s first equation (101) if the electric current density vector J is assumed
to be the internal current density vector JI . Next, in view of Eq. (90), the deviator of the symmetric part of
Eq. (132) is written as

dev(∇H) = dev Jm + d(devDm)

dt
. (134)

Finally, in order to find the spherical part of Eq. (132), we take the trace of this equation. Taking into account
the analogues between physical and mechanical quantities given by Eqs. (73), (74), (75), (77) and the algebraic
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relations between physical quantities given in “Appendix G,” we can rewrite the obtained equation in terms of
thermodynamic quantities as

dΘa

dt
= −∇ · hΘ − a

χ2 D · H, D · H = −χ

2
tr Jm . (135)

Equation (135) is the entropy balance equation. It differs from the entropy balance equation (97) obtained in
the linear theory of conductive media only by the source term. In the case of conductive media, the source term
qΘ is proportional to Joule heat, see Eq. (92). In the case of the nonlinear theory of non-conductive media, the

source term
a

χ2 D · H characterizes the entropy production due to nonlinear electromagnetic processes. The

entropy flux vector hΘ in Eq. (135) is related to the magnetic field vectorH by Eq. (98) as in the linear theory
of conductive media.

Next, we turn to Eq. (87). In virtue of assumption (128) this equation takes the form

a

χ
∇Ta − ∇ × E = VI + dB

dt
. (136)

The structure of Eq. (136) coincides with the structure of Eq. (99) obtained in the linear theory of conductive
media. The only difference between these equations consists in that Eq. (136) contains the internal voltage
density vector VI , whereas Eq. (99) contains the conducting voltage density vector Vc. All other terms in
Eq. (99) and Eq. (136) are the same. In previous section, we show that Eq. (99) can be treated as the general-
ized Maxwell–Faraday equation. Therefore, we believe that Eq. (136) can also be treated as the generalized
Maxwell–Faraday equation. In addition, we consider the thermodynamic interpretation of Eq. (136). Taking
into account Eqs. (98), (105), (107), we rewrite Eq. (136) as

τh
dhΘ

dt
= − λ

T ∗
a

(
∇Ta − χ

a
VI − χ

a
∇ × E

)
. (137)

In fact, Eq. (137) is the constitutive equation for the entropy flux vector hΘ . Comparing Eq. (137) with
Eq. (121) obtained in the linear theory of conductive media, we see that these equations differ from each other
in that Eq. (121) contains the term proportional to hΘ and does not contain the term proportional to VI , while
Eq. (137), on the contrary, contains the term proportional to VI and does not contain the term proportional to
hΘ . The absence of the term proportional to hΘ in Eq. (137) is due to the fact that the problem is conservative.
The presence of the term proportional to VI in Eq. (137) is due to the fact that the problem is nonlinear.

Next, we take the divergence of Eq. (137) and eliminate∇ ·hΘ from the obtained equation by means of the
entropy balance equation (135). Taking into account the first equation in (105) and Eq. (108), we transform
the obtained equation to the form

ΔTa − τh�cv

λ

d2Ta
dt2

= χ

a
∇ · VI + μμ0

a

d(D · H)

dt
. (138)

Equation (138) is an analogue of the heat conduction equation (124) obtained in the linear theory of conductive
media. However, Eq. (138) is the wave equation. This is not surprising since we consider the conservative
problem. We note that Eq. (138) does not contain Joule heat, but it contains two other terms of electrodynamic
nature, which are actually external factors causing thermal processes. In addition, we pay attention to two
equations, which relate the divergence of the magnetic induction vector to thermodynamic quantities. The first
one follows from Eq. (135) in view of Eq. (98) and the third equation in (105). It has the form

∇ · B = χμμ0

a

(
dΘa

dt
+ a

χ2 D · H
)

, (139)

The second equation can be obtained from Eq. (139) in view of the first equation in (105). It is written as

∇ · B = χμμ0

a

(
�cv

T ∗
a

dTa
dt

+ a

χ2 D · H
)

. (140)

The well-known equation ∇ · B = 0 can be obtained from Eq. (139) under the assumption that
dΘa

dt
= − a

χ2 D · H. The physical meaning of this relation is that the entropy change at a given point in space
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is completely determined by nonlinear electromagnetic effects in this point in space. Comparing Eq. (140) with
Eq. (126) obtained in the linear theory of conductive media, we see that the only difference is that Eq. (140)
containsD · H instead of Joule heat, which is contained in Eq. (126).

Now, we return Eq. (89) and consider some of its consequences. We recall that Eq. (89) is actually the
wryness tensor balance equation. In this section, we are dealing with the special case of our theory where the
source terms in the wryness tensor balance equation are ignored. Therefore, we consider the consequences the
wryness tensor balance equation given by Eqs. (15), (16), (19), (20). Let us rewrite these equations in terms
of physical quantities. In virtue of the analogues (74), (76), (78), (77), we can rewrite Eqs. (15), (16) as

∇ · D = Q, ∇ · DT
m = Qm, (141)

and we can also rewrite Eqs. (19), (20) as

dQ

dt
= −∇ · JI ,

dQm

dt
= −∇ · JTm . (142)

It is easy to see that the first equation in (141) is the Gauss law for electric field, and the first equation in (142)
is the electric charge conservation law. By analogy, we can interpret the second equation in (141) as the Gauss
law for electromagnetic field, and second equation in (142) as the magnetic charge conservation law. This is
the interpretation adopted in [63]. It is important to note that there are no analogues of Eqs. (141), (142) in the
linear theory of conductive media. The reason is that the mechanical analogues of scalar quantity Q, vectors
Qm and JI , and tensor Jm are the nonlinear functions of the main mechanical variables Θ and ω. Due to this
circumstance, in the case of the linear theory of non-conductive media, the first equation in (141) is reduced to
equation ∇ · D = 0, which means the absence of the electric charge, the second equation in (141) is reduced
to equation ∇ ·DT

m = 0, which means the absence of the magnetic charge vector, and both equations in (142)
turn into identities of 0 = 0 type.

In Sect. 5.1, we have introduced the generalized charge density tensorQg , the generalized induction tensor
Dg , and the generalized current density tensor Jg , see Eq. (83) relating these quantities to the mechanical
quantities. Now, we are going to explain the meaning of these physical quantities by analyzing the structure
of the equations that are satisfied by them. In view of Eq. (83), we can rewrite Eqs. (14), (18) as

∇ · Dg = Qg,
dQg

dt
= −∇ · Jg. (143)

The first equation in (143) has the same structure as the Gauss law for electric field and the Gauss law for
electromagnetic field, see Eq. (141). The second equation in (143) has the same structure as the electric charge
conservation law and the magnetic charge conservation law, see Eq. (142). The above gives us reason to
interpret Qg as the generalized charge density tensor, Dg as the generalized induction tensor, and Jg as the
generalized current density tensor. Now, we take into account relations between physical quantities. First of
all, we draw attention to the algebraic equations for the current densities:

JI = 1

χ
H · Dm, Jm = − 1

χ

(
H · Dg + DH

)T
, Jg = 1

χ
Dg × H. (144)

As seen from Eq. (144), all current densities are not independent quantities, but they are expressed as the
dot and cross products of the magnetic field vector H and the induction tensors. To be exact, the transposed
electromagnetic current density tensor Jm is proportional to the generalized induction tensorDg , in the same
way as the internal current density vector JI is proportional to the entropy and electromagnetic induction
tensor Dm . Thus, the second and third equations in (144) explain the meaning of the generalized induction
tensor Dg . Next, we note that the electric charge density Q and the magnetic charge density vector Qm are
contained in the generalized charge density tensor Qg:

Q = trQg, Qm = (
Qg

)
× ⇒ Qg = 1

3
QE − 1

2
Qm × E + devQs

g. (145)

HereQs
g is the symmetric part of tensorQg . The last formula in (145) gives us an additional argument in favor

of the treatment of tensor Qg as the generalized charge density tensor.
Now, we try to match the quantum mechanical characteristics of particles to the physical quantities intro-

duced in the framework of our model. We note that it is very difficult, if not impossible, to suggest algebraic
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relations between quantum mechanical quantities and mechanical quantities and then substantiate the validity
of the proposed relationships by comparing the obtained differential equations with the known ones, in the
same way as it was done in the case of thermo-electrodynamics. This is due to the fact that, on the one hand,
mechanics and quantum mechanics use different mathematical tools, and on the other hand, the foundations
of these two sciences are conceptually different. Nevertheless, we can make some general assumptions about
analogies between quantum mechanical charges and quantities characterizing devQs

g . However, it is impor-
tant to pay attention to the differences between the quantities associated with devQs

g in our model and the
corresponding quantities introduced in quantum mechanics. In our model, devQs

g and its associated quantities
characterize the current state of the continuum and are arbitrary functions of space coordinates and time. On
the contrary, quantum mechanical quantities characterize some properties of elementary particles and take on
only certain values, which are defined by numbers or words. Within the framework of our model, we can speak
of particles, quasi-particles or virtual particles only if some physical quantities characterizing the current state
of the continuum are localized in very small regions of space. So, we represent tensor devQs

g as

devQs
g = Qrerer + Qgegeg + Qbebeb, (146)

where er , eg , eb aremutually orthogonal unit vectors (eigenvectors of devQs
g), andQr ≤ Qg ≤ Qb.We suppose

that quantities Qr , Qg , Qb can be treated as the color charges. Since tr (devQs
g) = 0, we have

Qr + Qg + Qb = 0. (147)

Equation (147) can be interpreted as the fact that the combination of three different color charges gives the
colorless charge. It is well known that color charge is a property of quarks and gluons. Due to a phenomenon
known as color confinement, quarks and gluons are never found in isolation. Quarks can be found only within
composite particles called hadrons; gluons bind quarks in hadrons. Hadrons are the colorless particles. Thus,
the interpretation of color charges, given in the framework of our model by Eqs. (146), (147), is qualitatively
in agreement with the quantum mechanical interpretation. We emphasize that Qr , Qg , Qb can be positive or
negative.We do not associate the signs of these quantities with the concepts of particle and anti-particle.Within
the framework of our model, we can speak of particles and anti-particles, meaning the positive or negative of
another scalar invariant of tensorQg . This scalar invariant can be, e.g., DetQg , DetQs

g , Det (devQ
s
g). We can

suggest mechanical interpretation of other quantum characteristics. For example, if we represent the symmetric
part of tensorDm as

Ds
m = D(1)

m e1e1 + D(2)
m e2e2 + D(3)

m e3e3, (148)

we can rewrite tensor devQs
g in the form

devQs
g = Q11e1e1 + Q22e2e2 + Q33e3e3 + Q12(e1e2 + e2e1) + Q13(e1e3 + e3e1) + Q23(e2e3 + e3e2),

(149)

and interpret six quantities Qi j as six flavors of quarks. We can also use the representation

Qm = Q(r)
m er + Q

(g)
m eg + Q(b)

m eb (150)

or the representation

Qm = Q(1)
m e1 + Q(2)

m e2 + Q(3)
m e3 (151)

and associate quantities Q(r)
m , Q(g)

m , Q(b)
m or quantities Q(1)

m , Q(2)
m , Q(3)

m with some quantum characteristics.
Here we have briefly outlined some ideas regarding the description of quantum mechanical charges from

the point of view of rational mechanics. A more detailed discussion of this topic is beyond the scope of this
work.
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5.5 Maxwell’s equations and thermal processes in the nonlinear theory of conductive media

In this section, we consider some equations that follow from the basic equations of the nonlinear theory
of conductive media presented in Sect. 5.2. We compare these equations with the corresponding equations
obtained in the framework of the linear theory of conductive media and in the framework of the nonlinear
theory of non-conductive media.

Let us take the vector invariant of Eq. (89) and reduce the obtained equation in view of the second equation
in (88) and the first equation in (90). As a result, we have

∇ × H = Jc + JI + dD

dt
. (152)

Equation (152) coincides withMaxwell’s first equation (101) if the electric current density vector J is assumed
to be the sum of the conducting current density vector Jc and the internal current density vector JI . We note
that Maxwell’s first equation in the linear theory of conductive media contains only the conducting current
density vector Jc, whereas Maxwell’s first equation in the nonlinear theory of non-conductive media contains
only the internal current density vector JI . Now, we discuss the differences between vector Jc and vector JI .
We start with the equations

Jc = σd E, JI = 1

χ
H · Dm . (153)

The first equation in (153) is the constitutive equation, which is given in Sect. 5.3, see Eq. (113). In fact, the
first equation in (153) is Ohm’s law. That is why, we interpret Jc as the conducting current density vector. The
second equation in (153) is not a constitutive equation because it contains only the fundamental constant χ
and does not contain any material constants. This equation can be obtained from the second equation in (133)
in view of Eq. (90). It is easy to see that JI is represented as the algebraic function of the quantities associated
with magnetic field, namely the magnetic field vectorH and the entropy and electromagnetic induction tensor
Dm , which in turn is related to the magnetic charge vector Qm , see Eq. (141). That is why, we believe that the
internal current density vector JI is associated with magnetic processes.

Let us take the trace of Eq. (89) and reduce the obtained equation in virtue of the second equation in (88)
and Eqs. (90), (92), (98). As a result, we arrive at the entropy balance equation

dΘa

dt
= −∇ · hΘ + E · Jc

Ta
− a

χ2 D · H. (154)

The second term on the right-hand side of Eq. (154) has the meaning of the entropy production due to Joule
heat E · Jc. We emphasize that Joule heat depends on the conducting current density vector Jc and does not
depend of the internal current density vector JI . The last term on the right-hand side of Eq. (154) also has the
meaning of the entropy production, but it is associated with interplay of electric and magnetic processes. We
note that, in the case of the linear theory of conductive media, the source term in the entropy balance equation is
completely determined by Joule heat, whereas in the case of the nonlinear theory of non-conductive media, the
source term is completely determined by the last term on the right-hand side of Eq. (154). Entropy production
due to Joule heat is always positive. The last term on the right-hand side of Eq. (154) can be either positive
or negative. As a result, the total entropy production can also be either positive or negative. Negative entropy
production means violation of the second law of thermodynamics. The difficulties with the second law of
thermodynamics are well known, see, e.g., [90–93]. In particular, they always arise when the hyperbolic-type
heat conduction equation is used [94].

Thus, on the one hand, the trace of Eq. (89) is the entropy balance equation. On the other hand, the vector
invariant of Eq. (89) is Maxwell’s first equation, and due to this reason we interpret Eq. (89) as generalized
Maxwell’s first equation. However, in fact, Eq. (89) describes both electromagnetic and thermal processes.
Equation (89) contains two physical quantities, tensor Dm and tensor Jm , that were first introduced in our
models. We try to explain the names of these quantities. The trace of tensorDm is proportional to the entropy
per unit volume Θa , the vector invariant of tensor Dm equals to the electric induction vector D, and the
potential part of tensor DT

m is associated with the magnetic charge density vector Qm . That is why, we call
tensor Dm the entropy and electromagnetic induction tensor. The vector invariant of tensor Jm equals to the
internal current density vector JI , tensor Jm is proportional to the magnetic field vector H, and the potential
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part of tensor JTm is associated with the magnetic charge conservation law. That is why, we call tensor Jm the
electromagnetic current density tensor.

Now, we consider Eq. (87). If we ignore thermal effects, this equation takes the form

− ∇ × E = Vc + VI + dB

dt
, (155)

where vector Vc and vector VI are determined as

Vc = 1

σc (Lχ2/a2)
H, VI = − 1

χ
E · Dm . (156)

Equation (155) is the generalizedMaxwell–Faraday equation.This equation differs from the classicalMaxwell–
Faraday equation by the presence of vectors Vc and VI . It is easy to see that Eq. (155) has the exactly same
structure asMaxwell’s first equation (152), and vectorVc+VI plays the same role in Eq. (155) as vectorJc+JI
plays in Eq. (152). In order to clarify the physical meaning of vector Vc and vector VI , we turn to Eq. (156).
The first equation in (156) is the constitutive equation, which is given in Sect. 5.3, see Eq. (113). This equation
is similar to the first equation in (153), i.e., it is similar to Ohm’s law for the conducting current density vector
Jc. That is why, we interpret vector Vc as the conducting voltage density vector and the first equation in (156)
as the analogue of Ohm’s law for the conducting voltage density. The second equation in (156) can be obtained
from Eq. (88) if the term containing absolute temperature Ta is ignored. This equation, as well as the second
equation in (153), is not a constitutive equation because it does not contain any material constants. Comparing
the second equation in (153) and the second equation in (156), we see that both vector JI and vector VI are
proportional to the entropy and electromagnetic induction tensorDm . We note that the generalized Maxwell–
Faraday equation contains only the conducting voltage density vector Vc in the case of the linear theory of
conductive media, and it contains only the internal voltage density vectorVI in the case of the nonlinear theory
of non-conductive media.

Let us return to Eq. (87), which includes five vectors: the electric field vector, the magnetic induction
vector, the temperature gradient, and also vectors Vc and VI . In our theory, this equation plays a dual role.
On the one hand, Eq. (87) can be treated as the generalized Maxwell–Faraday equation. The presence of
the temperature gradient in this equation should not be surprising, since it agrees with experimental facts
discovered by Ettingshausen and Nernst. We mean the Ettingshausen effect (if there is a current in a conductor
and a magnetic field normal to it, one observes a temperature gradient normal to the current and magnetic
field) and the Nernst–Ettingshausen effect (if a conductive sample undergoes the influence of a magnetic field
and a temperature gradient normal to the magnetic field, one observes an electric field directed perpendicular
to both the magnetic field and the temperature gradient). On the other hand, Eq. (87) can be treated as the
generalized Maxwell–Cattaneo–Vernotte law, which contains the internal voltage density vector VI and the
curl of the electric field vector. Indeed, taking into account Eqs. (98), (113), we can rewrite Eq. (87) as

τh
dhΘ

dt
+ hΘ = − λ

T ∗
a

(
∇Ta − χ

a
VI − χ

a
∇ × E

)
. (157)

Equation (157) is the generalization of Eq. (121) obtained in the framework of the linear theory of conductive
media and Eq. (137) obtained in the framework of the nonlinear theory of non-conductive media. Equation
(157) is derived in the same way as Eqs. (121) and (137). Taking the divergence of Eq. (157), eliminating
∇ · hΘ from the obtained equation in virtue of the entropy balance equation (154) and taking into account the
first constitutive equation in (113), we obtain

ΔTa − �cv

λ

dTa
dt

− τh�cv

λ

d2Ta
dt2

= −T ∗
a

λ
qΘ − τhT ∗

a

λ

dqΘ

dt
+ χ

a
∇ · VI + μμ0

aτh
D · H + μμ0

a

d(D · H)

dt
.

(158)

Equation (158) is the hyperbolic-type heat conduction equation, and all terms on the right-hand side of this
equation play the role of heat production due to different electromagnetic effects.

In our opinion, there is no contradiction in the two above interpretations of Eq. (87) because only the vortex
parts of the magnetic induction vector B, of the magnetic field vector H and of the electric voltage density
vector V have the electrodynamic meaning, whereas their potential parts have the thermodynamic meaning.
Moreover, we believe that Eq. (87) opens up new possibilities for describing thermoelectric, thermomagnetic,
and thermoelectromagnetic effects.



Thermo-electrodynamics of conductive media 6233

5.6 Equations relating charges, currents and inductions in the nonlinear theory of conductive media

In this section we discuss the physical analogues of some consequences of the wryness tensor balance equation,
which are presented in Sect. 4.5. First of all, we rewrite Eqs. (65), (66), (67) in terms of physical quantities
taking into account the analogues between physical and mechanical quantities given in Sect. 5.1. Equation
(65) takes the form

dQg

dt
= −∇ · Jg + 1

χ

(∇ · Dg − Qg
) × H − 1

3a
qΘDT

m − 1

2χ
DJc + 1

2χ
Dg · Jc. (159)

Let us compare Eq. (159) with the second equation in (143), which is valid in the case of non-conductive
media and has the meaning of the conservation law for the generalized charge density tensor Qg . We see that
Eq. (159) differs from the second equation in (143) by a number of terms, which play the role of the source
terms. Thus, Eq. (159) generalizing the second equation in (143) to the case of conductive media is the balance
law, not the conservation one. Rewriting Eq. (66) in terms of physical quantities, we arrive at the electric charge
balance equation

dQ

dt
= −∇ · JI + 1

χ

(
∇ · DT

m − Qm

)
· H + 2χ

3a2
qΘΘa − 1

2χ
Jc · D, (160)

which generalizes the electric charge conservation law, given by the first equation in (142). Rewriting Eq. (67)
in terms of physical quantities, we obtain the magnetic charge balance equation

dQm

dt
= −∇ · JTm + 1

χ
H · (∇ · Dg − Qg

) + 1

3a
qΘD − 1

a
ΘaJc − 1

2χ
(Jc · Dm + Dm · Jc) , (161)

which generalizes the magnetic charge conservation law, given by the second equation in (142). Comparing
Eq. (160) with the electric charge conservation law and Eq. (161) with the magnetic charge conservation law,
we see that the difference is that Eqs. (160), (161) contain the source terms.

The magnetic charge density vectorQm , as well as the generalized charge density tensorQg , are quantities
inherent only in our theory. Therefore, the presence or absence of source terms in the equations for these
quantities is unlikely to cause any emotions in the reader. The electric charge densityQ is well-known quantity,
and it is generally accepted that the electric charge is conserved. Therefore, the presence of the source term
in the equation for the electric charge is likely to surprise the reader. Perhaps this causes not just surprise, but
disagreement and even complete rejection. Nevertheless, we can refer to literary sources, the authors of which
suggest the possibility of violating the charge conservation law, see [11,95–99].We have to admit that there are
very few such literary sources. Therefore, instead of analyzing the ideas of authors who admit that the charge
conservation law is violated, we focus on the question of what the charge conservation law actually means. We
start with quotation from [100, p. 18–3]: “The laws of physics have no answer to the question: ‘What happens
if a charge is suddenly created at this point—what electromagnetic effects are produced?’ No answer can be
given because our equations say it doesn’t happen. If it were to happen, we would need new laws, but we cannot
say what they would be. We have not had the chance to observe how a world without charge conservation
behaves. According to our equations, if you suddenly place a charge at some point, you had to carry it there from
somewhere else. In that case, we can say what would happen.” In modern physics, three different statements
can be found: 1) the charge conservation law is a law of nature; 2) the charge conservation law is a fundamental
law; 3) the charge conservation law is a fundamental law of nature. In the above quotation, Feynman talks
about equations, and this leads us to think that he most likely considers the charge conservation law to be
a fundamental law. This means that if we observe a violation of the charge conservation law, we should not
believe this, but we should think that we have not taken into account some charges. The important thing to note
is that, in classical electrodynamics, the charge conservation law is a consequence of Maxwell’s equations, and
it is the solvability condition for Maxwell’s equations. Therefore, we cannot change the charge conservation
law without first changing Maxwell’s equations. Thus, in the framework of classical electrodynamics, the
charge conservation law is a fundamental law and it cannot be changed. If we modify Maxwell’s equations,
the charge conservation law ceases to be a fundamental law in the sense mentioned above. In this case we can
discuss the charge conservation law only as a law of nature.

Now, we turn to the question of what exactly is measured in conductive media when measuring charge?
To answer this question we quote from [101, p. 46]: “In our experiments with electric fields, we made use
of field decay (discharging of condensers) to gain some particular insights; it led us to several important
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phenomena: First to influence, then to the location of mobile charges on the outer surfaces of conductors,
and finally to the currents which flow through a conductor during discharge. This latter phenomenon now
brings us closer to an important goal, the quantitative measurement of electric charges in electrical units.”
We also quote from [101, p. 48]: “From this we may deduce that the current impulse

∫
Idt associated with

the decay or production of the field is a measure of the electric charges Q associated with the field. We can
measure electric charges Q by determining a current impulse.” Finally, we give one more quotation from [101,
p. 51,52]: “In all of the electric fields that we have considered thus far, the field lines had ends, and electric
charges were found to be sitting at those ends. Therefore, a quantitative relation between charge Q and electric
field strength E is to be expected. We search for it experimentally by looking at the geometrically simplest
field, our old friend the homogeneous field of a parallel-plate condenser. Let the area of each of its plates be A,
the voltage between them beU , and their spacing l. Then the magnitude of the electric field between the plates
is E = U/ l.... We repeat these measurements several times with various values of the plate area A and the
field strength E = U/ l. The result of all these measurements is Q/A = ε0E , or, in words: The surface density
Q/A of the charge on the condenser plates is proportional to the electric field strength E (ε0 is a constant
of proportionality). We find the same simple relation for the surface density Q/A of the influence charges....
The surface density of these influence charges has its own name; it is called the displacement density D, with
D = Q/A.” In the above quotation, term ‘displacement density’ is used for the electric induction. As can be
seen from the above quotes, the measurement of electric charge is identified with the measurement of electric
current and the electric charge itself is identified with the electric induction. This means that, in the considered
case, the experimentally established charge conservation law expresses the relationship between the electric
current and the electric induction. Next, the following questions arise. What is electric charge according to
the conventional wisdom? How is this concept defined in theoretical physics? The most common definition
is: “Electric charge is the basic physical property of matter that causes it to experience a force when kept in
an electric or magnetic field.” In fact, this definition of electric charge is based on the Coulomb force, or what
is the same thing, on the Gauss law for electric field. In other words, when speaking of electric charge, one
actually speaks of a quantity directly related to the electric induction. Thus, discussing the views of theoretical
physics, we again come to what is said in the above quotations from [101].

Now,we return to our theory. Taking into account the analogues between physical andmechanical quantities
given in Sect. 5.1, we rewrite Eq. (70) as

d

dt
(∇ · D) = −∇ · (JI + Jc) . (162)

If we follow ideas of [101] and identify the electric charge density Q with ∇ · D, then we can treat Eq. (162)
as the electric charge conservation law. We draw attention to the fact that the right-hand side of Eq. (162) is
the divergence of the total electric current density vector JI + Jc. At the same time, the right-hand side of the
electric charge balance equation (160) contains the divergence of only the internal current density vector JI
and the source term that depends on the conducting current density vector Jc along with some other quantities.
Let us turn to the analogous equations for the magnetic charge density vector. In view of the analogues between
physical and mechanical quantities, Eq. (72) takes the form

d

dt

(
∇ · DT

m

)
= −∇ ·

[

Jm − 1

2
Jc × E + 2χ

3a
qΘE

]T

. (163)

If we identify the magnetic charge density vector Qm with ∇ · DT
m , then we can treat Eq. (163) as the

magnetic charge conservation law since the right-hand side of this equation is the divergence of some tensor.
We emphasize that, in contrast to Eq. (163), the right-hand side of Eq. (161) contains not only divergence
of tensor JTm , but also a number of the source terms. That is why, Eq. (161) is the balance equation, not a
conservation law. Thus, in the framework of our model, we have obtained the conservation laws (162) and
(163) for quantities ∇ ·D and ∇ ·DT

m , respectively. At the same time, we have obtained the balance equations
(160) and (161) for the electric charge density Q and the magnetic charge density vector Qm , respectively,
and these equations are not the conservation laws. Obviously, this means that in the case of conductive media
quantities ∇ · D and Q, and also ∇ · DT

m and Qm are not related to each other by the Gauss laws given by
Eq. (141). Below, we consider equations that generalize the Gauss laws to the case of conductive media in
framework of our model.
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In view of the analogues between physical and mechanical quantities given in Sect. 5.1, Eq. (68) takes the
form

d

dt

(∇ · Dg − Qg
) + 1

χ

(∇ · Dg − Qg
) × H

= χ

3a
(∇qΘ) × E + 1

3a
qΘDT

m + 1

2

[∇Jc − (∇ · Jc)E
]T + 1

2χ
DJc − 1

2χ
Dg · Jc. (164)

Equation (164) generalizes the Gauss law (143) relating the generalized induction tensorDg to the generalized
charge density tensor Qg in the case of non-conductive media. At first glance, it seems that Eq. (164) and
Eq. (143) have nothing in common with each other. Nevertheless, we show how one can obtain Eq. (143) from
Eq. (164). If we neglect the conductivity of matter, i.e., we assume that Jc = 0 and qΘ = 0, then Eq. (164)
takes the form

d

dt

(∇ · Dg − Qg
) + 1

χ

(∇ · Dg − Qg
) × H = 0. (165)

Let us make a change of variables

∇ · Dg − Qg = Xg · PT
g , (166)

where Xg is a new variable, PT
g is the rotation tensor, which will be determined below. Taking into account

Eq. (166), we can rewrite Eq. (165) as

dXg

dt
· PT

g − Xg · PT
g × ωg + Xg · PT

g × 1

χ
H = 0,

dPg

dt
= ωg × Pg. (167)

Here ωg is the angular velocity vector corresponding to the rotation tensor Pg . Now, we determine tensor Pg
as follows

ωg = 1

χ
H ⇒ dPg

dt
= 1

χ
H × Pg. (168)

In view of Eq. (168), we can reduce Eq. (167) to the form

dXg

dt
· PT

g = 0 ⇒ dXg

dt
= 0. (169)

If we make additional assumption
(∇ · Dg − Qg

)∣
∣
t=0 = 0, then we have

dXg

dt
= 0, Xg

∣
∣
t=0 = 0 ⇒ Xg = 0 ⇒ Xg · PT

g = 0. (170)

Thus, in view of notation (166), we arrive at the Gauss law (143). Let us return to Eq. (164). Using Eqs. (166),
(168) and the following notation for the right-hand side of Eq. (164)

χ

3a
(∇qΘ) × E + 1

3a
qΘDT

m + 1

2

[∇Jc − (∇ · Jc)E
]T + 1

2χ
DJc − 1

2χ
Dg · Jc = Yg · PT

g , (171)

we rewrite Eq. (164) as

dXg

dt
· PT

g = Yg · PT
g ⇒ dXg

dt
= Yg ⇒ Xg =

∫ t

0
Yg(τ )dτ + Xg

∣
∣
t=0 . (172)

Taking into account Eq. (166), the last equation in (172) can be rewritten as

∇ · Dg = Qg +
[∫ t

0
Yg(τ )dτ + Xg

∣
∣
t=0

]

· PT
g . (173)

Equation (173) is more like a generalization of the Gauss law than Eq. (164). However, it is the same equation,
just written in a different form.
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Next, taking into account the analogues between physical andmechanical quantities,we can rewrite Eq. (69)
as

d

dt
(∇ · D − Q) + 1

χ

(
∇ · DT

m − Qm

)
· H = −∇ · Jc − 2χ

3a2
qΘΘa + 1

2χ
Jc · D. (174)

Equation (174) generalizes the first equation in (141), which is the Gauss law for electric field in the case
of non-conductive media. It is important to note that Q = trQg , ∇ · D = tr

(∇ · Dg
)
and Eq. (174) can be

obtained by taking the trace of Eq. (164). Therefore, in order to obtain another form of Eq. (174) it is sufficient
to take the trace of Eq. (173). As a result, we arrive at the following equation

∇ · D = Q +
[∫ t

0
Yg(τ )dτ + Xg

∣
∣
t=0

]

· ·PT
g . (175)

If we assume that Jc = 0 and qΘ = 0, from Eq. (171) it follows thatYg = 0. If, in addition, Xg
∣
∣
t=0 is assumed

to be equal to zero, Eq. (175) reduces to the first equation in (141), i.e., to the classical form of the Gauss law
for electric field.

Finally, taking into account the analogues between physical and mechanical quantities, we can rewrite
Eq. (71) as

d

dt

(
∇ · DT

m − Qm

)
+ 1

χ
H · (∇ · Dg − Qg

)

= −2χ

3a
∇qΘ − 1

2
∇ × Jc − 1

3a
qΘD + 1

a
ΘaJc + 1

2χ
(Jc · Dm + Dm · Jc) .

(176)

Equation (176) generalizes the second equation in (141), which is the Gauss law for electromagnetic field in
the case of non-conductive media. Since Qm = (

Qg
)
×, ∇ · DT

m = (∇ · Dg
)
× and Eq. (176) can be obtained

by taking the vector invariant of Eq. (164), in order to obtain another form of Eq. (176) it is sufficient to take
the vector invariant of Eq. (173). As a result, we have

∇ · DT
m = Qm +

[∫ t

0
Yg(τ )dτ + Xg

∣
∣
t=0

]

· ×PT
g . (177)

If Jc = 0, qΘ = 0 and Xg
∣
∣
t=0 = 0, then Eq. (177) reduces to the second equation in (141), i.e., to the Gauss

law for electromagnetic field in the case of non-conductive media.
Thus, in the case of conductive media, our approach leads to rather complicated equations (164), (174),

(176) instead of the Gauss laws. The Gauss laws containing the generalized charge density tensor Qg and the
magnetic charge density vector Qm , as well as the corresponding generalized equations, are new equations
inherent only in our theory. The generalized Gauss law for electric field (174) is also a new equation inherent
only in our theory.

TheGauss law for electric field is well known. Therefore the question arises whether its violation is possible
from the point of view of modern physics. To clarify this issue we quote from [100]. The first quotation from
[100, p. 5–5]: “The validity of Gauss’ law depends upon the inverse square law of Coulomb. If the force law
were not exactly the inverse square, it would not be true that the field inside a uniformly charged sphere
would be exactly zero.” The second quotation from [100, p. 5–6]: “If we write that the electrostatic force
depends on r−2+ε , we can place an upper bound on ε. By this methodMaxwell determined that ε was less than
1/10,000. The experiment was repeated and improved upon in 1936 by Plimpton and Laughton. They found
that Coulomb’s exponent differs from two by less than one part in a billion. Now that brings up an interesting
question: How accurate do we know this Coulomb law to be in various circumstances? The experiments we
just described measure the dependence of the field on distance for distances of some tens of centimeters. But
what about the distances inside an atom—in the hydrogen atom, for instance, where we believe the electron is
attracted to the nucleus by the same inverse square law? It is true that quantum mechanics must be used for the
mechanical part of the behavior of the electron, but the force is the usual electrostatic one. In the formulation of
the problem, the potential energy of an electron must be known as a function of distance from the nucleus, and
Coulomb’s law gives a potential which varies inversely with the first power of the distance. How accurately
is the exponent known for such small distances? As a result of very careful measurements in 1947 by Lamb
and Retherford on the relative positions of the energy levels of hydrogen, we know that the exponent is correct
again to one part in a billion on the atomic scale—that is, at distances of the order of one angstrom (10−8
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centimeter).” The third quotation from [100, p. 5–7]: “From measurements in nuclear physics it is found
that there are electrostatic forces at typical nuclear distances—at about 10−13 centimeter—and that they still
vary approximately as the inverse square.... How about 10−14 centimeter? This range can be investigated by
bombarding protons with very energetic electrons and observing how they are scattered. Results to date seem
to indicate that the law fails at these distances. The electrical force seems to be about 10 times too weak at
distances less than 10−14 centimeter. Now there are two possible explanations. One is that the Coulomb law
does not work at such small distances; the other is that our objects, the electrons and protons, are not point
charges. Perhaps either the electron or proton, or both, is some kind of a smear. Most physicists prefer to
think that the charge of the proton is smeared.” And finally, the fourth quotation from [100, pp. 12–12]: “Our
currently most complete theory of electrodynamics does indeed have its difficulties at very short distances.
So it is possible, in principle, that these equations are smoothed-out versions of something. They appear to
be correct at distances down to about 10−14 cm, but then they begin to look wrong. It is possible that there
is some as yet undiscovered underlying ‘machinery’, and that the details of an underlying complexity are
hidden in the smooth-looking equations—as is so in the ‘smooth’ diffusion of neutrons. But no one has yet
formulated a successful theory that works that way. Strangely enough, it turns out (for reasons that we do not
at all understand) that the combination of relativity and quantum mechanics as we know them seems to forbid

the invention of an equation that is fundamentally different from ∇ · (k∇φ) = −ρ f ree

ε0
, and which does not at

the same time lead to some kind of contradiction. Not simply a disagreement with experiment, but an internal
contradiction. As, for example, the prediction that the sum of the probabilities of all possible occurrences
is not equal to unity, or that energies may sometimes come out as complex numbers, or some other such

idiocy. No one has yet made up a theory of electricity for which ∇2φ = − ρ

ε0
is understood as a smoothed-out

approximation to a mechanism underneath, and which does not lead ultimately to some kind of an absurdity.

But, it must be added, it is also true that the assumption that ∇2φ = − ρ

ε0
is valid for all distances, no matter

how small, leads to absurdities of its own (the electrical energy of an electron is infinite)—absurdities from
which no one yet knows an escape.” We emphasize that Feynman, in fact, discuss the question of whether it
is possible to change the electrostatic potential. He does not discuss the time dependence of the electrostatic
potential. We also emphasize that the above quotes from Feynman’s book discuss the interaction of charges
separated by empty space and the Gauss law for electric field in vacuum. Feynman discusses the Gauss law as
applied to conductive media in [100, pp. 5–7]: “Now consider the interior of a charged conducting object. (By
‘interior’ we mean in the metal itself.) Since the metal is a conductor, the interior field must be zero, and so
the gradient of the potential φ is zero. That means that φ does not vary from point to point. Every conductor is
an equipotential region, and its surface is an equipotential surface. Since in a conducting material the electric
field is everywhere zero, the divergence of E is zero, and by Gauss’ law the charge density in the interior of the
conductormust be zero. If there can be no charges in a conductor, how can it ever be charged?What dowemean
when we say a conductor is ‘charged’? Where are the charges? The answer is that they reside at the surface of
the conductor, where there are strong forces to keep them from leaving—they are not completely ‘free’. When
we study solid-state physics, we shall find that the excess charge of any conductor is on the average within one
or two atomic layers of the surface. For our present purposes, it is accurate enough to say that if any charge is
put on, or in, a conductor it all accumulates on the surface; there is no charge in the interior of a conductor.”
In the above quotation, Feynman expresses the conventional wisdom. Below, we give several quotations from
[102], confirming and supplementing what Feynman said. The first quotation from [102, p. 126]: “ A perfect
conductor is a macroscopic model for real conducting matter with the property that static electric fields are
completely excluded from its interior. Since ε0∇·E(r) = ρ(r), a precise definition of a perfect conductor is that
both the macroscopic electric field and the macroscopic charge density vanish everywhere inside its volume.
This definition implies that all excess charge accumulates on the surface of a conductor in the form of a surface
charge density σ(rS).” The second quotation from [102, p. 127]: “Electrostatic induction in a real metal does
not involve any long-range displacement of charge. Equilibrium is re-established by tiny perturbations of the
conduction electron wave functions at every point in the conductor. When summed over all occupied states, the
corresponding perturbed charge density Lorentz averages to zero at all interior points.” The third quotation
from [102, p. 133]: “Conductors have the unique ability to screen or shield a suitably placed sample from the
effects of an electric field. By this we mean that a conductor interposed between a sample and a source of
electric field generally reduces (and ideally eliminates) the field at the position of the sample.” And the fourth
quotation from [102, p. 149]: “This screening length � varies from 10−10 m for a good metal to 10−8 m for
a biological plasma, 10−5 m for a laboratory plasma, and 10 m for an astrophysical plasma.” Thus, on the
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one hand, the Gauss law in vacuum is considered to be correct at distances down to about 10−14 cm, and on
the other hand, it is well known that, the electrostatic field in conductive media decays at a distance of the
order of 10−8 cm. The question arises as to whether the electrostatic field near the boundary of the conductive
medium is described by the Gauss law or by some other law. It would seem that if the electrostatic field is
described by the Gauss law, then it should penetrate into the charged body, and not decay to zero near the
surface. The fact that the electrostatic field in conductive media decays to zero at much shorter distances than
in vacuum or in dielectrics can be explained either by assuming that the electrostatic field in conductors is
not described by the Gauss law, or by assuming that permittivity of conductors is several orders of magnitude
greater than permittivity of dielectrics. We cannot compare the permittivities of conductors and dielectrics
because there is no information about the values of permittivity of conductors in handbooks. Moreover, in
the scientific literature there is no information about the possibility of determining the values of permittivity
of conductors by electrostatic experiments. All known methods of determining the values of permittivity of
conductors are based on the study of wave processes at the conductor–dielectric interface. These experiments
(or their interpretation accepted in modern literature) give very strange results, according to which the values
of the real part of permittivity of conductors are negative throughout the frequency range below the terahertz
one, see [103]. The use of such permittivity values in the Gauss law leads to absurd results, such as attraction
of charges having the same signs and repulsion of charges having opposite signs. Therefore, it seems logical to
assume that in the case of conductive media, the Gauss law needs to be modified. Ideas regarding modification
of the Gauss law by including time dependence in it were expressed by Gauss himself, see [1]. Later, these
ideas were developed by Riemann, see [1]. Weber developed an original theory based on the generalized
Coulomb’s law, which includes dependence not only on distance, but also on the relative velocity and relative
acceleration of interacting charges, see [1]. It should be noted that applications of Weber’s theory can be found
in modern literature, see, e.g., [104–108]. Our ideas differ from the ideas of Gauss, Riemann and Weber.
However, there is something in common between our ideas and the ideas of the authors mentioned above,
which is that some terms containing time derivatives appear in equations of “electrostatics.” In other words,
in the case of conductive media, equations of electrostatics turn into equations describing certain relaxation
processes.

5.7 Some ideas concerning strong and weak interactions

There are four types of interactions between elementary particles: gravitational, electromagnetic, strong and
weak. Now we focus on strong and weak interactions. Particle physics introduces such characteristics of
particles as color charge, isospin, weak isospin, flavour, etc. All these characteristics are somehow related to
strong and weak interactions.

Strong interaction (other names: color interaction, nuclear interaction) is the interaction that is responsible
for the connection between quarks in hadrons and for the attraction between nucleons (protons and neutrons)
in nuclei. From the point of view of strong interaction, proton and neutron are the same particles. There is
a model according to which any nucleon has isospin equal to 1/2, and the projection of isospin in a special
isotopic space can be either +1/2 or −1/2. If the projection of isospin is +1/2, then the nucleon is a proton.
If the projection of isospin is −1/2, then the nucleon is a neutron. According to the concepts of modern
physics, strong interaction exists only between quarks, and it occurs through the exchange of gluons. Color
charge, which is attributed to gluons and quarks, is related to strong interaction. Quarks have their own color:
“red,” “green,” “blue” or “anti-red,” “anti-green,” “anti-blue” (such quarks are usually called anti-quarks).
Quarks are also characterized by flavors. The are six flavors: u (“Up quark”), d (“Down quark”), s (“Strange
quark”), c (“Charm quark”), b (“Beauty quark”), t (“Truth quark”). Three quarks of different colors constitute
baryons, which are “white” (colorless) particles. Two quarks, one of which has any color and another one has
the matching anti-color, constitute mesons, which are also “white” particles. All mesons are unstable. Color
charges of gluons are characterized by various combinations of colors and anti-colors. There are eight gluons,
among them six color ones and two colorless ones.

In [63], we discuss an interpretation of strong interaction in the framework of our model. Here, we quote
from [63]: “It is known that the Coulomb force is defined as the product of the charge and the electric field
vector. Since the electric field vector is proportional to the electric induction vector, the Coulomb force actually
turns to be proportional to the product of the charge and the electric induction vector. Taking into account
the analogy between the proposed concepts of electric charge and magnetic charge vector and also between
the electric induction vector and the entropy and electromagnetic induction tensor, we can hypothesize the
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existence of forces (and possibly moments) that are proportional to the dot product of the magnetic charge
vector Qm and the entropy and electromagnetic induction tensorDm . We would venture to suggest that these
forces (and possibly moments) characterize the strong interaction. We can put forward two arguments in favor
of our hypothesis. The first argument is that the forces characterizing the strong interaction are not central, and
hence, they must be generated not by scalar charges, but by vector ones. The second argument is as follows.
According to the concepts of modern physics, the strong interaction binds protons and neutrons to create
atomic nuclei and holds quarks together to form hadrons. At the same time, in accordance with the concepts
of modern physics, elementary particles possess magnetic dipole moments, i.e., they behave like tiny magnets
and produce magnetic field. It seems logical to suggest that two vector characteristics: the magnetic dipole
moment introduced in classical physics and the magnetic charge vector introduced in our theory, in some sense
correspond to each other. It seems also logical to suggest that protons and neutrons create atomic nuclei due to
magnetic properties of elementary particles. Hence, we can suppose that the magnetic charge density vector
Qm and the entropy and electromagnetic induction tensor Dm are responsible for the strong interaction.”
In addition to what has been said, we also assume that strong interaction can depend on the deviator of the
symmetric part of the generalized charge density tensor Qg . To be exact, we assume that forces (and possibly
moments) responsible for strong interaction are proportional to the double dot product of two tensors: the
deviator of the symmetric part of the second rank tensor Qg and the third rank tensorDg , which is called the
generalized induction tensor and related to the generalized charge density tensor Qg by the first equation in
(143). In other words, these forces (and possibly moments) depend on color charges located at some point in
space and the field generated by color charges located at another point in space. Such an interpretation of strong
interaction is in agreement with quantum mechanical concept, in accordance to which particles possessing
color charges are responsible for strong interaction. At this stage in the development of our theory, we cannot
describe strong interaction in more detail for several reasons. Firstly, in order to describe strong interaction,
it is necessary to add translational degrees of freedom to our model. Secondly, we have no certainty in the
question of whether strong interaction is described only by forces or by forces and moments. Thirdly, now we
cannot say with certainty which components of the generalized charge density tensor are responsible for strong
interaction. However, we have confidence in that strong interaction is an elastic interaction; it is described by
forces (and possibly moments) depending on the generalized charge density tensor (or some its components)
and the generalized induction tensor (or its potential part); mathematical formulas describing strong interaction
must be in some sense similar to the Coulomb force.

Weak interaction is the interaction that is responsible for the nuclear fission and nuclear fusion. According
to the concepts of modern physics, weak interaction exists between all known elementary particles. Weak
interaction was first described by Enrico Fermi in terms of the so-called four-fermion contact interaction.
Sheldon Glashow, Abdus Salam and Steven Weinberg later showed that electromagnetic interaction and weak
interaction are two aspects of a single interaction. The term electroweak interaction is used for this interaction.
There are two types of weak interaction. The first type is the so-called “charged-current interaction,” in which
the weakly interacting fermions form a current with total electric charge that is nonzero. The second type is
the so-called “neutral-current interaction,” in which the weakly interacting fermions form a current with total
electric charge of zero. Particle physics introduces weak isospin, which is associated with weak interaction
in the same way as isospin is associated with strong interaction. All fermions have a weak isospin equal to
1/2. There are pairs of particles that are the same from the point of view of weak interaction. Fermions of
one pair differ from each other by the projection of weak isospin. As in the case of isospin, the projection of
weak isospin can be either +1/2 or −1/2. It is important to note that weak interaction does not produce bound
states, nor does it involve binding energy. This is what distinguishes the weak interaction from three other
fundamental interactions. Weak interaction can lead to the decay of massive particles into lighter ones. This
type of decay is called weak decay. An important special case of weak decay is neutron beta-decay. Despite
the short range and relative smallness, the weak interaction is important for a number of natural processes. In
particular, it is the weak interaction that is responsible for thermonuclear reactions, which are the main sources
of energy for most stars.

Now, we turn to an interpretation of weak interaction in the framework of our model. The important thing
to note is that, in contrast to strong interaction, weak interaction does not produce bound states. From the point
of view of a mechanical model, this can be treated as that the corresponding forces (and possibly moments)
are not elastic. In order to explain this statement, we discuss two different model of the same process. First, we
consider a two-component model. Let us suppose that particles of ponderable matter are immersed in some
infinite elastic medium (the ether or, what is the same thing, the thermo-electromagnetic field). Particles of
ponderable matter interact with this medium by elastic forces (and possibly moments) and influence each other
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through this medium. At the same time, some part of the particle energy is lost due to interaction with the
infinite elastic medium (the ether). It cannot be ruled out that some part of the ether energy can be absorbed
by particles of ponderable matter. Thus, if we consider a two component continuum consisting of ponderable
matter and the ether, we deal with only elastic interactions. Next, we consider a one-component model. In fact,
we deal with a continuum, which models ponderable matter, and we take into account the ether only by means
of forces (and possibly moments) acting on particles of ponderable matter. It is clear that we should introduce
not only elastic, but also inelastic forces (and possibly moments). In such a case, the elastic forces (and
possibly moments) produce bound states, whereas the inelastic forces (and possibly moments) are responsible
for processes associated with the exchange of energy between ponderable matter and the ether. We believe that
the elastic forces (and possibly moments) are associated with strong interaction, whereas the inelastic forces
(and possibly moments) are associated with weak interaction. We pay attention to the fact that the quantum
mechanical description of weak interaction is based on the concept of currents, not charges. This fact leads us
to the idea that, within the framework of our model, the forces (and possibly moments) responsible for weak
interaction should be specified as functions of some current densities. We emphasize that, in our model, the
mechanical analogues of the internal current density vector JI , the electromagnetic current density tensor Jm
and the generalized current density tensor Jg are proportional to the angular velocity vector. In many cases,
though not all, the dependence of interactions on velocities, in particular angular velocities, results in energy
dissipation, which is an indication that the interactions are inelastic. Thus, JI , Jm and Jg can be precisely
those quantities on which inelastic interactions can depend. Thus, our idea regarding inelastic nature of weak
interaction together with the fact that the quantum mechanics uses the concept of currents for describing weak
interaction give us reason to believe that weak interaction can depend on one of the current densities JI , Jm ,
Jg . In addition, we pay attention to the fact that, according to the modern quantum mechanical concept, weak
interaction is part of the electroweak interaction. This fact, in turn, leads us to the idea that the current density
responsible for weak interaction must be related to the electric charge density. In accordance with the charge
conservation law (142), the current density vector related to the electric charge density is the internal current
density vector JI . The potential part of vector JI can be associated with either a positive charge or a negative
charge, and hence, the potential part of vector JI can be treated as the density of either a positive current or
a negative current. At the same time, the vortex part of vector JI is not related to the electric charge density,
and hence, the vortex part of vector JI can be treated as the density of a neutral current. Thus, we have some
additional reason to believe that the forces (and possiblymoments) responsible for weak interaction can depend
on the internal current density vector JI .

According to concepts of quantum mechanics, an interaction occurs when two particles (usually fermions)
exchange bosons that carry the interaction. Quantum mechanics introduces many hypothetical and short-lived
particles that are thought to be involved in interactions. In many cases, the conservation laws are fulfilled
only due to the participation of some hypothetical and short-lived particles in the interactions. Thus, these
hypothetical and short-lived particles play an important role in quantum mechanics. Our ideas concerning
the description of strong and weak interactions do not coincide with the concepts of quantum mechanics, but
do not contradict these concepts either. When describing the interactions, we use the approach of classical
mechanics, according to which any interactions (forces and moments) are specified by constitutive equations
or are determined as a result of solving differential equations. From the point of view of classical mechanics,
it does not matter how these interactions occur in nature: with direct contact or with the help of intermediate
particles. And even more so, it does not matter what happens to the intermediate particles in the process or as
a result of interactions. Thus, the difference between our approach to describing fundamental interactions and
the quantummechanical approach is in some sense similar to the difference between classical thermodynamics
and kinetic theory. Classical thermodynamics and kinetic theory are two sciences that study the same natural
phenomena, but use different fundamental principles and different mathematical methods. These two sciences
exist independently of each other and do not contradict each other. The same can be said when comparing our
approach with the quantum mechanical one.

6 Summary and outlook

In this paper, we present the general nonlinear theory of thermo-electrodynamics.We have shown that from the
general theory we can obtain, as special cases, the linear theory of thermo-electrodynamics developed in [64]
and the nonlinear theory of electromagnetism developed in [63]. This result is important from the theoretical
point of view because it means that the two theories, which have been developed independently from each other,
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are in agreement with each other. Certainly, the proposed theory is not free from shortcomings. Firstly, this
theory is valid only for immobile media and it needs to be generalized to the case of moving media. Secondly,
in the present paper, we make some assumptions about how to describe strong and weak interactions in the
framework of our model, however this can be done only after our model takes into account force interactions
in addition to the moment interactions. To develop our theory in both directions, we need to add translational
degrees of freedom to our model. This will be the topic of future research.
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A Transformation of the energy balance equation

Let us rewrite Eq. (17) as

∇v = δg−1

δt
· g, ∇ω = δΘ

δt
+ Θ × ω + δg−1

δt
· g · Θ . (178)

In view of Eq. (178), the energy balance equation (11) takes the form

ρ
δU

δt
= τ T · ·

(
δg−1

δt
· g + E × ω

)

+ TT · ·
(

δΘ

δt
+ Θ × ω + δg−1

δt
· g · Θ

)

. (179)

Next, we transform Eq. (179) as follows

ρ
δU

δt
= τ T · ·

(
δg−1

δt
· g + E × ω

)

+ TT · ·
(

δΘ

δt
+ Θ × ω − ω × Θ +

[
δg−1

δt
· g + ω × E

]

· Θ
)

.

(180)

In view of identity E × ω = ω × E and the properties of the double dot product, Eq. (180) can be reduced to
the form

ρ
δU

δt
=

(
gT ·

[
τ + T · ΘT

])T · ·
(

δg−1

δt
+ g−1 × ω

)

+ TT · ·
(

δΘ

δt
+ Θ × ω − ω × Θ

)

. (181)

Performing some transformation of Eq. (181), we arrive at

ρ
δU

δt
=

(
gT ·

[
τ + T · ΘT

]
· P

)T · · δ
(
g−1 · P)

δt
+

(
PT · T · P

)T · · δ
(
PT · Θ · P)

δt
. (182)

B Transformation of the strain balance equations

We start with the equations for the stretch tensor g. It is easy to see that the first equation in (17) can be rewritten
as

dg
dt

= −v · ∇g − (∇v) · g ⇒ dg
dt

= −∇ (v · g) +
(
∇gT

)
· v − v · ∇g

⇒ dg
dt

= −∇ (v · g) + v × (∇ × g). (183)

Taking into account the first equation in (12) we can show that ∇ × g = 0. In this case, the last equation in
(183) turns to the first equation in (29).
Analogously, the first equation in (35) can be transformed as

dg
dt

= −(∇v) · g −
(
∇gT

)
· v + Υ g ⇒ dg

dt
= −(∇v) · g − v × (∇ × g) − v · ∇g + Υ g

⇒ δg
δt

= −(∇v) · g − v × (∇ × g) + Υ g. (184)
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The last equation in (184) is, in fact, the first equation in (36).
Now, we turn to the equations for the wryness tensor Θ . The second equation in (17) can be rewritten as

dΘ

dt
= ∇ω − Θ × ω − v · ∇Θ − (∇v) · Θ ⇒ dΘ

dt
= −∇ (v · Θ − ω) − Θ × ω +

(
∇ΘT

)
· v − v · ∇Θ

⇒ dΘ

dt
= −∇ (v · Θ − ω) − Θ × ω + v × (∇ × Θ). (185)

Taking into account the second equation in (12) we can show that ∇ × Θ = 1

2
ΘT × ×Θ . In this case, the

last equation in (185) takes the form

dΘ

dt
= −∇ (v · Θ − ω) − Θ × ω + v × 1

2

(
ΘT × × Θ

)
⇒ dΘ

dt
= −∇ (v · Θ − ω) + Θ × (v · Θ − ω) .

(186)

It is easy to see that the last equation in (186) coincides with the second equation in (29).
Next, we transform the second equation in (35) as follows

dΘ

dt
= −∇(v · Θ − ω) + Θ × (v · Θ − ω) + Υ Θ

⇒ dΘ

dt
= −∇ (v · Θ − ω) − Θ × ω + v × 1

2

(
ΘT × ×Θ

)
+ Υ Θ

⇒ dΘ

dt
= −∇ (v · Θ − ω) − Θ × ω + v × (∇ × Θ) − v ×

(

∇ × Θ − 1

2
ΘT × × Θ

)

+ Υ Θ

⇒ dΘ

dt
= ∇ω − Θ × ω − v · ∇Θ − (∇v) · Θ − v ×

(

∇ × Θ − 1

2
ΘT × × Θ

)

+ Υ Θ

⇒ δΘ

δt
= ∇ω − Θ × ω − (∇v) · Θ − v ×

(

∇ × Θ − 1

2
ΘT × ×Θ

)

+ Υ Θ. (187)

The last equation in (187) is the second equation in (36).

C The energy balance equation in the case of the modified strain tensors

Let us rewrite Eq. (37) as

∇v = δg−1

δt
· g + Υ ∗

g · g−1, ∇ω = δΘ

δt
+ Θ × ω +

(
δg−1

δt
· g + Υ ∗

g · g−1
)

· Θ − Υ ∗
Θ. (188)

Inserting Eq. (188) in the energy balance equation (11), we obtain

ρ
δU

δt
= τ T · ·

(
δg−1

δt
· g + Υ ∗

g · g−1 + E × ω

)

+TT · ·
(

δΘ

δt
+ Θ × ω +

[
δg−1

δt
· g + Υ ∗

g · g−1
]

· Θ − Υ ∗
Θ

)

. (189)

After simple transformations Eq. (189) can be rewritten as

ρ
δU

δt
= τ T · ·

(
δg−1

δt
· g + E × ω

)

+ TT · ·
(

δΘ

δt
+ Θ × ω + δg−1

δt
· g · Θ

)

+
[
g−1 ·

(
τ T + Θ · TT

)]
· · Υ ∗

g − TT · · Υ ∗
Θ.

(190)

Next, performing the same transformations as in [53], we obtain Eq. (39). Performing the same transformations
as in “Appendix A,” we reduce Eq. (190) to the form

ρ
δU

δt
=

(
gT ·

[
τ + T · ΘT

]
· P

)T · · δ
(
g−1 · P)

δt
+

(
PT · T · P

)T · · δ
(
PT · Θ · P)

δt
+

[
g−1 ·

(
τ T + Θ · TT

)]
· · Υ ∗

g − TT · · Υ ∗
Θ.

(191)

This equation coincides with Eq. (40).
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D Transformation of the angular momentum balance equation

If we use restriction (49), we should consider the model based on the energy moment stress tensor. In this case
the angular momentum balance equation (43) takes the form

∇ · T + ρL = ρ J
dω

dt
. (192)

In virtue the relations T = Te · PT and ω = Ω · PT , we can rewrite Eq. (192) as

∇ · (−Me × PT ) + ρL = ρ J
d(Ω · PT )

dt
. (193)

Let us take the dot product of Eq. (193) on tensor P and perform some simple transformations in view of the
kinematic relation (42). As a result, we have

− ∇ × Me + Me ·
(
∇ × PT

)
· P + ρLe = dKe

dt
, (194)

where we use the notation Ke = ρ JΩ and ρLe = ρL · P. We can specify the constitutive equation for the
external moment ρL, e.g., as the linear function of ω. In this case, the constitutive equation for ρLe will be
the linear function of Ω . Thus, choosing Me, Ke, Ω and Θe as the basic variables, we have transformed
the angular momentum balance equation to the form, where only one term contains the rotation tensor. Now,
we show that we can rewrite the expression

(∇ × PT
) · P in terms of tensor Θe only if we use the equation

∇P = Θ × P. Let us rewrite this equation as

∂P
∂qi

= Θ i × P, Θ = riΘ i . (195)

Then, we can perform the following transformations:

(
∇ × PT

)
· P = ri ×

(
∂P
∂qi

)T

· P = ri × (Θ i × P)T · P = −ri ×
(
PT × Θ i

)
· P

= −ri ×
(
(PT · P) × (Θ i · P)

)
= −ri × E × (Θ i · P) = −(Θ i · P)ri + (Θ i · P) · ri E

= −Θ · P + tr(Θ · P)E = − (Θe − trΘeE)T .

We emphasize that the last transformations are valid only in virtue of equation ∇P = Θ × P:

∇P = Θ × P ⇒
(
∇ × PT

)
· P = − (Θe − trΘeE)T . (196)

If we reject the first equation in (196) we cannot use the second equation in (196), and hence we cannot
eliminate tensor P from Eq. (194).

E Derivation of the constitutive equations

Let us start with the energy balance equation (27), where τ r , Tr are given by Eq. (25), and gr , Θr are given
by Eq. (26). We assume that the structure of tensor T is determined by Eq. (51). In this case tensors τ r , Tr
take the form

τ r = gT ·
(
τ + TΘT − M × ΘT

)
· P, Tr = TE − Mr × E, Mr = PT · M. (197)

In view of the second equation in (197), we can rewrite Eq. (27) as

ρ
δU

δt
= τ T

r · · δgr
δt

+ (TE − Mr × E)T · · δΘr

δt
. (198)
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After simple transformations Eq. (198) takes the form

ρ
δU

δt
= τ T

r · · δgr
δt

+ T
δΘ

δt
+ Mr · δΨ r

δt
, (199)

where

Θ = trΘ, Ψ r = PT · Ψ , Ψ = Θ×. (200)

We assume that the continuum is elastic. In this case, from Eq. (27) it follows that U = U
(
gr , Θ, Ψ r

)
. In

addition, we assume that the internal energy does no depend on gr . Then, by standard reasoning, we arrive at
the Cauchy–Green relations

τ r = 0, T = ∂ρU
(
Θ, Ψ r

)

∂Θ
Mr = ∂ρU

(
Θ, Ψ r

)

∂Ψ r
. (201)

Next, we assume that function ρU
(
Θ, Ψ r

)
is specified by Eq. (54). Then, from Eq. (201) it follows

τ r = 0, T = T∗ + CΘ (Θ − Θ∗), Mr = CΨ Ψ r . (202)

Taking into account Eqs. (197), (200), we can transform Eq. (202) to the form of Eq. (55).

F Derivation of equations for the wryness tensor

Multiplying Eq. (62) by the unit tensor and calculating the difference of Eq. (59) and the obtained equation,
we arrive at the equation

d(Θ − trΘ E)

dt
= ∇ · (Eω − ωE) − (Θ × E − EΘ×) · ω − 2

3
ΥΘE − 1

2
Υ Ψ × E. (203)

Next, we perform the following transformation:

(Θ × E − EΘ×) · ω = Θ × ω − Θ× · ωE = −
(
ω × ΘT + Θ×· ωE

)T

= −(
ω × Θ + ω × E × Θ× + Θ×· ωE

)T = −(
ω × Θ + Θ×ω

)T
.

In view of the last transformation, Eq. (203) takes the form of Eq. (63).
Let us take the double cross product of tensorΘT and Eq. (59), then take the double cross product of transposed
Eq. (44) and tensor Θ . Adding up the obtained equations, we obtain

ΘT × × dΘ

dt
+ dΘT

dt
× × Θ = ΘT × × (∇ω) + (∇ω)T × × Θ − ΘT × × (Θ × ω) − (Θ × ω)T

× × Θ + ΘT × ×Υ Θ + Υ T
Θ × × Θ . (204)

Taking into account the identity AT × ×B = BT × ×A, which is valid for arbitrary tensors A and B, we
rewrite Eq. (204) as

d

dt

(
1

2
ΘT × ×Θ

)

= ΘT × × (∇ω) − ΘT × × (Θ × ω) + ΘT × ×Υ Θ. (205)

The first term on the right-hand side of Eq. (205) can be transformed as follows:

ΘT × × (∇ω) = −∇ × (Θ × ω) + (∇ × Θ) × ω.

The second term on the right-hand side of Eq. (205) can be rewritten as

ΘT × × (Θ × ω) = 1

2

(
ΘT × ×Θ

)
× ω.
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In view of these identities Eq. (205) takes the form

d

dt

(
1

2
ΘT × ×Θ

)

= −∇ × (Θ × ω) +
(

∇ × Θ − 1

2
ΘT × × Θ

)

× ω + ΘT × ×Υ Θ. (206)

If the source term Υ Θ has the form of Eq. (52), then

ΘT × ×Υ Θ = −1

3
ΥΘ (Θ − trΘ E)T − 1

2
Υ Ψ · (

Θ × E − EΘ×
)
. (207)

Let us perform the following transformation:

Υ Ψ · (
Θ × E − EΘ×

) = E × (
ΘT · Υ Ψ

) − Υ Ψ Θ× = E × (Θ · Υ Ψ ) + E × (Θ× × Υ Ψ ) − Υ Ψ Θ×
= E × Θ · Υ Ψ + Υ Ψ Θ× − Θ×Υ Ψ − Υ Ψ Θ× = (E × Θ − Θ×E) · Υ Ψ .

Then Eq. (207) takes the form

ΘT × ×Υ Θ = −1

3
ΥΘ (Θ − trΘ E)T − 1

2
(E × Θ − Θ×E) · Υ Ψ . (208)

Inserting Eq. (208) in Eq. (206), we arrive at Eq. (65).
Now, we take the curl of Eq. (59). As a result, we have

d

dt
(∇ × Θ) = −∇ × (Θ × ω) + ∇ × Υ Θ. (209)

Calculating the difference of Eq. (209) and Eq. (206) yields

d

dt

[

∇ × Θ − 1

2
ΘT × ×Θ

]

+
[

∇ × Θ − 1

2
ΘT × ×Θ

]

× ω = ∇ × Υ Θ − ΘT × ×Υ Θ. (210)

If the source term Υ Θ is given by Eq. (52), then

∇ × Υ Θ = 1

3
(∇ΥΘ) × E + 1

2

(
(∇ · Υ Ψ )E − ∇Υ Ψ

)T
. (211)

Inserting Eqs. (208), (211) in Eq. (210), we arrive at Eq. (68).
Now,we turn to equations that were used in our previousmodels, see [60,63], andwe show how these equations
can be obtained from the above equations. If we suppose that ΥΘ = 0 and Υ Ψ = 0, then Eq. (68) takes the
form

d

dt

[

∇ × Θ − 1

2
ΘT × × Θ

]

+
[

∇ × Θ − 1

2
ΘT × × Θ

]

× ω = 0. (212)

Using the notation

X = ∇ × Θ − 1

2
ΘT × ×Θ, (213)

we can rewrite Eq. (212) as

dX
dt

+ X × ω = 0. (214)

Let us represent X as X = Y · PT , where P is the rotation tensor corresponding to the angular velocity vector

ω, i.e.,
dP
dt

= ω × P. Then Eq. (214) takes the form

dY
dt

· PT = 0. (215)

If X|t=0 = 0, and hence, Y|t=0 = 0, from Eq. (215) follows that Y = 0, and hence, X = 0. Thus, solving

Eq. (212) with the initial condition

(

∇ × Θ − 1

2
ΘT × × Θ

)∣
∣
∣
∣
t=0

= 0, we obtain Eq. (14).
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G Algebraic relations between physical quantities

Relations between the charge densities Q, Qm and Qg , between the inductions D, Dm , Dg and the entropy
per unit volume Θa have the form

Q = trQg, Qm = (
Qg

)
× , Θa = − a

χ

trDm

2
, D = (Dm)× , D = Dg · ·E, DT

m = Dg · ×E.

(216)

Expressions for the electric charge densityQ and themagnetic charge density vectorQm in terms of the entropy
and electromagnetic induction tensorDm , the electric induction vectorD and the entropy per unit volume Θa
are

Q = − 1

4χ
DT

m · ·Dm + χ

2a2
Θ2

a , Qm = 1

2χ
Dm · D + 1

2a
ΘaD. (217)

Two expressions for the generalized charge density tensor Qg in terms of the entropy and electromagnetic
induction tensorDm and the entropy per unit volume Θa have the form

Qg = 1

2χ
DT

m × ×Dm − 1

a
ΘaD

T
m − χ

a2
Θ2

a E,

Qg = 1

2χ

(

DT
m · DT

m − 1

2
(Dm · ·Dm)E

)

+ 1

2a
ΘaD

T
m + χ

2a2
Θ2

a E.

(218)

Relations between the current densities have the form

JI = (Jm)× , JI = Jg · ·E, JTm = Jg · ×E. (219)

Two expressions for the electromagnetic current density tensor Jm are

Jm = − 1

χ

[
H ×

(
Dm + χ

a
ΘaE

)
+ DH

]T
, Jm = 1

χ

[(
Dm + χ

a
ΘaE

)
× H − (H · D)E

]
.

(220)

Two additional relations containing the electromagnetic current density tensor are written as

Jm = − 1

χ

(
H · Dg + DH

)T
, tr Jm = − 2

χ
D · H. (221)

Expressions for the internal current density vector JI and the internal voltage density vectorVI have the form

JI = 1

χ
H · Dm, VI = − 1

χ

(

E · Dm + a

χ
TaD

)

. (222)

Three additional relations containing the magnetic field vector are

Hm = HE − EH, Jg = 1

χ
Dg × H, hΘ = − a

χ
H. (223)

We remind the reader that Hm is the magnetic flux tensor, Dg is the generalized induction tensor, Jg is the
generalized current density tensor, and hΘ is the entropy flux vector.
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