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Abstract The temporal stability of plane Poiseuille and Couette flows for a Navier–Stokes–Voigt type of
viscoelastic fluid is examined. The primary unidirectional flow is between two infinite rigid parallel plates,
which are either fixed or in relative motion. To investigate the instability of the basic flow, a numerical solution
of the resulting eigenvalue problem is performed. Despite the base flow remains to be unaltered, the stability
properties differ from those of aNewtonian fluid. In the case of plane Poiseuille flow, two values of theReynolds
number are found to be needed to specify the linear instability criteria owing to the existence of closed neutral
stability curves and also the instability emerges only in a certain range of the Kelvin–Voigt parameter �. To
the contrary, instability occurs for all nonzero values of� in the case of plane Couette flow and a single critical
value of the Reynolds number is adequate to discuss the stability/instability of fluid flow due to the parabolic
nature of the neutral stability curves. The sensitivity of the Kelvin–Voigt parameter is clearly discerned on the
stability of both types of flows. The variations of streamlines at the dominant mode of instability are analyzed
in comprehending the underlying instability mechanism and shedding light on the secondary flow pattern.

1 Introduction

The study of stability/instability of the classical laminar flows of an incompressible fluid has attracted con-
siderable attention of researchers both theoretically and experimentally because of its applications in many
physical situations, for example, in astrophysics, meteorology, oceanography, geophysics, and engineering
(Drazin and Reid [1]). This topic is still continued to be an object of extensive study because the transition
from laminar flows to instability, turbulence and chaos are not completely understood. The work of Reynolds
stimulated the theoretical investigation of Orr [2] and Sommerfeld [3], where they independently considered
small traveling-wave disturbances of an otherwise steady, parallel flow and derived the Orr–Sommerfeld equa-
tion. The Orr–Sommerfeld equation for the flow associated with plane Poiseuille flow (PPF) yields instability,
while the basic flow remains to be stable for planeCouette flow (PCF). Thework on the stability of PPF/PCF has
also been extended to account for the effects of transverse magnetic field (Lock [4]/Kakutani [5]), throughflow
(Fransson and Alfredsson [6]/Shankar and Shivakumara [7]), and the global nonlinear stability (Falsaperla
et al. [8]), whereas Nield [9]/Shankar et al. [10] reported the results on the linear stability of PPF/PCF in a
porous domain and contrary to the clear fluid layer case, it is shown that PCF displays a linear instability.

Majority of the investigations on the stability of channel fluid flows are dealt with Newtonian fluids.
In many industrial processes, however, non-Newtonian liquids are used as working fluids. Viscoelasticity,
shear thinning/thickening and couple stresses are few of the many characteristics of most non-Newtonian
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fluids. Among them, viscoelastic fluid models, which account for elastic and memory effects, have occupied a
distinctive place in the literature over the last fewdecades. Thefield of viscoelastic fluids is vast and as such there
exists a variety of constitutive equations describing the behavior of such fluids. A large number of works have
been done on the investigation of the stability of parallel shear flows that include PPF and PCF of viscoelastic
fluids. The effect of slight viscoelasticity on the stability of PPF was scrutinized by Chun and Schwarz [11]
considering the second-order rheological model and observed that the critical Reynolds number decreases with
increasing non-Newtonian parameter. Porteous and Denn [12] examined the stability of PPF of Maxwell fluid,
while Kundu [13] analyzed the stability of PPF for an Oldroyd-B fluid subject to small disturbances and both
studies revealed that the influence of elasticity is to destabilize the flow. The hydrodynamic stability of PPF
for a couple stress fluid was explored by Jain and Stokes [14] and showed both stabilizing and destabilizing
impacts on the fluid flow. The classical energy method of Orr was employed by Kundu [15] to scrutinize the
stability of PCF of a second-order fluid and noted that the presence of elasticity is to affect the stability either
way depending on the governing parameters. In the creeping flow limit (Reynolds number R → 0), Ho and
Denn [16] demonstrated that the Poiseuille flow in a channel for the upper convected Maxwell (UCM) fluid is
linearly stable. Lee and Finlayson [17] looked at the stability of fully developed Poiseuille and Couette flows
of Maxwell fluid between two flat plates and no unstable eigenvalues were established. By discussing the
linear stability of PCF for UCM fluid, Renardy and Renardy [18] ruled out the possibility of the occurrence of
any instability. A comparison of the linear stability characteristics between the Oldroyd-B and the UCM fluid
models can be found in the work of Sureshkumar and Beris [19] wherein they showed the presence of a nonzero
solvent viscosity has a pronounced stabilizing effect on the flow. Subsequently, Sadanandan and Sureshkumar
[20] carried out a modal stability analysis to explore the impact of fluid elasticity on the Tollmien–Schlichting
mode at different values of the ratio of solvent to solution viscosity and disclosed a non-monotonic dependence
of the critical Reynolds number on the elasticity number, similar to the UCM limit. In examining PPF for shear-
thinning fluids modeled through the Carreau rheological law with viscosity perturbations ignored, Chikkadi
et al. [21] displayed the transient growth is slightly decreased. The stability of PPF and PCF of an Oldroyd-B
fluid in the presence of a transverse magnetic field was considered by Eldabe et al. [22]. It is observed that
the magnetic field has a stabilizing effect on the Poiseuille flow, while it has both destabilizing and stabilizing
influence on the Couette flow. With viscosity perturbations obtained approximately by the Carreau fluid in a
channel bounded by two parallel plates, it is noted that the transient growth is slightly increased (Nouar et al.
[23]), whereas in the Couette flow, it is increased substantially in a shear-thinning fluid flow (Liu and Liu [24]).
A comprehensive overview of earlier research on the outcomes of linear stability pertaining to viscoelastic
channel flow is presented by Chaudhary et al. [25]. Of late, Ortín [26] studied the oscillatory flows of UCM
for low Reynolds number between parallel plates and concluded that the onset of instability is triggered by the
divergence of stresses in the direction of the flow. By employing a modal analysis, Khalid et al. [27] disclosed
that PPF of an Oldroyd-B fluid becomes unstable to a center mode with phase speed close to the maximum
base flow velocity.

Another significant class of viscoelastic fluids exists and is knownby the names ofKelvin andVoigt (Berselli
and Bisconti [28], Layton and Rebholz [29], Chiriţă and Zampoli [30]), called the Kelvin–Voigt fluids. Interest
in these fluids was sparked by the work of Russian researchers. Oskolkov [31, 32] provided a number of
intriguing models for the Kelvin–Voigt fluids. The equations of motion for viscoelastic fluids of Maxwell,
Oldroyd and Kelvin–Voigt types are succinctly summarized in the article of Oskolkov and Shadiev [33].
In a separate development, Straughan [34–36] studied thermal and thermosolutal convection in a horizontal
layer of Kelvin–Voigt fluids of different orders for the first time in the literature. The condition for the onset
of convection and also the nonlinear stability aspects of the problem are discussed, in general. Recently,
Shankar and Shivakumara [37] investigated numerically the stability of natural convection in a vertical layer of
Navier–Stokes–Voigt fluid. TheKelvin–Voigt fluids are increasingly used in practical applications, particularly
in industrial and engineering fields (Greco andMarano [38], Lewandowski and Chorążyczewski [39], Jakeman
and Hurle [40]).

Although instabilities associated with the Kelvin–Voigt fluid of different orders have been studied exten-
sively in a horizontal geometry of the Bénard type (free convection), the hydrodynamic stability (forced
convection) of such fluid flows has not received any attention in the literature to the best of our knowledge.
Understanding the combined effects of inertia and viscoelasticity in parallel shear flows is important because
of their significance in the phenomenon of turbulent drag reduction (Larson [41]). The purpose of the present
investigation is to discuss the stability of PPF and PCF of the Navier–Stokes–Voigt fluid or the Kelvin–Voigt
fluid of order zero. The neutral stability condition and the critical Reynolds number are obtained for different
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values of the characteristic governing parameters of viscoelasticity. Some novel results not found in Newtonian
and other types of viscoelastic fluid flows are uncovered.

The layout of the remaining paper is organized as follows: the mathematical formulation of the Navier–S-
tokes–Voigt fluid and the corresponding governing equations are given in Sect. 2. The solution of the basic
state is obtained in Sect. 3, while Sect. 4 provides the linear perturbed equations, which leads to a modified
Orr–Sommerfeld equation. In Sect. 5, the integral method which provides a qualitative behavior of flow sta-
bility is discussed. A detailed computational procedure using the Chebyshev collocation method and the code
validation are given in Sect. 6. Section 7 presents different eigenspectra for various values of the Kelvin–Voigt
parameter for both PPF and PCF, followed by a growth rate analysis and neutral stability curves. Significant
findings of this study are concluded in Sect. 8.

2 Mathematical formulation

Let us consider a layer of an incompressible Navier–Stokes–Voigt fluid between two rigid parallel plates of
infinite length, separated by a distance of 2h as shown in Fig. 1. We employ a Cartesian coordinate system
midway between the plates to describe the flow where the x-axis is horizontal and parallel to the slab, the
y-axis is also horizontal and the z-axis is vertical. The constitutive equation for the Navier–Stokes–Voigt fluid
or the Kelvin–Voigt fluid of order zero is (Oskolkov [32], Straughan [36] and references therein)

T
∼

� −pI
∼

+ ρλ̂
∂

∂t

(∇V + ∇Vtr) + μ
(∇V + ∇Vtr), (1)

where T
∼

is the stress tensor, p is the pressure, I
∼

is the identity tensor, ρ is the fluid density, λ̂ is the Kelvin–Voigt

coefficient, t is the time, V � (u, v, w) is the velocity, μ is the fluid viscosity and the superscript tr represents
the transpose. When λ̂ � 0, Eq. (1) reduces to the standard Stokes’ law. Since T

∼

tr � T
∼

, the conservation of

linear momentum equation is

ρ

[
∂V
∂t

+ (V · ∇)V
]

� ∇ · T
∼

. (2)

Also,

∇ · V � 0, (3)

as the fluid is incompressible and note that ∇(∇ · Vtr) � 0. With these, Eq. (2) now takes the form
(
1 − λ̂∇2

)∂V
∂t

+ (V · ∇)V � − 1

ρ
∇P +

μ

ρ
∇2V, (4)

where P is the total pressure.

Case (i): Plane Poiseuille flow (PPF)
In this case, both the plates are at rest and the flow is driven due to a uniform pressure gradient in the flow
direction. The variables are written in a dimensionless form such that the coordinates (x , y, z) by the half-width
of the channel h, the fluid velocity V by the velocity at the center line of the channel U0, the pressure P by
ρU 2

0 and the time t by h/U0, with the dimensionless parameters, R � U0hρ/μ and � � λ̂/h2. Here, R is the
Reynolds number and � is the Kelvin–Voigt parameter. Equations (3) and (4) in the dimensionless form are

∇ · V � 0, (5a)

(
1 − �∇2)∂V

∂t
+ (V · ∇)V � −∇P +

1

R
∇2V. (5b)

The no-slip boundary condition suggests that

V � 0 at z � ±1. (6)

Case (ii): Plane Couette flow (PCF)
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(a)

(b)

Fig. 1 a Physical configuration of the horizontal channel for PPF. b Physical configuration of the horizontal channel for PCF

Here, both the plates are considered to be moving in the opposite directions with a uniform speed U0, and
there is no pressure gradient in the fluid. Equation (5) holds for this case as well but the definition of R and
the boundary conditions differ.

The boundary conditions to this case are

V � ±1 at z � ±1. (7)

3 Base flow

The base flow is fully developed, unidirectional, steady and laminar, i.e., V � Vb � [ub(z), 0, 0], where the
suffix b serves to denote the basic flow. Under these circumstances, Eq. (5) reduces to the ordinary differential
equation

d2ub
dz2

� −R
dPb

dx
. (8)

The boundary conditions for case (i) and case (ii) are, respectively, given by

ub � 0 at z � ±1, (9a)
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and

ub � ±1 at z � ±1. (9b)

The solution of Eq. (8) corresponding to Eqs. (9a) and (9b) is, respectively,

ub � 1 − z2, (10a)

and

ub � z. (10b)

The above solutions are exactly the same as that of Newtonian fluid (Drazin and Reid [1]). That is, the
stationary solution of these flows is parallel, where the velocity only depends on the distance from the wall.
For PCF, the velocity profile varies linearly between the two moving plates, whereas the velocity profile is
parabolic in the direction of the negative pressure gradient in the case of PPF.

4 Stability analysis

To study the hydrodynamic stability of the problems, the instantaneous flow velocity and the pressure are taken
as the sum of basic state and disturbed state quantities as

u � ub + u′, v � v′, w � w′, P � Pb + P ′, (11)

where the primes identify the perturbation contributions. Substituting Eq. (11) into Eq. (5) and neglecting the
nonlinear terms yields (in components)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
� 0, (12)

(
1 − �∇2)∂u′

∂t
+

(
ub

∂u′

∂x
+ Dubw

′
)

� −∂P ′

∂x
+

1

R
∇2u′, (13)

(
1 − �∇2)∂v′

∂t
+ ub

∂v′

∂x
� −∂P ′

∂y
+

1

R
∇2v′, (14)

(
1 − �∇2)∂w′

∂t
+ ub

∂w′

∂x
� −∂P ′

∂z
+

1

R
∇2w′. (15)

The relevant boundary conditions are

u′ � v′ � w′ � 0 at z � ±1. (16)

The linear stability analysis consists of presuming the existence of sinusoidal disturbances to the basic
state, which is the flowwhose stability is being investigated. On this background flow, we superpose a spatially
extended disturbance of the form

{
u′, v′,w′, P ′} �

{
û, v̂, ŵ, P̂

}
(z)ei(ax+by−act), (17)

where a and b are the wave numbers in the x- and y-direction, respectively, and c(� cr + ici ) is the complex
wave speed. The phase velocity is the real part of c, while the temporal growth rate is the imaginary part
of c. The beauty of normal modes lies in their ability to offer a complete description for the evolution of
any arbitrary disturbance in most cases. By introducing the notion of normal modes, the advent of harmonic
analysis facilitated the study of the stability of mechanical systems. A normal mode is a pattern of oscillations
in which the entire system oscillates in space/time with the same wavelength/frequency. Substitution of Eq.
(17) into Eqs. (12)–(16) yields

iaû + ibv̂ + Dŵ � 0, (18)

ia
{
ub − [

1 − �
(
D2 − a2 − b2

)]
c
}
û + Dubŵ � −ia P̂ +

1

R

(
D2 − a2 − b2

)
û, (19)

ia
{
ub − [

1 − �
(
D2 − a2 − b2

)]
c
}
v̂ � −ib P̂ +

1

R

(
D2 − a2 − b2

)
v̂, (20)
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ia
{
ub − [

1 − �
(
D2 − a2 − b2

)]
c
}
ŵ � −DP̂ +

1

R

(
D2 − a2 − b2

)
ŵ, (21)

û � v̂ � ŵ � 0 at z � ±1. (22)

Testing the validity of Squire’s [42] theorem would be beneficial at this point, and to do so, the following
transformations are employed

ã �
√
a2 + b2, ũ �

(
aû + bv̂

)

ã
, w̃ � ŵ, P̃ � ã

a
P̂ , R̃ � a

ã
R, �̃ � �. (23)

We can easily check that Squire’s theorem continues to hold for the present problem under the above
transformations indicating the sufficiency of considering only two-dimensional disturbances and enforce b �
v � 0. Elimination of the pressure term from Eqs. (19) and (21), leads to the stability equation (after ignoring
tildes)

(
ub − c

[
1 − �

(
D2 − a2

)])(
D2 − a2

)
w − D2ub w � 1

iaR

(
D2 − a2

)2
w. (24)

The boundary conditions are on w only

w � Dw � 0 at z � ±1. (25)

Equations (24) and (25) form a fourth order homogeneous ordinary differential equationwith homogeneous
boundary conditions of the Orr–Sommerfeld type. The above formulation holds for both the flow problems
but the basic velocity differs. For the case of � � 0, Eq. (24) reduces to the well celebrated Orr–Sommerfeld
equation. The resulting eigenvalue problem satisfies the dispersion relation with the following functional form
and has a nonzero solution only when

f (R,�, a, cr , ci ) � 0, (26)

is singular.

5 Integral method: sufficient condition for stability

The sign of the parameter ci yields the most important information as it allows one to detect the linear stability
(ci < 0) or instability (ci > 0) of the base flow. A simple method for obtaining a sufficient condition for the
stability of fluid flow has been given in the book by Drazin and Reid [1]. Accordingly, we first multiply the
resulting stability equation by w, the complex conjugate of w, and integrate over the channel width to get

I 22 + 2a2 I 21 + a4 I 20 � −iaR

⎧
⎨

⎩

1∫

−1

[
ub

∣∣w′∣∣2 +
(
a2ub + u′′

b

)|w|2
]
dz +

1∫

−1

u′
bw

′w dz

⎫
⎬

⎭

+ iaRc
[(
I 21 + a2 I 20

)
+ �

(
I 22 + 2a2 I 21 + a4 I 20

)]
, (27)

where

I 2n �
1∫

−1

∣
∣Dnw

∣
∣2dz, n � 0, 1, 2. (28)

Equating the imaginary and real parts on both sides of Eq. (27), we obtain, respectively,

cr
[
I 21 + a2 I 20 + �

(
I 22 + 2a2 I 21 + a4 I 20

)] �
1∫

−1

[
ub

∣∣w′∣∣2 +
(
a2ub +

1

2
u′′
b

)
|w|2

]
dz, (29)
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and

aRci
[
I 21 + a2 I 20 + �

(
I 22 + 2a2 I 21 + a4 I 20

)] � −(
I 22 + 2a2 I 21 + a4 I 20

) − 1

2
iaR

1∫

−1

u′
b

(
w′w − ww′) dz. (30)

Equation (30) is simply the energy equation for the two-dimensional disturbances propagating in the
direction of the basic flow. The terms on the left-hand side represent the rate of increase of the kinetic energy
of the perturbation and there is a contribution from the viscoelasticity of the fluid as well. The first and the
second terms on the right-hand side signify the rate of dissipation of the perturbation due to viscosity and the
energy transfer from the base flow to the perturbation, respectively. Moreover, the base flow is stable provided
aci < 0 for all functions w(z) satisfying Eqs. (25) and (30) which requires that

0 > aRci
[
I 21 + a2 I 20 + �

(
I 22 + 2a2 I 21 + a4 I 20

)]

� −(
I 22 + 2a2 I 21 + a4 I 20

) − 1

2
iaR

1∫

−1

u′
b

(
w′w − w′w

)
dz. (31)

We define q � max−1≤z≤1

∣
∣u′

b

∣
∣ and note that

∣
∣∣∣
∣∣

1

2
i

1∫

−1

u′
b

(
w′w − w′w

)
dz

∣
∣∣∣
∣∣
≤ q

1∫

−1

|w|∣∣w′∣∣ dz ≤ q I0 I1, (32)

by the Schwarz’s inequality. This gives an upper bound for ci as

ci ≤ q I0 I1 − 1
aR

(
I 22 + 2a2 I 21 + a4 I 20

)

[
I 21 + a2 I 20 + �

(
I 22 + 2a2 I 21 + a4 I 20

)] . (33)

From Eq. (33), it is evident that the upper bound on the growth rate of unstable mode decreases with
increasing � and the sufficient condition for the stability of fluid flow is

I 22 + 2a2 I 21 + a4 I 20 > aRq I0 I1, (34)

which concurs with that of a Newtonian fluid (Drazin and Reid [1]). Since the growth rate ci depends on
the Kelvin–Voigt parameter �, it is pertinent to compute the growth rate ci numerically for various values of
governing parameters to assess the possibility of the existence of instability. This can be achieved by imposing
ci � 0, namely the neutral stability condition, delimiting the boundary between the regions of parametric
stability and instability.

6 Numerical method

The Chebyshev collocation method is adopted to solve the eigenvalue problem of both the flows.

Case (i) Plane Poiseuille flow
Since ub is an even function of z, let us consider the even solution w � we in terms of the truncated modified
Chebyshev series as

w � we �
N∑

i�1

ξiw
e
i (z), (35)

where ξi are the unknown coefficients, we
i (z) are chosen satisfying the boundary conditions in the form

we
i (z) � (

1 − z2
)2
T2i−2(z), (36)

and Ti (z) denotes the ith degreeChebyshev polynomial of first kindwhich are definedby a three-term recurrence
relation

T0(z) � 1; T1(z) � z; Tn+1(z) − 2zTn(z) + Tn−1(z) � 0 (n ≥ 1). (37)
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Substituting Eq. (35) into Eq. (24) and requiring that Eq. (24) be satisfied at N collocation points
z1, z2, . . . , zN , where

zn � cos[(n − 1)π/(2N − 1)], n � 1, 2, . . . , N . (38)

Case (ii) Plane Couette flow
Since ub is an odd function of z, the odd solution w � wo may be expressed as

w � wo �
N∑

i�1

ξiw
o
i (z), (39)

where

wo
i (z) � (

1 − z2
)2
Ti−1(z). (40)

Let zn denote the collocation points defined as

zn � cos[nπ/(N + 1)], n � 1, 2, . . . , N . (41)

In both the cases, we obtain N algebraic equations for N unknowns ξ1, ξ2, . . . , ξN which can be written
in the form

AX � cBX , (42)

where X � (ξ1, ξ2, . . . , ξN )T, A and B are the coefficient matrices of dimension N × N given by

A(n, i) � ub(zn)
(
D2 − a2

)
wi (zn) − D2ub(zn) wi (zn) − 1

iaR

(
D2 − a2

)2
wi (zn), (43)

B(n, i) � [
1 − �

(
D2 − a2

)](
D2 − a2

)
wi (zn). (44)

We note that A is complex and B is real. For fixed values of R, � and a, a nontrivial solution to the above
generalized eigenvalue problem is possible when the wave speed c satisfies the dispersion relation given by
Eq. (26). From the N eigenvalues one having the largest imaginary part of, say c1 � cr1 + ici1 is selected. We
then employ the secant method iteration either to R, with a fixed, or to a,with R fixed, until the imaginary part
of ci1 ceases to zero, to obtain the neutral stability point. The infimum of R as a function of a or vice versa
gives the critical Reynolds number Rc and the critical wave number ac. The real part of c1, i.e., cr1, gives the
critical wave speed. This procedure is repeated for various values of �.

The convergence of the results is tested by computing the triplets (RDc, ac, cc) by varying the collocation
points N for different values of � (see Tables 1 and 2). Based on various numerical experiments, to preserve
the accuracy of the numerical results, the maximum order of the Chebyshev polynomial in the approximation
of the different field variables is set to 30 in the case of PPF (Table 1). For a Newtonian fluid, PPF is linearly
unstable for the Reynolds number exceeding 5772.22 which was given by Orszag [43] and our result has
also predicted the same value of the Reynolds number when � � 0. In the case of PCF, it is seen that more
collocation points are required to achieve satisfactory convergence in the results for smaller values of� (Table
2). The numerical data quoted here are accurate to six decimal places.

7 Discussion of the results

The stability of PPF and PCF is analyzed for the Navier–Stokes–Voigt type of viscoelastic fluid. Equations (24)
an (25) define the eigenvalue problem, and it forms the cornerstone of the stability analysis. We believe that
the present findings are worthy and ought to be brought to the attention of workers dealing with practical
hydrodynamical stability problems.
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Fig. 2 Eigenspectra for PPF with a N � 80, b N � 90, c N � 100 and d N � 120 when R � 104, a � 1 and � � 0. Star (red
color) denotes the most unstable mode and its eigenvalue is cr + ici � 0.23752648 + i0.00373967. (color figure online)

7.1 Eigenspectrum

We first discuss the key differences in the eigenspectrum of Navier–Stokes–Voigt and the Newtonian fluids.
The results of Navier–Stokes–Voigt fluid reduce to the Newtonian one when � � 0. Figure 2a–d displays the
eigenspectra for the plane Poiseuille flow for different values of N when � � 0, R � 104 and a � 1 as they
provide information about the scattering of complex eigenvalues with an increase in the order of polynomial.
The eigenspectrum shows a characteristic ‘Y-shaped’ structure in the (cr , ci )-plane which has basically three
different branches. In the figures, the A branch is the upper left one, the P branch is the upper right one, and the
S branch is the lower one. The phase speeds cr of A, P, and S modes approach 0 (wall mode), 1 (center mode),
and 2/3 (damped mode), respectively. Figure 2a demonstrates the inaccuracy caused by having insufficient
polynomials, especially on the S-mode and the eigenvalues at the intersection when N � 80. The splitting in
the damped mode is symptomatic of insufficient polynomials and by increasing the number of polynomials we
are able to overcome the splitting problem as in Fig. 2b–d. Indeed, Y-like structure with noted APS branches
is observed in Fig. 2d with N � 120. It is clear from these figures that A branch becomes unstable (Schmid
and Henningson [44]), this being the ‘Tollmien–Schlichting’ instability. The most unstable mode, which is
responsible for the instability to occur in this wall mode, is 0.23752648 + i0.00373967 and a similar kind of
finding is reported by Dongarra et al. [45]. The eigenspectra presented in Fig. 3a–d for� � 10−5 show similar
structures with APS branches as viewed in the case of � � 0. It is seen that the presence of Kelvin–Voigt
parameter does not affect much either the eigenvalues near the center of the Y-structure or the value of N. But
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Fig. 3 Eigenspectra for PPF with a N � 80, b N � 90, c N � 100 and d N � 120 when R � 104, a � 1 and � � 10−5. Star
(red color) denotes the most unstable mode and its eigenvalue is cr + ici � 0.23746673 + i 0.00274110. (color figure online)

Table 3 Chebyshev approximation to the most unstable mode of PPF for different values of � when R � 104 and a � 1

N � � 0 � � 10−6 � � 10−5

ci cr ci cr ci cr

5 –0.00001931 0.26390954 0.00363950 0.23751998 0.00038123 0.44213734
10 0.01515062 0.23536518 0.01508413 0.23533500 0.01449197 0.23506698
20 0.00630869 0.23879009 0.00622845 0.23878967 0.00551628 0.23878922
30 0.00380254 0.23763052 0.00370374 0.23762505 0.00281887 0.23758125
40 0.00374080 0.23752654 0.00364065 0.23752002 0.00274247 0.23746666
50 0.00373967 0.23752648 0.00363950 0.23751998 0.00274110 0.23746673
60 0.00373967 0.23752648 0.00363950 0.23751998 0.00274110 0.23746673

the S-mode whose phase speed approaches 2/3 now shifts toward the left side. The most unstable modes of
PPF for different values of � with varying N are given in Table 3 for the benefit of others who might use
this calculation as a yardstick. It is noticed from the table that there is a rapid convergence of the eigenvalue
with increasing N which is independent of �. Besides, a change in the most unstable mode is evident with
increasing �.

Figure 4a–d displays the eigenspectra for PCF when R � 25000 and a � 1 for � �� 0 with N � 150.
The computed spectrum for PCF is very different from PPF. Contrary to the PCF for a Newtonian fluid,
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Fig. 4 Eigenspectra for PCF with a � � 10−3, b � � 10−2, c � � 10−1 and d � � 100 when R � 25000, a � 1 and N � 150

Table 4 Chebyshev approximation to the most unstable mode of PCF for different values of � when R � 2.5 × 104 and a � 1

N � � 10−4 � � 10−3 � � 10−1

ci cr ci cr ci cr

5 –0.00012280 ± 0.30891303 –0.00003474 ± 0.30835516 0.03619638 ± 0.08189154
10 0.02505011 ± 0.78802805 0.02895916 ± 0.61784719 0.03272438 ± 0.09749417
20 0.01749250 ± 0.80896343 0.06323145 ± 0.63967547 0.03272217 ± 0.09763119
30 0.01731901 ± 0.81027955 0.06323068 ± 0.63968908 0.03272217 ± 0.09763119
40 0.01732125 ± 0.81028175 0.06323068 ± 0.63968908
50 0.01732125 ± 0.81028175

unstable mode exists in the case of the Navier–Stokes–Voigt fluid. The structure of the eigenspectra changes
to ‘X-shaped’ from a unique structure with increasing �. The results of the most unstable mode for PCF when
R � 25000 and a � 1 are given in Table 4 for different values of � and note that the lower values of N are
sufficient to get accurate results as � increases.
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Fig. 5 Plots of growth rate ci versus a for different values of � with R � 5 × 104 for PPF

7.2 Growth rate analysis

The temporal growth rate ci is computed as a function of a for different values of� and R in order to determine
when the unstable conditions may start to emerge in the parametric plane (a, ci ). The growth rate plots are
illustrated in Figs. 5 and 6 for PPF and PCF, respectively. The main characteristics of these figures are that the
growth rate starts from a negative value and remains to be negative for some values of the governing parameters
signifying that the base flow is always linearly stable, while for some other choice of parametric values, it
gradually increases and becomes positive with increasing a, which entails the onset of instability. Figure 5
shows the possibility of flow becoming unstable as ci undergoes a transition from negative to positive in a
certain parametric space of�(≤ 10−5) but the flow remains to be stable with increasing�(≥ 10−4) as the value
of ci remains to be always negative. The same scenario is observed at higher values of the Reynolds number
too (figures are not shown). This feature is completely surprising as PPF exhibits a stable behavior after certain
values of �. As depicted in Fig. 6a, the value of ci is always negative for all values of the Reynolds number
when � � 0, indicating that no instability is possible for PCF, and this behavior was pointed out previously
by Drazin and Reid [1]. Figure 6b demonstrates the occurrence of transition from stability to instability for all
the considered values of � �� 0, a complete contrast result observed in an ordinary viscous fluid. Thus, the
presence of viscoelasticity turns out to mean a significant difference in both the cases of fluid flows compared
to that of a Newtonian fluid.

7.3 Neutral stability curves

The neutral stability condition ci is the bulk of a linear stability analysis as it provides the threshold between
linear stability and instability. The graphical way to convey this information is by drawing a curve in the
parametric plane (a, R) and the lowest neutral stability curve in this plane captures the parametric condition
for the initiation of the instability. As this curve usually features an absolute minimum of R for a given a, this
minimum yields the onset for the linear instability. The values of a and R for such a minimum are called the
critical values and are denoted by ac and Rc, respectively. The physical meaning of the critical conditions is
that no modal linear instability is possible for R < Rc. The adjective “modal” employed here is important
as, generally speaking, it has been reported the possibility of non-modal linear instability occurring at the
subcritical condition R < Rc.

In the case of PPF, it is curious to visualize how the neutral stability curves behave as the switching over
of flow from instability to stability ensues depending on the intensity of the elasticity of the fluid. Figure 7
displays the evolution of neutral stability curves for different values of �. Some novel consequences not
perceived either in the Newtonian fluid or any other types of viscoelastic fluids are found in a certain range
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Fig. 6 Plots of growth rate ci versus a for different values of a R with � � 0 and b � with R � 5 × 105 for PCF

of values of �. It is seen that the neutral curves appear to be parabolic type and the instability arises within
the region entrapped by the these curves for � � 10−10. Also, the instability region becomes unbounded so
that there exists Rmin, but not Rmax. Nonetheless, with increasing �(� 10−5) the neutral stability curves form
closed loops with the region of instability confined to the interior of the loop which indicates the requirement
of two critical values of the Reynolds number to specify the linear instability criteria. The region inside the
loop corresponds to instability (ci > 0) and the outside defines the parametric conditions of linear stability
(ci < 0). Though the region of instability shrinks toward the lower wave number side with further increase in
�, it shows a stabilizing effect as the minimum value of R increases. However, the instability region eventually
disappears and the flow becomes stable for � ≥ 0.0000764. Thus, it is possible to control the instability of
fluid flow by tuning the viscoelasticity of the fluid.

Figure 8 demonstrates the neutral stability curves for different values of � for PCF. The flow becoming
unstable is evident due to the viscoelasticity of the fluid, but otherwise, the flow is found to be stable always.
The closed type of neutral curve is not visualized in this case. The neutral curves show an upward concave shape
and exhibit only single but different minimum for each value of � which indicates that the system possesses
only one upper cut off R with respect to a band of wave number. The figure reveals that the instability activates
first at a higher value of � that too in the lower wave number range and also there is a steep variation in the
neutral stability curve as � assumes lesser and lesser values.

7.4 Critical conditions for the instability

Figure 9a–c represents the variation of Rc, ac and cc, respectively, with�, and it clearly establishes the feature
suggested in Figs. 7 and 8. According to the linear stability analysis, the basic state is asymptotically stable
below the Rc curves, where the value of ci is always negative. In the region above these curves, there is at
least one positive value of ci for which the flow is unstable. In the case of PPF, it is seen that the curve of
Rc remains almost unchanged with � initially and then it increases suddenly with further increase in � and
stops (Fig. 9a). Thus, there exists a threshold value of �(≥ 0.0000764) after which the base flow is always
stable because the perturbations display a negative growth rate. This suggests that instability exists only in
a particular parametric space of � ∈ [0, 0.0000763]. In this range, the system shows a stabilizing effect on
the basic flow. In the case of PCF, it is observed that Rc decreases steadily with increasing � and tends to
a constant value as � approaches a higher value. Thus, increasing � instills destabilizing effect on the base
flow. This is contrary to the conclusion drawn in the literature for an ordinary viscous fluid (Drazin and Reid
[1]) and also for some other types of viscoelastic fluids (Chaudhary et al. [25]) in the case of PCF where the
base flow remains to be stable to disturbances of all wave numbers at all values of the Reynolds number. This
can be witnessed in the limit � → 0. The behavior reported in Fig. 8, suggesting an abrupt increase in the
critical value of R with decreasing �, is confirmed quite clearly by the curves displayed in Fig. 9a. In fact, it
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Fig. 7 Neutral stability curves in the (a, R)-plane for different values of � for PPF

Fig. 8 Neutral stability curves in the (a, R)-plane for different values of � for PCF
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Fig. 9 Variation of critical values of a R, b a and c c versus �

is quite evident that the critical value of R tends to infinity as � → 0. It is also perceived from the figure that
the critical Reynolds number of PPF lies well below that of PCF till � � 4 × 10−5 after which an opposite
behavior is noticed as the curves of Rc crossover. This indicates that PCF has a more stabilizing effect than
PPF for � < 4 × 10−5 and the trend gets reversed for � ≥ 4 × 10−5.

Figure 9b points out that the onset of instability involves smaller and smaller wave numbers as ac is a
decreasing function of � for both PPF and PCF. Thus, the size of the convection cell increases with increasing
�. Moreover, the cell size of PCF is smaller than PPF. These feature are perfectly coherent with the plots
of the neutral stability curves represented in Figs. 7 and 8. The critical wave speed cc also decreases with
� in both cases (Fig. 9c)). In the case of PPF, only positive cc exists implying that cells move only in the
rightward direction and this is due to the symmetry in the basic flow which has resulted in the non-existence of
different set of onset modes, whereas both positive and negative values of cc exist for the PCF. This is because
if c � c1 + ic2 is an eigenvalue of B−1A for a fixed value of �, then c � −c1 + ic2 is also its eigenvalue
as ub is an odd function of z. Therefore, if traveling-wave disturbances with the critical wave speed cc exist,
then those with −cc also exist. Thus, unstable modes travel in both the positive x-direction (cc > 0) and the
negative x-direction (cc < 0) with the same speed.
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Fig. 10 Perturbation streamlines for PPF: a � � 0, b � � 0.00001, c � � 0.00003 and d � � 0.00007

7.5 Secondary flow pattern

In order to validate the dominant mode of instability and understand the flow dynamics, the stream function
contour at the critical level is analyzed. These secondary flow patterns are the dominant mode of instability
at the critical point and are quite important as they define the initiation of the instability. In fact, even if the
flow patterns of convection are evaluated according to the linear stability theory, it is generally retained that
such patterns are the starting point for the development of the nonlinear analysis of convection. In the present
case, forced flow is only the factor that decides the flow pattern. For the purpose of drawing the streamlines, a
suitable stream function ψ(x , z, t) is defined such that u � ∂ψ

/
∂z and w � −∂ψ

/
∂x . The distribution of

the stream function consists of alternatively clockwise (positive streamline) and counter clockwise (negative
streamline) rotating convective cells. The plots of streamlines for PPF and PCF are shown in Figs. 10a–d and
11a–d, respectively, at the critical level in the xz-plane, where the x-direction in the figures is considered for a
single period 2π

/
ac. The effect of Kelvin–Voigt parameter on the shape of the cellular pattern for PPF is tested

by increasing � gradually from 0 to 0.00007. It is seen that the perturbation patterns are centro-symmetric
with respect to the horizontal mid-plane for PPF and a single cell covers the entire domain for all values of �
(Fig. 10a–d). Even though the shape of the disturbances does not depend on the values of �, the cell width
and also the magnitude of ψ change with �. In the case of PCF, the asymmetric form of the cells is clearly
perceivable. The streamlines concentrate in the vicinity of the lower region of the domain when � � 0.001
(Fig. 11a) and shift to the upper region with increasing � to 0.01 (Fig. 11b). Moreover, the cells start to move
toward the center of the channel with a further increase in � (Fig. 11c, d). In general, there is a tendency for
the cells to acquire a boundary layer structure (either upper or lower) with decreasing �.

8 Conclusions

The effect of viscoelasticity on the hydrodynamic stability of plane Poiseuille and Couette flows has been
analyzed using the Navier–Stokes–Voigt fluid model. The linear perturbations of the base flow have been
studied by employing a modal analysis. The validity of Squire’s theorem has been established. Although the
employed integral method offers insight into the qualitative behavior of the fluid flow, it does not provide
any quantitative information about the influence of the Kelvin–Voigt parameter � on the growth rate. As a
result, numerical experiments have been conducted to investigate how the spurious eigenvalues formwhen� is
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Fig. 11 Perturbation streamlines for PCF: a � � 0.001, b � � 0.01, c � � 0.1 and d � � 1

present. In the case of PPF, most of the general features of the eigenspectrum for the Navier–Stokes–Voigt fluid
are, in fact, similar to that of Newtonian fluid flow with only one unstable mode on the A branch. In addition,
it has been observed that the majority of the damped eigenmodes (S-mode) of regular Y-like structures shift
toward the left with increasing �. In the case of PCF, a unique structure is found at initial values of � and then
it turns to X-like structure with increasing �. The neutral stability curves are exhibited in the (a, R)-plane,
where a is the wave number and the impact of � on the critical conditions is evaluated. The stream function
contours are analyzed to validate the least stable mode obtained from the linearized stability theory, which may
be the starting point for analyzing the phenomenon of nonlinear saturation expected to happen at moderately
supercritical Reynolds numbers. The similarities and differences between the linear instability characteristics
of PCF and PPF are also presented. Some interesting and unexpected results on the stability characteristics of
the fluid flow are established.

• The PPF is unstable for values of � ≤ 0.0000763 and within this range the flow gets stabilized with
increasing �. For � > 0.0000763, however, the flow remains to be stable always. One of the striking
features that do not carry over from the other types of viscoelastic, inelastic couple stress and Newtonian
fluids is the occurrence of closed neutral curves, indicating the requirement of two critical Reynolds numbers
to specify the linear instability criteria instead of the usual single critical value.

• Although PCF in a channel of Newtonian fluid is stable to small disturbances for all values of the Reynolds
number, the flow becomes unstable for the Navier–Stokes–Voigt fluid. In fact, the onset of instability is
speeded up with increasing �.

• The PPF has a more stabilizing effect than PCF for values of � ≥ 4× 10−5 and prior to which an opposite
trend prevails.

• The secondary flow patterns remain similar for all values of � in the case of PPF, while in PCF streamlines
change drastically. The size of the convection cells is larger in PPF compared to PCF, and also it increases
with � both in PPF and PCF. The cells move only in the positive x-direction in PPF, whereas in PCF it
moves both in positive and negative x-directions with the same speed.

An attempt toward the global nonlinear stability analysis for such systems can be of great interest to gain
possible clues regarding the transition to turbulence in terms of bifurcation. Another important aspect is the
possible existence of a subcritical instability, and it can happen under parametric conditions incompatible with
the onset of linear instability, viz. a Reynolds number smaller than its critical value. The existence of such
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a phenomenon can hardly be detected in a framework based on the linearized governing equations. These
analyses are left for our future studies.
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