
Acta Mech 234, 4147–4181 (2023)
https://doi.org/10.1007/s00707-023-03606-2

ORIGINAL PAPER

Rui Yuan

Effects of grain size, texture and grain growth capacity
gradients on the deformation mechanisms and mechanical
properties of gradient nanostructured nickel

Received: 26 February 2023 / Revised: 25 April 2023 / Accepted: 9 May 2023 / Published online: 27 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract Developing a complete understanding of the structure–property relationship of gradient nanostruc-
tured metals is crucial to the technological advancement that will overcome the barriers to the engineering
applications of this novel class of materials with superior mechanical properties. To this end, the individual
effects of three unique structural features, namely the grain size gradient, texture gradient and grain growth
capacity gradient, on the deformationmechanisms andmechanical properties of gradient nanostructured nickel
are investigated using a dislocation-density-based crystal plasticity finite element model. It is revealed that
increasing the grain size gradient, which increases the relative fraction of coarse grains, leads to limited
variations in statistically stored dislocation (SSD) density yet significant declines in geometrically necessary
dislocation (GND) density due to the distinct origins of these two kinds of dislocations, resulting in sig-
nificantly weakened back stress hardening in contrast to moderate changes in forest dislocation hardening.
Increasing the texture gradient, which increases the average Schmid factor of the sample, leads to consistent
decreases in SSD density, GND density, back stress as well as yield and flow stresses. The decrease in SSD
density is attributed to decreasing average shear strain rate as a result of the Schmid effect, whereas the Schmid
effect and decreasing intergranular misorientation both contribute to the decreases in GND density and back
stress. Furthermore, increasing the grain growth capacity gradient leads to an increase in SSD density due
to diminished dislocation recovery, as well as decreases in GND density and back stress due to diminished
strain gradient intensity. Last but not least, strain localization decreases with increasing grain size gradient
and texture gradient. These conclusions are instrumental to optimizing the mechanical properties of gradient
nanostructured metals as well as designing new heterostructured materials with exceptional properties and
performance.

1 Introduction

Traditionally, most metals and alloys for structural applications are characterized by homogeneous microstruc-
tures where the average grain sizes in different parts are more or less uniform. According to the classic Hal-
l–Petch relationship [1], a homogeneous, polycrystalline metal can be strengthened by decreasing the average
grain size, as an increase in the volume fraction of grain boundaries will further impede dislocation motion.
Nevertheless, decreasing the grain size will inevitably lead to diminished ductility and deformability of the
material due to restricted dislocationmobility, thereby creating the dilemma known as “strength-ductility trade-
off,” which limits the application of many metallic materials. In recent years, however, gradient nanostructured
(GNS) metals have emerged as a novel class of structural materials with the promising potential of breaking
through the strength-ductility tradeoff. These materials, characterized by a gradient of grain sizes typically
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spanning three or four orders of magnitude from the surface to the core, possess an outstanding combination
of strength and ductility superior to their homogeneous counterparts [2–11].

The exceptional mechanical properties and performance of GNSmetals can be attributed first and foremost
to the existence of grain size gradients. Experimental and theoretical investigations indicate that a grain size
gradient introduces structural heterogeneity into the material, which leads to deformation heterogeneity where
the coarse grains plastically yield first and sustain higher plastic strain during deformation than the fine grains,
giving rise to the layer-by-layer elastic–plastic transition aswell as strain partitioning [12, 13]. As a result, strain
gradients are developed inside thematerial, and geometrically necessary dislocations (GNDs) are generated and
increase rapidly in density in order to fulfill strain continuity [14–17]. The GNDs not only impede dislocation
motion and thus contribute to strain hardening, but also pile up in the vicinity of interfaces such as grain
boundaries, producing a long-range internal stress toward the dislocation source known as the back stress,
which further strengthens and hardens the material [5, 18, 19]. The extra strengthening and strain hardening
induced by GNDs enhance both the strength and ductility, hence endowing GNS metals with extraordinary
mechanical properties [20–23]. In addition, it has been revealed that the mechanical properties of GNS metals,
such as strength, ductility, fracture resistance and damage tolerance, can be tuned and optimized by introducing
different grain size gradients into the materials [24–28].

Despite the valuable insights gained from previous research efforts concerning the origin of the superb
mechanical properties of GNSmetals, few studies have looked into the effects of different grain size gradients,
i.e., a change in the grain size distribution profile, on the underlying deformationmechanisms in thesematerials.
Questions such as how a change in grain size gradient affects the evolution of dislocation density and back
stress, how it influences the various strengthening and hardening mechanisms in GNS metals, and how they
are further manifested in the mechanical behaviors of these materials under deformation, remain unanswered.
Investigations into these important questions are crucial to forming a complete picture of the structure–property
relationship of GNS metals for scientists and researchers, and thus, to overcoming the technological barriers
that limit their industrial applications. Therefore, exploring the effects of grain size gradient on the deformation
mechanisms and mechanical properties of GNS metals stands as the first goal of this work.

Despite the importance of grain size gradient, it is by no means the only factor that influences the mechan-
ical properties of GNS metals. An often overlooked yet significant feature is the texture gradient. Different
processing methods for GNS metals such as surface mechanical attrition treatment or electrodeposition will
produce different texture gradients in the samples, where the texture, i.e., the preferred crystallographic ori-
entations of the gains, changes gradually along the depth [29–31]. By adjusting processing parameters such
as current density, additive content, texture gradients can be tuned just like grain size gradients [24, 32–34].
Although very few studies, if any, have focused on the effects of texture gradient on GNS metals under defor-
mation, earlier research work has clearly demonstrated that textures play a significant role in the mechanical
properties of metals and alloys, especially those with nanocrystalline grains [35, 36]. Hence, the present work
also strives to reveal the effects of texture gradient on the deformation mechanisms and mechanical behaviors
of GNS metals.

Finally, grain growth capacity gradient is yet another factor that governs the structure–property relation-
ship of GNS metals and influences their mechanical behaviors. It has been reported that significant grain
growth occurs in gradient nanograined copper during tensile deformation, which is a mechanically driven
grain boundary migration process that endows the material with exceptional plasticity [37]. In contrast, both
grain coarsening and refinement occur concomitantly in GNS nickel under tension. The coarsening of the
grains smaller than 280 nm is caused by stress-induced grain boundary migration and rotation, whereas the
refinement of the grains larger than 280 nm is ascribed to the formation of dislocation substructures [32]. In
addition, concomitant grain coarsening and refinement have also been observed in samples of nanocrystalline
nickel and NiCo alloy [38]. Moreover, different grain size gradients will induce different grain growth capac-
ities and reducing the temperature to 200 K will also lead to a significant change in grain growth capacity
[32]. Few studies, to the author’s knowledge, have considered the aspect of grain growth capacity gradients
in GNS metals, which have been shown to significantly impact the mechanical properties of these materials.
Therefore, discovering the effects of grain growth capacity gradient is another objective of this work.

One of the reasons that the effects of grain size, texture and grain growth capacity gradients on the defor-
mation mechanisms and mechanical properties of GNS metals have yet to be revealed lies in the fact that these
gradients are often coupled together, i.e., a change in one will often lead to changes in the others, and it is
challenging, if not infeasible, to decouple them and study each effect individually via experiments alone [8].
In this regard, computational modeling and simulation can play an important role. For instance, Li et al. [39]
developed a dislocation density-based continuum plasticity model and investigated the origin of extra strain
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hardening in gradient interstitial-free (IF) steel. Themodel not only successfully reproduced the experimentally
observed surface non-uniform deformation, but also revealed that the strain hardening, which arose from the
generation of GNDs and back stress, could be as high as that of its coarse-grained counterpart. Zhao et al. [40]
developed amultiplemechanism-based constitutivemodel accounting for GNDs and back stress at both sample
and grain levels, which was incorporated into a finite element framework to study the contributions by different
hardening mechanisms in gradient IF steel. It was found that the sample-level GNDs and back stress had little
effect on the mechanical properties of the gradient material, whereas the grain-level GNDs and back stress
contributed significantly to its strain hardening. Lu et al. [41] investigated the mechanical properties of GNS
aluminum and the associated dislocation structure and evolution via a dislocation dynamics model considering
dislocation-grain boundary interactions, which demonstrated the sequential yielding of the grains under plastic
deformation as well as the non-uniform distribution of the strain gradient and GND density. Yu [42] developed
a constitutive model capable of predicting the overall mechanical behaviors of GNS materials such as gradient
IF steel and GNS nickel under plastic deformation based on grain size gradient profile. It was found that strain
gradient in GNS metals was dependent on both the grain size gradient and the accumulated strain gradient.
Xu et al. [43] explored the differences in the deformation mechanisms and mechanical properties of GNS cop-
per, aluminum and nickel via large-scale molecular dynamics simulations, which highlighted the metal-type
dependence of GNS metals in terms of dislocation and grain boundary mediated plasticity. In addition to GNS
metals, significant progress has also been made in recent years in the investigation of the relationship between
dislocation-mediated plasticity and themechanical properties of structural materials in general. Jiang et al. [44]
developed a governing relationship between surface GND density and the associated long-range internal stress
of polycrystalline metals, which was incorporated into a CPFE framework to explore the grain size effects
of polycrystalline copper. The calculated Hall–Petch effect demonstrated good agreement with experimental
data, highlighting the effect of dislocation densities on the mechanical properties of polycrystalline metals.
Li and coworkers [45–47] developed an atomistically informed multiscale crystal defect dynamics (MCDD)
method, which is a higher-order, strain gradient-based crystal plasticity finite element theory and formulation,
to study the crystal plasticity and the dynamics of dislocation patterns in single BCC crystals. The MCDD
method is capable of capturing geometrically compatible dislocation pattern distribution and evolution in BCC
crystals as well as the size effects in nanoscale plasticity with minimal empiricism and high computational effi-
ciency. Moreover, a temperature-dependent higher-order Cauchy–Born rule was incorporated into the MCDD
framework, which further enables the model to capture dislocation cross slip in single BCC crystal at low
temperature and dislocation cell structures at high temperature. Li et al. [48] established a micromechanical
model for heterogeneous nanograined metals considering the pileup of GNDs, which demonstrated that the
strength-ductility tradeoff can be overcome by altering the shape, size and fraction of inclusions. Therefore,
by creating dislocation density-based, mechanistically informed models of GNS metals and altering one of the
gradients while controlling the others, the individual effects of each factor can be investigated, which serves
as the basic methodology of this work.

In this work, a crystal plasticity finite element (CPFE) model is developed incorporating the evolution
of statistically stored and geometrically necessary dislocation densities as well as back stress to explore the
individual effects of grain size, texture and grain growth capacity gradients of GNS nickel. The model is
described briefly in Sect. 2, and the results obtained from the simulations are presented and discussed in
Sect. 3, followed by the major conclusions drawn from this study in Sect. 4.

2 Crystal plasticity finite element model

2.1 Constitutive equations

At the center of the CPFE model are the constitutive equations, which account for the mechanical behaviors of
a material. As a starting point, a deformation gradient tensor F, which describes the deformation of a material,
is defined as:

F � ∂x
∂X

(1)

where X and x are vectors representing the original, undeformed position and the current, deformed position
of a material point, respectively. It is well known that the deformation of metals and alloys can be classified
into elastic and plastic stages [49, 50]. The elastic deformation can be further classified into two consecutive
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steps: a rotation of the crystal lattice followed by an elastic stretch [51]. Accordingly, the deformation gradient
is decomposed into an elastic component and a plastic one, and the elastic component is further decomposed
into an elastic stretch tensor and a lattice rotation tensor:

F � FeFp, Fe � VeRe (2)

where Fe and Fp are the elastic and plastic deformation gradient tensors, respectively, and Ve and Re are the
elastic stretch tensor and the lattice rotation tensor, respectively. Accordingly, four configurations of the crystal
lattice emerge from such a decomposition scheme: the original, undeformed configuration, denoted by B0; an
intermediate configuration where the undeformed crystal lattice undergoes plastic deformation Fp, denoted by
B; another intermediate configuration where the lattice is further rotated by Re, denoted by B̂; and the current
configuration where the lattice is further stretched elastically byVe, denoted byB. In this work, the constitutive
equations are formulated with respect to the intermediate configuration B̂.

The elastic Green–Lagrange strain tensor in configuration B̂, denoted by Êe, can be formulated with respect
to the elastic stretch tensor Ve as follows:

Êe � 1

2

(
VT
eVe − I

)
(3)

where I is the second-order identity tensor. The elastic Green–Lagrange strain tensor Êe is further related to
the second Piola–Kirchhoff stress tensor Ŝ in configuration B̂ via the generalized Hooke’s law:

Ŝ � Ĉ : Êe (4)

where Ĉ is the fourth-order elastic stiffness tensor. Equation (4) describes the stress–strain relationship of the
material under elastic deformation.

The deformation gradient F, on the other hand, forms the basis for the definition of the velocity gradient
tensor L:

L � ḞF
−1 � V̇eV−1

e + VeL̂pV−1
e (5)

where Ḟ � ∂F
∂t . L̂p is the plastic velocity gradient in configuration B̂, which can be written as:

L̂p �
.

F̂
p
F̂−1
p � ṘeRT

e + ReLpRT
e (6)

where F̂p and Lp are the plastic deformation gradient and plastic velocity gradient in configuration B̂ and B,
respectively.

In the crystal plasticity framework, slip systems of a single crystal are modeled explicitly, and the plastic
velocity gradient of a single crystal can be calculated as the sum of the shear strain rate in each slip system
induced by dislocation slip:

Lp � ḞpF−1
p �

Nslip∑

α�1

γ̇ αpα , pα � mα ⊗ nα (7)

where α is the index of a slip system, Nslip is the total number of slip systems, γ̇ α is the shear strain rate in slip
system α, and pα is the Schmid tensor associated with slip system α in configuration B [52]. pα is expressed
as the dyadic product of mα and nα , the slip direction vector and the slip plane normal vector of slip system
α in configuration B, respectively.

The velocity gradients L, Lp and L̂p can be decomposed into their symmetric and skew symmetric parts:

L � D +W, Lp � Dp +Wp, L̂p � D̂p + Ŵp (8)

where D, Dp and D̂p, which are the symmetric parts of L, Lp and L̂p, respectively, are termed the rate of
deformation tensors, whileW,Wp and Ŵp, which are the skew symmetric parts of L, Lp and L̂p, respectively,
are termed the spin tensors. Using Eqs. (6)–(8), D̂p and Ŵp can be formulated as:

D̂p � ReDpRT
e �

Nslip∑

α�1

γ̇ αsym
(
p̂α

) �
Nslip∑

α�1

γ̇ αsym
(
m̂α ⊗ n̂α

)
(9a)
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Ŵp � ṘeRT
e + ReWpRT

e � ṘeRT
e +

Nslip∑

α�1

γ̇ αskew
(
m̂α ⊗ n̂α

)
(9b)

where

m̂α � Remα , n̂α � Renα (10)

The shear strain rate arises from the motion of dislocations; hence, it can be related to the competition
between the driving force and the resistance of dislocation slip, namely the resolved shear stress (RSS) and
the critical resolved shear stress (CRSS), respectively, via the following rate-dependent formulation [49]:

γ̇ α � γ̇ α
0

( |τα|
τα
c

) 1
m

sign
(
τα

)
(11)

where γ̇ α
0 is a reference shear strain rate, τα and τα

c are the RSS and CRSS associated with slip system α,
respectively, and m is a strain-rate sensitivity exponent. From Eq. (11), it is seen that plastic yielding and
dislocation slip occur only when the RSS is significant in comparison with the CRSS.

The RSS associated with a slip system, as its name suggests, can be derived by resolving the second Pio-
la–Kirchhoff stress tensor S into the slip system. The CRSS, on the other hand, arises from several contributing
factors as a result of different hardening mechanisms. In the present work, the CRSS is formulated as:

τα
c � τα

0 + τα
GB + τα

for + τα
b (12)

where τα
0 , τα

GB, τα
for and τα

b are the lattice friction stress, restriction on dislocation slip imposed by grain
boundaries, forest dislocation hardening and back stress hardening, respectively. The lattice friction stress τα

0
is usually considered as a constant at a given temperature [39, 53]. The grain boundary effect on dislocation
motion, τα

GB, is described by the Hall–Petch relation [54, 55]:

τα
GB � kHP√

d
(13)

where kHP is the Hall–Petch coefficient and d the grain size. Forest dislocation hardening results from the
entanglement and storage of both statistically stored dislocations (SSDs) and GNDs, and can be expressed via
the Taylor equation [48, 56]:

τα
for � χμb

√
ρα
ssd + ρα

gnd (14)

whereχ ,μ and b are a dislocation interaction parameter, the shearmodulus of thematerial and themagnitude of
theBurgers vector of the dislocations, respectively.ρα

ssd andρα
gnd are the SSDandGNDdensities associatedwith

slip system α, respectively, the evolution equations of which will be presented in the succeeding subsections.

2.2 Statistically stored dislocation density evolution

The SSDs, as their name suggests, are statistical in nature and have no geometric consequence, and their
evolution depends on the competition between dislocation storage due to entanglement and annihilation due
to dynamic recovery, as expressed by a modified Kocks–Mecking–Estrin (KME) equation as follows [57, 58]:

∂ρα
ssd

∂γ α
� k3

bd
+ k1

√
ρα
ssd − k2ρ

α
ssd −

(
dc
d

)2

ρα
ssd (15)

where k1, k2, and k3 are three coefficients. In Eq. (15), the partial derivative of SSD density with respect to
shear strain represents the accumulation rate of SSDs. The first two terms on the right-hand side denote the
increase in SSD density due to athermal storage, where the dislocation mean free path is determined by the
grain size and by the average spacing between the dislocations, respectively [48]. The third and fourth terms
represent the decrease in SSD density resulting from the dynamic recovery of dislocations. The fourth term
stands for an intensified dynamic recovery effect significant only when the grain size is comparable to or below
a critical grain size dc, at which point the dislocation mean free path is governed by the grain boundaries of
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the fine grains [48]. The coefficients k1 and k2 are temperature and strain-rate sensitive and are related to each
other via the following equation [59–61]:

k2
k1

� χb

g

(
1 − kT

Db3
ln

(
ε̇

ε̇0

))
(16)

where g, k, T , D, ε̇ and ε̇0 are an effective activation enthalpy, the Boltzmann’s constant, the temperature, a
dislocation drag stress, the applied strain rate and a reference strain rate, respectively. Together, the first and
fourth terms on the right-hand side of Eq. (15) are grain-size-dependent, whereas the other two are not.

2.3 Geometrically necessary dislocation density evolution

GNDs are generated in order to maintain strain continuity at polycrystal interfaces; therefore, their evolution
is correlated with strain gradient. In conventional strain gradient plasticity theory, GND density is linearly
proportional to the strain gradient [62–64]. Nevertheless, recent experimental evidence suggests that such a
theory may need revision [65, 66], since it does not take the dynamic evolution of dislocation sources into
consideration. TEM observation indicates that as plastic deformation continues, dislocation density increases
rapidly, leading to an increasing probability of a gliding dislocation cutting across another dislocation loop
bowing out of a dislocation source on a different slip plane. The interaction of the two dislocations will lead
to the formation of a jog, immobilizing the looping dislocation, hence deactivating the source. As a result,
although the intensity of strain gradient increases linearly with increasing strain, the formation and deactivation
of dislocation sources gradually reach a dynamic equilibrium as deformation goes on, leading to a gradual
slowdown and saturation of GND density [65, 66].

In light of the newly discovered scenario involving dislocation dynamics, a modified strain gradient plas-
ticity formulation is adopted in this work to account for the evolution of GND density with respect to strain
gradient [67]:

ρ̇
ξ
gnd �

[

−1

b

∑

α

dαξ
e

(∇γ̇ α · mα
)
+
1

b

∑

α

dαξ
s

(∇γ̇ α · pα
)
](

1 − ρ
ξ
gnd

ρ
sat,ξ
gnd

)

(17)

where the superscript ξ is an index referring to one of the 12 edge and 6 screw types of GNDs in face-centered
cubic (FCC) metals. dαξ

e and dαξ
s are two multipliers with the values of − 1, 0 or 1 according to the spatial

relationship between the slip system α and the dislocation index ξ [63, 64]:

dαξ
e �

{
1 for α � ξ � 1, 2, . . . , 12
0 for all other cases (18a)

and

dαξ
s �

⎧
⎨

⎩

−1 for d(4,13)
s , d(6,18)

s , d(8,17)
s , d(9,15)

s , d(10,16)
s , d(11,14)

s

1 for d(1,16)
s , d(2,17)

s , d(3,18)
s , d(5,14)

s , d(7,13)
s , d(12,15)

s
0 for all other cases

(18b)

The relationship between the slip system α and the dislocation index ξ is listed in Table 1. ρξ
gnd and ρ

sat, ξ
gnd

are the current and the saturated GND densities, respectively. According to Eq. (17), the increase rate of GND
density is dependent on the spatial gradient of the strain rate, and it gradually slows down as the GND density
approaches its saturated value, consistent with the aforementioned experimental observation. A procedure for
the numerical implementation of Eq. (17) is presented in Appendix A. Once the strain rate gradient in a slip
system is calculated, it is substituted into Eq. (17) to calculate the GND densities associated with that slip
system.
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Table 1 Relationship between Slip System α and Dislocation Index ξ [63, 64]

Dislocation index ξ Slip system α Dislocation type Slip directionmα Slip plane normal nα

1 1 Edge
1√
2

[
110

] 1√
3
(111)

2 2 Edge
1√
2

[
101

] 1√
3
(111)

3 3 Edge
1√
2

[
011

] 1√
3
(111)

4 4 Edge
1√
2

[
110

] 1√
3

(
111

)

5 5 Edge
1√
2
[101] 1√

3

(
111

)

6 6 Edge
1√
2

[
011

] 1√
3

(
111

)

7 7 Edge
1√
2
[110] 1√

3

(
111

)

8 8 Edge
1√
2

[
101

] 1√
3

(
111

)

9 9 Edge
1√
2

[
011

] 1√
3

(
111

)

10 10 Edge
1√
2

[
110

] 1√
3

(
111

)

11 11 Edge
1√
2

[
101

] 1√
3

(
111

)

12 12 Edge
1√
2
[011] 1√

3

(
111

)

13 4 or 7 Screw
1√
2
[110] 1√

3

(
111

)
or 1√

3

(
111

)

14 5 or 11 Screw
1√
2
[101] 1√

3

(
111

)
or 1√

3

(
111

)

15 9 or 12 Screw
1√
2
[011] 1√

3

(
111

)
or 1√

3

(
111

)

16 1 or 10 Screw
1√
2

[
110

]
1√
3
(111) or 1√

3

(
111

)

17 2 or 8 Screw
1√
2

[
101

]
1√
3
(111) or 1√

3

(
111

)

18 3 or 6 Screw
1√
2

[
011

]
1√
3
(111) or 1√

3

(
111

)

2.4 Back stress evolution

After emission from dislocation sources, the GNDs pile up at grain boundaries, producing long-range back
stresses in the opposite direction of the RSS, i.e., toward the dislocation sources, which strengthen and harden
the GNS material, as indicated by Eq. (12). The GND pileups are predominantly concentrated in a pileup
zone in close proximity to the grain boundaries [21, 68, 69], as illustrated in Fig. 1. Before deriving the
equation governing the evolution of back stress, it is necessary to distinguish between the characteristics of
edge and screw dislocations. Most GND pileups consist of edge dislocations [70]. This is because unlike an
edge dislocation which has a unique slip plane, a screw dislocation can cross slip on multiple slip planes. It
has been observed that screw dislocations tend to cross slip out of a GND pileup, leading to the disappearance
of the pileup as well as the associated back stress [66]. Therefore, this model only considers the back stress
produced by edge dislocation pileups.

Denoting the average spacing of the GND pileups by h, the average number of GNDs in a single pileup
by n, and the total number of GNDs in the pileup zone by N , they can be related as follows:

N � n

(
d

h

)
(19)

where d is the grain size. The density of GNDs in the pileup zone, on the other hand, by its definition, can
be approximated as the number of GND lines threading a surface of unit area, i.e., the number of GNDs lines
divided by the area of the pileup zone that they intersect [70]:

ρα
gnd � N

dl
(20)
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Fig. 1 Schematic illustration of geometrically necessary dislocation (GND) pileups in proximity to grain boundaries as well as
the produced back stress. h, l and τb denote the average distance between two GND pileups, the average length of the pileups
and the back stress, respectively

where l is the average length of the GND pileups, as shown in Fig. 1. The back stress generated by a single
pileup can be calculated as [53, 71]:

τα
b � μbn

π(1 − ν)l
(21)

where ν is the Poisson’s ratio of the material. Finally, combining Eqs. (19)–(21), the back stress can be related
to the GND density through

τα
b � μbhρα

gnd

π(1 − ν)
(22)

which is the governing equation for the evolution of back stress used in this work.

2.5 Grain growth model

As stated in Sect. 1, grain coarsening and refinement occur simultaneously in GNS nickel under tensile
deformation, where the nanocrystalline and ultrafine grains smaller than 280 nm undergo coarsening while
those larger than 280 nm refinement, both of which are termed “grain growth” in this work for simplicity.
To study the effects of grain growth capacity gradients, a grain growth model must be incorporated into the
CPFE framework. An earlier experimental investigation on gradient-nanograined copper suggests a linear grain
growth behavior of the material under deformation [37]. In addition, previous numerical investigations have
demonstrated that linear grain growth models are sufficient to capture the grain-size-dependent behaviors of
GNS copper and nickel with the FCC crystal structure [54, 55, 72]. Therefore, a linear grain growth model is
adopted in this work, where a change in grain size is proportional to the corresponding change in the applied
strain [72]:

d � d0 +
ε − ε0

ε f − ε0

(
d f − d0

)
(23)

In Eq. (23), d , d0 and d f are the current, the initial and the final grain sizes with respect to the tensile
deformation, respectively; ε, ε0 and ε f are the current, the initial and the final applied engineering strain,
respectively.
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Fig. 2 Finite element models of the three gradient nanostructured nickel samples a Sample I, b Sample II and c Sample III
with different grain size gradients under study, along with schematic illustrations of their microstructures. Each model consists of
10,000 C3D8 elements. Sample I possesses the mildest grain size gradient, whereas Sample III the steepest. The three illustrations
of the GNS nickel samples below the three finite element models are only schematic and symbolic in nature. They do not bear
any one-to-one correspondence with the models above them in terms of the shape, size and location of each grain. d Boundary
conditions applied to the models. The nodal degrees of freedom (d.o.f.) on the RD-, TD- and ND- faces are constrained along the
RD, TD and ND, respectively. Uniaxial tension is applied on the RD+ face along RD at a constant strain rate of 3×10–4 s−1

2.6 Finite element model

The constitutive equations as well as the governing equations for the evolution of SSD density, GND density
and back stress are incorporated into a user-defined material subroutine originally developed by Marin et al.
[51], which is loaded into the finite element software Abaqus, where a finite element model is created and
serves as the numerical solver for these aforementioned equations, as illustrated in Fig. 2.

The size of the dog-bone shaped tensile bar and that of the finite element model are shown in Fig. 2. The
tensile bar has a gauge length of 6 mm, and a cross section of 0.5×1.2 mm2 [24, 32]. The most important
dimension of the GNS nickel sample is that along the depth of the sample, i.e., the thickness of the tensile bar,
since it determines the gradients of the grain size, the texture and the grain growth capacity, which will affect
the effects of GNDs and back stress. Therefore, the dimension along the depth of the sample, i.e., along the
normal direction (ND), must be based on the actual thickness of the tensile bar. Hence, the dimension of the
finite element model along the ND is set as the thickness of the tensile bar, i.e., 0.5 mm, as shown in Fig. 2.

When it comes to the dimensions of the finite element models in the other two directions, i.e., the rolling
direction (RD) and the transverse direction (TD), only a fraction of the tensile bar needs to be modeled, since
the sizes of the grains at a given depth along these two directions are uniform, and the dimensions along
these two directions will not significantly affect the deformation mechanisms and mechanical properties of
the samples provided that they are sufficiently large. Nevertheless, as commonly known, the results of finite
element analyses are subject to change with a change in the model size and the discretization method, i.e., the
size of the model and the number of elements in the mesh will affect the analysis results. To determine the size
of the model and the number of elements along the RD and TD, a convergence analysis is performed, where
the deformations of two finite element models, one with a dimension of 0.05×0.05×0.5 mm3 consisting
of 10×10×100 elements and the other 0.075×0.075×0.5 mm3 consisting of 15×15×100 elements, are
simulated, as discussed in Appendix B. The convergence analysis indicates that the finite element model with
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a dimension of 0.05×0.05×0.5 mm3 consisting of 10×10×100 elements is sufficiently large to provide
accurate results for the study, and there is no need to further increase the size of themodel. Therefore, thismodel
is used throughout this work. The C3D8-type elements are used to mesh the model, with each element having
8 integration points. Each integration point represents a single grain and has multiple attributes, including its
grain size, crystallographic orientation and grain growth capacity.

Since the focus of this work is on the effects of grain size, texture and grain growth capacity gradients,
the entire sample along the depth, i.e., from the surface to the core, must be modeled. Due to the multitude
of grains and a large discrepancy in grain sizes spanning three orders of magnitude, representing one grain
with many elements is not computationally feasible. On the other hand, when one integration point in an
element is used to represented multiple grains, a homogenization scheme must be used where the collective
behaviors of a cluster of grains are averaged and represented by an integration point [55]. The shortcoming
of this homogenization method is that all these grains in the cluster, represented by a single integration point,
will have the same displacement and strain values at any given time step, making the calculation of strain
gradient and thus, the GND density impossible. In other words, such a homogenization scheme will smear out
the intergranular information that is crucial to the calculation of GND density at the grain level. Therefore,
the most feasible way to model the GNS nickel samples is to represent each grain with an integration point in
a C3D8 finite element, which contains 8 integration points. In this way, the strain rate gradient and thus, the
GND density can be calculated by interpolating the values of the strain rate at the 8 integration points in the
element using their respective interpolation functions, as presented in Appendix A.

In the CPFE framework, grain size is treated as a parameter or an attribute associated with each grain.
As described in Appendix A, instead of representing each grain with an identically sized finite element, the
same element size is used throughout the finite element model. This allows for the decoupling of grain size
and element size. As a result, grain growth can be implemented by simply changing the size of each grain as
a parameter based on the linear grain growth model, i.e., Eq. (23), whereas the shape of the element evolves
according to the displacements of the finite element nodes based on the elastic and plastic deformation of the
element in the finite element software. When it comes to calculating displacement-dependent variables such as
the GND density, the displacement of each integration point in the element is scaled down based on the ratio
of the size of the grain to the size of the element, as indicated by Eq. (A7). In this way, the GNS nickel samples
studied in this work, which consist of numerous grains with grain sizes spanning three orders of magnitude,
can be modeled with an acceptable number of elements, the deformation of which can then be simulated with
manageable computational costs.

A Cartesian coordinate system is established for the finite element model, where the three orthogonal direc-
tions are the normal direction (ND), the transverse direction (TD) and the rolling direction (RD), respectively.
The grain size gradient of the GNS nickel under study is introduced into the model along the ND, as shown
in Fig. 2. As illustrated in Fig. 2d, the finite element model has six faces, which are termed RD+, RD−, TD+,
TD−, ND+ and ND−, respectively, according to the normal direction and the relative position of each face.
The translational degrees of freedom of the nodes on the RD−, TD− and ND− faces are constrained along
the RD, TD and ND, respectively, so that rigid body motion of the model is restricted, whereas the nodes on
the TD+ and ND+ faces are not constrained. Uniaxial tension is applied on the RD+ face along the RD at a
constant strain rate of 3×10–4 s−1, identical to the experimental testing condition.

Three GNS nickel samples with different grain size gradients are under study in this work, as shown
in Fig. 3a. These three grain size gradients, represented by the solid symbols in the figure, are extrapolated
from three samples in previous studies where the grain size gradients were experimentally determined and
represented by the hollow symbols [24, 32]. All three samples have similar grain sizes in the top layer (25 nm)
and at the bottom (4 μm), yet the grain size gradient, i.e., the transition in grain size with respect to the
normalized distance of the samples, is the mildest in Sample I and the steepest in Sample III, which is also
illustrated in Fig. 2. As a result, there is a much higher volume fraction of fine grains in Sample I than in
Sample II, and in Sample II than in Sample III.

In addition to the grain size gradient, these three samples also differ in the texture gradient. Experimentally
measured XRD intensity data for (111) and (200) textured grains in Sample I and II are converted into the
percentage or ratio of these two textures and presented in Fig. 3b [32]. These experimental data are then fitted,
and (111) and (200) crystallographic orientations are randomly assigned to the grains in each layer based on
the fitting results. For instance, in the 9th layer of Sample I, the percentage of (200) textured grains is 48%;
hence, a total of 10×10×8×48% � 384 grains are randomly assigned the (200) orientation, while the other
416 grains have the (111) orientation. When it comes to the 62nd layer, where the percentage of (200) textured
grains increases to 82.5%, there are a total of 660 grains with the (200) orientation and those with the (111)
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Fig. 3 a Grain size gradients, b texture gradients and c grain growth capacity gradients of gradient nanostructured nickel Sample
I, II and III, respectively. The experimental data are represented by hollow symbols, while their extrapolated values, which are
used in the simulations, are displayed as solid ones. In Fig. 3b, the solid lines represent the texture gradients of the samples
determined by fitting the experimental data, whereas the dashed lines their extrapolations. The texture gradient of Sample III
is obtained by calculating the mean values of those of Sample I and II due to the absence of experimental data. The inset of
Fig. 3c is a magnified view of the grain growth capacity gradients of Sample I and II where the grain sizes are below 280 nm. All
experimental data are obtained from References [24, 32]

orientation decrease to 140. In this way, the texture gradients of the samples are incorporated into the CPFE
model. For Sample III, the experimental XRD intensity data are unavailable. As a workaround, the mean value
of the fitted curves representing the texture gradients of Sample I and II is used for Sample III, as shown in
Fig. 3b.

Finally, the grain growth capacity gradients of Sample I and II are taken into consideration by extrapolating
the grain coarsening ability data for grains smaller than 280 nm, as well as the measured changes in grain
sizes before and after the tensile deformation for those larger than 280 nm, respectively, as shown in Fig. 3c
[32]. Again, the experimental grain growth data for Sample III are unavailable. Considering that the grain size
gradient of Sample III is similar to that of Sample II in the sense that both are much steeper than that of Sample
I, as shown in Fig. 3a, the grain growth capacity of Sample III is expected to be similar to that of Sample II.
Therefore, the grain growth capacity of Sample II is also adopted for Sample III in this work, due to a lack of
experimental data.

As grain size decreases into the nanoscale, dislocation activities are increasingly confined by the limited
space within the grain interior, leading to a gradual transition in deformation mechanism from full dislocation
slip to partial dislocation-mediated plasticity [73, 74]. For GNS nickel, plastic deformation is dominated by
partial dislocation activities below a critical grain size of 50 nm at room temperature [32]. The transition
from full-dislocation-mediated deformation to partial-dislocation dominated processes leads to diminished
grain coarsening ability, the critical grain size of which corresponds to the inflection points of the grain growth
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Table 2 Slip systems associated with partial and full dislocations in Nickel

Slip plane Slip direction

Partial dislocations Full dislocations
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] [
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]
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]
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]
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) [
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]

[
121
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]

(
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) [
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] [
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]
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]
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[121]
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]

Table 3 Material and model parameters

Parameter Symbol Value Ref

Elastic moduli (GPa) C11 246.5 [99]
C12 147.3
C44 124.7

Poisson’s ratio Υ 0.312 [99]
Reference shear strain rate (s−1) γ̇ α

0 1×10–4

Strain-rate sensitivity exponent M 0.05 [64]
Lattice friction stress (MPa) τα

0 65
Hall–Petch coefficient (MPa·μm1/2) kHP 37.94
Dislocation interaction parameter X 0.3 [67]
Shear modulus (GPa) M 76 [99]
Magnitude of Burgers vector (nm) B 0.143 for partial

0.249 for full
Geometric coefficient k3 5.0
Dislocation storage coefficient (m−1) k1 1×1010

Reference grain size (μm) dc 1.5
Effective activation enthalpy G 2.3×10–2

Dislocation drag stress (MPa) D 750
Reference strain rate (s−1) ε̇0 1×107 [75]
Initial SSD density (m−2) ρα

S0 1.28×1012 [100]

Initial GND density (m−2) ρ
ξ
G0 2.44×1011 [100]

Saturated GND density (m−2) ρ
sat, ξ
G 1×1015

Average distance between two GND pileups (nm) h 25 [72]

capacity curves shown inFig. 3c.Accordingly, in this study, partial dislocation slip is considered as the dominant
deformation mechanism for grains smaller than 50 nm, whereas plastic deformation is accommodated by full
dislocations for grains larger than the critical grain size. These two types of dislocations not only differ in their
respective slip systems, as shown in Table 2, but in the magnitudes of their Burgers vectors as well, as shown
in Table 3. These differences are taken into consideration by the model.
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Fig. 4 Engineering stress–strain curves of gradient nanostructured nickel Sample I, II and III under uniaxial tension predicted by
the model in comparison with experimental data [24, 32]

2.7 Material and model parameters

The material and model parameters used in this work are listed in Table 3, most of which are either adopted
directly from the literature or calculated based on literature values. For instance, the elastic moduli C11, C12
and C44, the Poisson’s ratio ν, the shear modulus μ, the strain-rate sensitivity exponent m, the dislocation
interaction parameter χ , etc., are based on their literature values, where the references are given in Table
3. For other parameters, the reference shear strain rate γ̇ α

0 is usually at the same order of magnitude as the
applied tensile strain rate, which is 3×10–4 s−1. Hence, a γ̇ α

0 value of 1×10–4 s−1 is used in this work. The
value of the dislocation storage coefficient k1 is usually in the range of 108–1010 m−1 in the literature [60,
75]. Accordingly, a k1 value of 1×1010 m−1 is adopted here. Similar to the dislocation storage coefficient,
the literature value of the effective activation enthalpy g is in the range of 10–3–10–2 [60, 75], and that of
the dislocation drag stress D is around 700 MPa [76, 77]. Hence, a value of 2.3×10–2 is used for g and
750 MPa for D in this study, respectively. The saturated GND density ρ

sat, ξ
gnd adopts an estimated value of

1×1015 m−2, since it is revealed that in heavily cold rolled nanocrystalline nickel the saturated dislocation
density can reach a magnitude of 1015 m−2 below a strain level of 10% [78]. Finally, parameters including
the lattice friction stress τα

0 , the Hall–Petch coefficient kHP and the dislocation geometric coefficient k3 are
determined by fitting the model predictions with experimental data [24, 32]. For example, the lattice friction
stress τα

0 and the Hall–Petch coefficient kHP are determined by fitting the yield stresses of the three samples.
Similarly, the dislocation geometric coefficient k3 is determined by fitting the flow stresses of the three samples
after yielding. In other words, the fitting is done with respect to multiple engineering stress–strain data and to
different parts of these data, which ensures the validity of the parameters used in this study.

3 Results and discussion

3.1 Model validation

In order for the predictive capability of the model to take effect, it must be validated against experimental data
first. The mechanical responses of GNS nickel Sample I, II and III under uniaxial tension predicted by the
CPFE model are compared with the corresponding experimental data in the form of engineering stress–strain
curves, presented in Fig. 4 [24]. The reasonable agreement between themodel predictions and the experimental
data substantiates the validity of the model. In addition, the model is further validated by applying it to simulate
the uniaxial compression of the three samples, as discussed in Appendix C. In the following, the model will
be used to explore the individual effects of grain size, texture and grain growth capacity gradients on the
deformation mechanisms and mechanical properties of GNS metals.
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3.2 Effect of grain size gradient

To reveal the individual effects of the grain size gradient, they must be isolated by controlling the other two
types of gradients: the texture gradient and the grain growth capacity gradient. Therefore, three different grain
size gradients are adopted in this section, corresponding to those of Sample I, II and III illustrated in Fig. 3a,
which are named GSG I, II and III, respectively. As stated in Sect. 2.6, GSG I is the mildest of the three
whereas GSG III the steepest. Hence, the sample with GSG I has the highest volume fraction of fine grains
and the lowest of coarse grains, and vice versa. Furthermore, all three GNS nickel samples possessing these
three grain size gradients have exactly the same texture gradient as well as grain growth capacity gradient,
which are those associated with Sample I in Fig. 3b and c, respectively, so as to eliminate the impact of these
two types of gradients.

The evolution of the average SSD density, GND density and back stress per slip system with respect to
engineering strain in the three samples with GSG I, II and III is displayed in Fig. 5a–c, respectively. It is
seen that increasing the grain size gradient from GSG I to GSG II initially leads to a decline in the average
SSD density, when the applied strain is smaller than 2.44%. Nevertheless, due to the higher rate of increase
in the average SSD density in the sample with GSG II compared to that with GSG I, the former surpasses
the latter beyond a strain value of 2.44%. In addition, further increasing the grain size gradient from GSG
II to GSG III leads to a slightly diminished SSD density throughout the deformation process. Overall, the
average SSD density manifests only limited changes with the grain size gradient. In contrast, the average GND
density presented in Fig. 5b decreases sharply with an increase in grain size gradient from GSG I to GSG II,
and from GSG II to GSG III. Since the back stress produced as a result of GND pileups is proportional to
the GND density, as reflected by Eq. (22), the average back stress per slip system also decreases significantly
with increasing grain size gradient, as shown in Fig. 5c. Altogether, Fig. 5 indicates that the two types of
dislocations, i.e., SSDs and GNDs, evolve distinctly in response to a change in the grain size gradient of GNS
nickel.

To study the effects of grain size gradient in detail, it is not only necessary to look at the average values of
the SSD and the GND densities as well as the back stress, but also the statistical distributions of these internal
variables. Figure 6a–c demonstrates the distribution of the average SSD density as a function of the three grain
size gradients at engineering strain levels of 1%, 4% and 6%, respectively. At 1% strain, i.e., the early stage
of deformation, for GSG II and GSG III, the SSD densities in most grains are narrowly concentrated around a
relatively low value of 1×1014 m−2, while there are far more grains with higher SSD densities in GSG I. As
a result, the average SSD density in GSG I is greater than those in GSG II and III at this stage of deformation,
as shown in Fig. 5a. When it comes to 4% strain, however, the number of grains with relatively high SSD
densities in GSG II and III surpasses that in GSG I, as illustrated in Fig. 6b, leading to higher average SSD
density values in GSG II and III compared to that in GSG I, as shown in Fig. 5a. This trend continues as the
strain further increases to 6%, with even more grains having high SSD densities in GSG II and III compared
to those in GSG I, further enlarging the discrepancy in the average SSD density values between the former
and the latter, as seen in Fig. 5a.

The distributions of the average GND density and the average back stress per slip system with respect to
the grain size gradient at strain levels of 1%, 4% and 6% are presented in Fig. 6d–i, respectively. Consistent
with the results presented in Fig. 5b and c, an increase in the grain size gradient of GNS nickel gives rise to
significant declines in the GND density and back stress, manifested by a sharp decrease in the fraction of grains
with high GND densities and back stresses and an increase in the fraction of grains with low GND densities
and back stresses at all strain levels.

Several factors, including lattice friction, grain boundary strengthening embodied by the Hall–Petch effect,
forest dislocation hardening and back stress hardening, contribute collectively to the mechanical behaviors of
GNS nickel under deformation, as indicated by Eq. (12). To figure out the effects of grain size gradient on the
mechanical properties of GNSmetals, the stress contribution by each individual factor must be revealed, which
is shown in Fig. 7a–c for samples with GSG I, II and III, respectively, and the percentage of the contribution
to the flow stress by each factor at engineering strain levels of 1%, 4% and 6% is presented in Fig. 7d–f. For
GSG I, the Hall–Petch effect contributes most to the flow stress at the early stage of deformation, whereas
forest dislocation hardening takes over and plays a dominant role at higher strain levels. For example, the
Hall–Petch effect and forest dislocation hardening account for 40.8% and 32.9% of the flow stress at 1%
strain, respectively, which become 26.8% and 39.7% at 6% strain. Back stress hardening is also significant
in the sample with GSG I, accounting for 17.9% of the flow stress at 6% strain. As the grain size gradient
increases from GSG I to GSG III, the effect of forest dislocation hardening increases in significance, whereas
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Fig. 5 a The average SSD density, b The average GND density and c The average back stress per slip system as a function of
engineering strain in gradient nanostructured nickel samples with Grain Size Gradient I, II and III, respectively

the contributions by the Hall–Petch effect and back stress hardening diminish. For example, for GSG I, back
stress hardening accounts for 6.1%, 15.8% and 17.9% of the flow stress at 1%, 4% and 6% strain, respectively,
which decrease to 0.9%, 2.6% and 3.2% at the corresponding strain levels in the sample with GSG III. In
contrast, the percentage of the contribution by forest dislocation hardening is 39.7% at 6% strain in GSG I,
which increases to 62.0% at the same strain level in GSG III. From Fig. 7, the individual effects of grain size
gradient on each deformation mechanism can be derived, which are presented in Fig. 8a–d. It is clear that
increasing the grain size gradient from GSG I to GSG III leads to significant declines in the Hall–Petch effect
and back stress hardening, whereas the forest dislocation hardening only exhibits moderate changes.

The distinct patterns of evolution concerning SSDs and GNDs with respect to changes in the grain size
gradient of GNS nickel can be attributed to their different origins. With an increase in the grain size gradient
from GSG I to GSG II, the fraction of fine grains in the sample decreases while that of coarse grains increases,
leading to an increase in the average grain size. As indicated by Eq. (15), this increase in the average grain size
will lead to a diminished athermal storage rate of SSDs, reflected by the term k3

bd , as well as a decline in the

dynamic recovery of SSDs through the term
(
dc
d

)2
ρα
ssd. At the early deformation stage, the SSD density ρα

ssd

is low; hence, the decrease in SSD density due to the diminished athermal storage is greater than the increase
in SSD density resulting from the reduced dynamic recovery, leading to a decrease in the overall SSD density
when the grain size gradient increases from GSG I to GSG II at strain levels lower than 2.44%, as shown
in Fig. 5a. As plastic deformation continues, the steady increase in SSD density gives rise to continuously
enhanced dynamic recovery. Due to the much higher fraction of fine grains in GSG I compared to that in GSG
II, the intensified dynamic recovery is much stronger in GSG I than it is in GSG II, thereby suppressing the
growth of SSD density in GSG I more strongly than it does in GSG II, leading to a higher rate of increase in
the average SSD density of GSG II. As a result, it surpasses the average SSD density of GSG I at 2.44% strain,
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Fig. 6 a–c Statistical distribution of the average SSD density as a function of the three grain size gradients at engineering strain
levels of 1%, 4% and 6%, respectively. d–f Distribution of the average GND density as a function of the three grain size gradients
at engineering strain levels of 1%, 4% and 6%, respectively. g–i Distribution of the average back stress per slip system as a
function of the three grain size gradients at engineering strain levels of 1%, 4% and 6%, respectively

exhibiting the crossover shown in Fig. 5a, and the difference between the two further increases with increasing
strain. Moreover, increasing the grain size gradient from GSG II to GSG III will lead to a further increase in
the fraction of coarse grains and hence, a further decrease in both dislocation athermal storage and dynamic
recovery. Nevertheless, because the samples with GSG II and III mostly consist of coarse grains, where the
effect of the intensified dynamic recovery, i.e., the fourth term on the right-hand side of Eq. (15) is insignificant,
the decrease in dislocation storage ismore impactful than that in dynamic recovery. As a result, the average SSD
density in GSG III is consistently lower than that in GSG II, as shown in Fig. 5a. From the above analysis, it can
be concluded that the growth of SSD density is influenced by the competition between grain-size-dependent
dislocation athermal storage and dynamic recovery. The simultaneously diminished dislocation storage and
recovery arising from an increase in the grain size gradient of GSG metals will partially offset each other,
giving rise to only limited changes of SSD density with respect to the grain size gradient.

The GND density, on the other hand, depends on the strain gradient inside the material under deformation,
as manifested by Eq. (17). Previous studies indicate that strain gradient is most intense in the vicinity of
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Fig. 7 a–c Contribution to the overall stress by lattice friction, the Hall–Petch effect, forest dislocation hardening and back stress
hardening in gradient nanostructured nickel samples with Grain Size Gradient I, II and III, respectively. d–f Percentage of the
contribution to the overall stress by each mechanism at 1%, 4% and 6% strain in each of the three samples with a different grain
size gradient, respectively

interfaces such as grain boundaries [15, 69], since the microstructural heterogeneity between two neighboring
grains, i.e., the large discrepancy in grain size, hardness, crystallographic orientation et al. on either side of
the grain boundary, will lead to pronounced strain discontinuity and hence, intense strain gradient across the
interface, which needs to be accommodated by the generation of GNDs [15, 69, 79]. Given the same level
of intergranular heterogeneity, i.e., the same strain intensity, the strain gradient near a grain boundary will
increase with decreasing grain size, since the variation distance of the strain is restricted by the grain size.
As a result, the average GND density will increase with decreasing average grain size, which is supported by
experimental and numerical investigations [72, 79, 80]. That is why in this study, decreasing the grain size
gradient from GSG III to GSG I, which amounts to increasing the volume fraction of smaller grains, leads to
a significant increase in the average GND density, as shown in Fig. 5b.

The above analysis on the difference between the evolution of SSD and GND densities with grain size
gradient highlights their distinct origins, which are manifested in the mechanical properties of GNS nickel. As
the grain size gradient increases from GSG I to GSG III, the volume fraction of fine grains decreases while
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Fig. 8 Effects of grain size gradient on a lattice friction, b the Hall–Petch effect, c forest dislocation hardening and d back stress
hardening as a function of engineering strain, respectively

that of coarse grains increases, leading to marked declines in both the Hall–Petch effect and the back stress
hardening, as shown in Fig. 8b and d, respectively. In contrast, the variation in forest dislocation hardening is
more complicated and nuanced. As indicated by Eq. (14), forest dislocation hardening depends on the total
dislocation density, i.e., the sum of SSD and GND densities. On one hand, the average SSD density only
exhibits moderate changes with grain size gradient owing to the competition between dislocation athermal
storage and intensified dynamic recovery, as shown in Fig. 5a. On the other hand, the average GND density
decreases significantly with increasing grain size gradient, as shown in Fig. 5b. Hence, the total dislocation
density should also exhibit significant declines as the grain size gradient increases from GSG I to GSG III.
Nevertheless, as stated in Sect. 2.6, partial dislocations dominate the plastic deformation of nanograins smaller
than 50 nm. Since the volume fraction of fine grains decreases with increasing grain size gradient, the number
of nanograins with sizes below 50 nm, the plastic deformation of which is mediated by partial dislocations,
also decreases from GSG I to GSG III. Partial dislocations, owing to their smaller magnitude of Burgers
vector, do not contribute to strain hardening as effectively as full dislocations [72]. Therefore, although the
total dislocation density in GSG I is notably higher than those in GSG II and III, the less effective hardening
ability associated with GSG I due to a higher fraction of partial-dislocation-mediated nanograins limits the
forest dislocation hardening of GSG I and reduces the differences in hardening between the three samples,
leading to moderate changes in forest dislocation hardening with grain size gradient, as shown in Fig. 8c.

In conclusion, with an increase in grain size gradient, although forest dislocation hardening only exhibits
moderate changes, it increases in significance and becomes the dominant strain hardeningmechanism, whereas
back stress hardening is only significant when a large volume fraction of fine grains is present in the sample,
i.e., with a mild grain size gradient.
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Fig. 9 a Four texture gradients used in this study where the percentage of (200) textured grains increases from Texture Gradient I
to Texture Gradient IV at a given grain size. The hollow triangles represent the experimental data converted from XRD intensity
[32]. b Engineering stress–strain curves of gradient nanostructured nickel samples with these four different texture gradients
under uniaxial tension

Table 4 Average Schmid factors associated with the texture gradients

TG I TG II TG III TG IV

Avg. Schmid factor 0.2174 0.2210 0.2256 0.2322

3.3 Effect of texture gradient

In this section, the effects of texture gradient on the deformation mechanisms and mechanical behaviors of
GNS nickel are investigated. To do so requires controlling the grain size gradient and the grain growth capacity
gradient, while systematically modifying the texture gradient of the sample. Therefore, the grain size gradient
and grain growth capacity gradient associated with sample I are adopted in this section, as shown in Fig. 3a
and c, respectively. Furthermore, four texture gradients, namely TG I, II, III and IV, are adopted in this section,
as displayed in Fig. 9a. It is worth noting that TG III is identical to the texture gradient of Sample I in Fig. 3b,
which is obtained by fitting the converted experimental data [32]. As the texture gradient increases from TG I
to TG IV, the percentage of the (200) textured grains increases while that of the (111) textured ones decreases
consistently. Because the average Schmid factor of the 12 FCC slip systems associated with a [200] oriented
grain is about 0.272, greater than the average Schmid factor of 0.136 associated with a [111] oriented grain,
the average Schmid factor associated with the texture gradient increases consistently from TG I to TG IV, as
presented in Table 4.

The engineering stress–strain responses of GNS nickel samples with TG I, II, III and IV under uniaxial
tension are illustrated in Fig. 9b, respectively. The yield and flow stresses decrease consistently from TG I to
TG IV, i.e., with an increasing texture gradient. To reveal the deformationmechanisms underlying the observed
mechanical behaviors, the average SSDdensity,GNDdensity and back stress per slip system in the four samples
are presented in Fig. 10a–c, respectively. Similar to the trend demonstrated by the stress–strain relationship,
the average SSD density, GND density and back stress per slip system all decrease as the texture gradient
increases from TG I to TG IV. As a result, both the effects of forest dislocation hardening and back stress
hardening decline from TG I to TG IV, as shown in Fig. 11c and d, respectively. In addition, the contributions
to the overall flow stress by the lattice friction and the Hall–Petch effect also decrease with increasing texture
gradient, as shown in Fig. 11a and b, respectively.

The variation of the macroscopic stresses contributed by the lattice friction and the Hall–Petch effect,
respectively, can be easily explained by the Schmid effect: as the lattice friction stress τα

0 is a constant in
Eq. (12), and the slip resistance arising from the Hall–Petch effect, τα

GB, is identical in all four samples at a
given strain level due to the identical grain size gradient and grain growth capacity gradient, the sample with a
lower Schmid factor will exhibit a higher contribution to the flow stress and vice versa. Hence, the contributions
to the flow stress by the lattice friction and the Hall–Petch effect decrease with an increasing average Schmid
factor resulting from an increasing texture gradient. What is not obvious is why the average SSD and GND
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Fig. 10 a The average SSD density, b The average GND density and c The average back stress per slip system as a function of
engineering strain in gradient nanostructured nickel samples with Texture Gradient I, II, III and IV, respectively

densities also decrease with an increase in texture gradient, as indicated in Fig. 10a and b, giving rise to similar
variations in terms of the forest dislocation hardening and back stress hardening seen in Fig. 11c and d.

The evolution of SSDdensity andGNDdensity is based on Eqs. (15 and 17), respectively. In both equations,
the densities of these two types of dislocations are dependent on the shear strain or the shear strain rate in a
slip system. The variations in the average shear strain and the average shear strain rate per slip system with
respect to the texture gradient are presented in Fig. 12a and b, respectively. It is seen that the average shear
strain rate decreases with increasing texture gradient, leading to the same trend for the average shear strain.
The reason underlying the above observation can also be attributed to the Schmid effect: In Eq. (7), the plastic
velocity gradient tensor, which is a measure of how fast a grain deforms plastically, is formulated as the sum of
the product of the shear strain rate in each slip system and the Schmid tensor associated with that slip system.
Equation (7) is expressed in a tensorial format, but its scalar expression should also hold true. Therefore in
this work, it is proposed that a similar relationship stands between the total strain rate of a grain and the shear
strain rate of each slip system:

γ̇total �
Nslip∑

α�1

γ̇ αsα (24)

where γ̇total is the total strain rate of a grain under tensile or compressive deformation, and sα is the Schmid
factor associated with slip system α. Since the applied macroscopic tensile strain rate on each sample during
deformation is constant and identical, i.e., 3×10–4 s−1, as stated in Sect. 2.6, it can be postulated that the
average total strain rate per grain in the four samples with different texture gradients should also be similar.
Figure 12c shows the average tensile strain rate per grain as a function of engineering strain for these four
samples. And it is indeed the case that the grain-averaged total strain rates are identical in these four samples,
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Fig. 11 Effects of texture gradient on a lattice friction, b the Hall–Petch effect, c forest dislocation hardening and d back stress
hardening as a function of engineering strain, respectively

the value of which is close to 3×10–4 s−1 in a steady state of plastic flow, as seen in Fig. 12c. It then follows
that since the average Schmid factor increases with increasing texture gradient from TG I to TG IV, yet the
average total strain rate in each sample remains the same, the average shear strain rate in each sample will
decrease with increasing texture gradient based on Eq. (24), which is exactly what is observed in Fig. 12b. As
a result, the average SSD density, GND density and back stress per slip system also decrease with increasing
texture gradient, as shown in Fig. 10a–c, leading to the diminished forest dislocation hardening and back stress
hardening with increasing texture gradient from TG I to TG IV seen in Fig. 11c and d, respectively. In sum,
the Schmid effect is responsible for the variation in forest dislocation hardening and back stress hardening of
GNS nickel with texture gradient as well.

While the effect of texture gradient on SSD density can be explained based on the Schmid effect alone, there
may be another more subtle yet perhaps equally important factor responsible for the effect of texture gradient
on the evolution of GND density and back stress, namely the intergranular misorientation. The statistical
distribution of the intergranular misorientation angles in samples with initial texture gradients TG I, II, III and
IV is shown in Fig. 13a–d, respectively. By comparing the four figures, it is seen that as the texture gradient
increases, the fraction of grains with high misorientation angles, for example those greater than 40°, gradually
decreases,whereas the fractionof grainswith lowmisorientation angles increases.Grainswith low intergranular
misorientation can deform in a more concerted fashion, thereby inducing less deformation incompatibility and
strain discontinuity, giving rise to lower strain gradients and thus, lower GND densities inside the sample.
In contrast, high intergranular misorientation will lead to more pronounced strain heterogeneity and higher
GND densities [67]. Accordingly, as the fraction of grains with high intergranular misorientation decreases
and that with low intergranular misorientation increases with increasing texture gradient, the strain gradient
will diminish in intensity, leading to decreasing GND density and back stress, which are also responsible for
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Fig. 12 a The change in the average shear strain and b the change in the average shear strain rate of the slip systems in gradient
nanostructured nickel samples with Texture Gradient I, II, III and IV. c The average tensile strain rate per grain as a function of
engineering strain in these four samples

the decrease in the average GND density and back stress per slip system with increasing texture gradient seen
in Fig. 10b and c, respectively.

In conclusion, as the increase in texture gradient leads to an increase in the average Schmid factor, the
average SSD density decreases as a result of decreasing shear strain rate due to the Schmid effect, while the
Schmid effect and the decrease in intergranular misorientation both contribute to the declines in the average
GND density and back stress, leading to decreasing forest dislocation hardening and back stress hardening
with increasing texture gradient.

3.4 Effect of grain growth capacity gradient

This section focuses on the effects of grain growth capacity gradient on the deformation mechanisms and
mechanical properties of GNS metals. The grain size gradient and texture gradient associated with Sample I
in Fig. 3a and b, respectively, are adopted in this section, whereas the effects of three grain growth capacity
gradients are systematically investigated, namely GGC I, II and III, as shown in Fig. 14a. GGC II is identical to
the grain growth capacity gradient of Sample I shown in Fig. 3c. For the fine grains smaller than 280 nm which
undergo grain coarsening during tensile deformation, the grain growth capacity gradient increases consistently
from GGC I to III, as shown in Fig. 14a. For the grains larger than 280 nm which undergo refinement, the three
grain growth capacity gradients are set to be identical to that of Sample I in Fig. 3c.

The engineering stress–strain curves of the samples with these three grain growth capacity gradients are
illustrated in Fig. 14b. It is seen that the stress decreases as the grain growth capacity gradient increases from
GGC I to III. Furthermore, the average SSD density, GND density and back stress per slip system with respect
to the grain growth capacity gradient are presented in Fig. 15a–c, respectively. The SSD density and GND
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Fig. 13 Statistical distribution of the intergranular misorientation angles in samples with Texture Gradient a I, b II, c III and d IV,
respectively

density exhibit the opposite behaviors in terms of their variations: the SSD density increases yet the GND
density decreases with increasing grain growth capacity gradient. Because the average back stress per slip
system is linearly dependent on the GND density, as indicated by Eq. (22), it also decreases with an increase
in the grain growth capacity gradient.

The contributions to the overall flow stress by lattice friction, the Hall–Petch effect, forest dislocation
hardening and back stress hardening are shown in Fig. 16a–d, respectively. As the grain growth capacity
gradient increases from GGC I to III, the Hall–Petch effect decreases significantly, especially at higher strain
levels, the forest dislocation hardening remains largely unchanged, and the back stress hardening manifests
moderate decreases. In other words, the decrease in the flow stress of GNS nickel under tension with increasing
grain growth capacity gradient seen in Fig. 14b is mostly caused by decreasing Hall–Petch effect and to a lesser
extent by decreasing back stress hardening.

Similar to the discussion on the variations in the average SSD and GND densities in Sect. 3.2, the opposite
trends of evolution concerning these two types of dislocations also arise from their distinct origins. The

coefficient of the intensified dynamic recovery term, i.e.,
(
dc
d

)2
in Eq. (15), as a function of strain for GGC
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Fig. 14 a Three grain growth capacity gradients used in this study where the coarsening abilities of the nanocrystalline and
ultrafine grains smaller than 280 nm increase from Grain Growth Capacity I to Grain Growth Capacity III at a given grain size.
The refining capacities of the grains larger than 280 nm due to the formation of dislocation substructures are set to be identical in
all gradients. b Engineering stress–strain curves of gradient nanostructured nickel samples with these three different grain growth
capacity gradients under uniaxial tension

Fig. 15 a The average SSD density, b the average GND density and c the average back stress per slip system as a function of
engineering strain in gradient nanostructured nickel samples with Grain Growth Capacity I, II and III, respectively. d Variation
in the coefficient of the intensified dynamic recovery of statistically stored dislocations with the three grain growth capacity
gradients
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Fig. 16 Effects of grain growth capacity gradient on a lattice friction, b the Hall–Petch effect, c forest dislocation hardening and
d back stress hardening as a function of engineering strain, respectively

I to III is illustrated in Fig. 15d. It is seen that this coefficient decreases with increasing strain as a result of
grain growth. With increasing grain growth capacity gradient, the nanocrystalline and ultrafine grains smaller
than 280 nm can grow to larger sizes at a given strain level. Based on Eq. (15), which governs the evolution
of SSD density inside the grains, both dislocation storage embodied by the grain-size-dependent term k3

bd and

intensified dynamic recovery reflected by the term
(
dc
d

)2
ρα
ssd will diminish as a result of larger grain sizes,

giving rise to the opposite effects on the net accumulation rate of SSDs. Nevertheless, due to the extremely fine
grain sizes, the decrease in the intensified dynamic recovery of dislocations far exceeds the decrease in their
storage, leading to a net increase in dislocation athermal storage rate, and thus, a higher SSD density. Hence, the
average SSD density increases with increasing grain growth capacity gradient, as shown in Fig. 15a. In contrast,
as the fine grains grow to larger sizes, the strain gradient intensity will decrease, resulting in consistently lower
average GND density and back stress as the grain growth capacity gradient increases, as shown in Fig. 15b.

In terms of the mechanical properties, since the fine grains can grow to increasingly large sizes as the grain
growth capacity gradient increases, the restriction on themotion of dislocations by grain boundariesmanifested
by the Hall–Petch effect will decrease based on the Hall–Petch relationship, as shown in Fig. 16b. Moreover,
because the average SSD and GND densities demonstrate the opposite trends with respect to the grain growth
capacity gradient, as shown in Fig. 15a and b, respectively, their variations will partially offset each other,
giving rise to only slight changes in the total dislocation density. Hence, the forest dislocation hardening is
largely unaffected by changes in the grain growth capacity gradient, as shown in Fig. 16c. Finally, as the
average back stress per slip system decreases with increasing grain growth capacity gradient, its contribution
to the flow stress exhibits the same trend, as shown in Fig. 16d.



4172 R. Yuan

3.5 Effects of structural gradients on strain localization

Nanocrystalline metals are known for their propensity of non-uniform plastic deformation and strain localiza-
tion due to their limited strain hardening capability, which culminates in the formation of shear bands that lead
to catastrophic shear fracture [81–83]. In contrast, in GNS and laminated metals consisting of both nanocrys-
talline and coarse grains, although strain localization still occurs during deformation and leads to the formation
of shear bands in the nanostructured layer, the formed shear bands are dispersive and stabilized by strain delo-
calization due to the constraining effects of the coarse grained layer, resulting in delayed fracture failure and
enhanced uniform elongation of the nanostructured layer [83–85]. In addition, constitutive modeling of shear
band formation in GNS Cu indicates that the number of shear bands in the nanostructured layer increases with
increasing grain size gradient, decreasing thickness of the grain size gradient region and increasing surface
grain size [86].

Because of the correlation between localized deformation and shear banding, the propensity for strain
localization and shear band formation in GNSmetals can be revealed through an analysis of the localized strain
distribution [87]. The probability density distribution of the granular equivalent plastic strain in GNS nickel
samples at 6% tensile strain with respect to the three different grain size gradients, four texture gradients and
three grain growth capacity gradients studied in the previous sections are presented in Fig. 17a–c, respectively.
The dispersion in the equivalent plastic strain distribution decreases with an increasing grain size gradient or an
increasing texture gradient, as shown in Fig. 17a and b, respectively, indicating that plastic strain distribution
becomes more uniform, strain heterogeneity is reduced, and the tendency for strain localization is decreased.
Furthermore, when it comes to the effects of grain growth capacity gradient, Fig. 17c demonstrates that
increasing the grain growth capacity gradient only leads to slight decreases in the dispersion of the plastic
strain distribution, i.e., strain localization is only slightly reduced by an increase in the grain growth capacity
gradient. To sum up, strain localization in GNS nickel during tensile deformation decreases with increasing
grain size gradient and texture gradient, and it is less sensitive to grain growth capacity gradient. These
conclusions are consistent with the results from a previous modeling study [86].

As shown in Fig. 6c, f and i, the distributions of the average SSD density, the average GND density and the
average back stress per slip system at 6% tensile strain all decrease in dispersion and increase in uniformity
with an increase in the grain size gradient. This indicates that plastic deformation of the coarse grains is more
uniform than that of the fine grains. Therefore, an increase in the grain size gradient of the samples, which
leads to an increase in the volume fraction of the coarse grains and a decrease in that of the fine grains, will lead
to lower strain heterogeneity and localization, as illustrated in Fig. 17a. A decrease in strain localization with
respect to an increasing texture gradient, on the other hand, may be attributed to a decrease in the percentage
of the (111) oriented grains. It has been reported that strain localization is dependent on local grain interaction
[88] and is facilitated by plastically harder neighboring grains [89]. As illustrated in Fig. 9a, an increase in
texture gradient leads to an increase in the percentage of the (200) textured grains relative to that of the (111)
textured grains. The (111) textured grains have lower Schmid factors than those of the (200) textured grains
and are thus plastically harder to deform. Therefore, as the texture gradient increases, the percentage of the
plastically harder (111) textured grains decreases, leading to diminished strain localization in the samples. The
above analysis highlights the significance of structural gradients on the deformability of GNS metals.

As reviewed in Sect. 1, the MCDD method is an atomistically informed multiscale crystal plasticity finite
element method. In comparison with the CPFE model proposed in this work, the MCDD method possesses
several significant advantages: to begin with, it is capable of capturing geometrically compatible dislocation
pattern distribution and evolution in FCC and BCC single crystals, which the CPFE model, due to its higher
length scale based on continuum mechanics, is unable to simulate. Secondly, the MCDD method can model
crystal plasticity without or with minimal empiricism, since it is an atomic-level first principle method that
does not require any physical parameters to be fitted. In addition, the MCDD method is capable of simulating
temperature-dependent dislocation substructures, such as dislocation cross slip in single BCC crystal at low
temperature and dislocation cell structures at high temperature,whereas the proposedCPFEmodel does not take
the effects of temperature on dislocation substructures into consideration. In terms of disadvantages, firstly,
due to its multiscale nature, the MCDD method is more computationally intense and expensive compared
with the CPFE model. Furthermore, despite its greatly expanded time and length scale as well as improved
computational efficiency in comparison with conventional molecular dynamics method, the MCDD method
is limited to studying crystal plasticity at micrometer or submillimeter scale. In contrast, the CPFE model
proposed in this work, which is rooted in continuum mechanics, can capture the mechanical behaviors of
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Fig. 17 Probability density distribution of the equivalent plastic strain of the grains in GNS nickel samples with a Grain Size
Gradient I, II and III; b Texture Gradient I, II, III and IV; and c Grain Growth Capacity Gradient I, II and III, respectively, at 6%
strain during tensile deformation

materials at macroscopic length scale and at quasi-static experimental strain rate, which allows the model
predictions to be compared directly with experimental results under laboratory conditions.

As a final remark, the three prominent features of GNSmetals under investigation in this work, i.e., the grain
size gradient, texture gradient and grain growth capacity gradient, can all be tuned by altering or adjusting the
methods, routes and parameters used in their synthesis and processing. For instance, grain size gradient can be
tuned by adjusting the processing time in surface mechanical attrition treatment [90, 91], as well as the current
density and additive content in electrodeposition [24]. Texture gradient can be tuned by modifying the nominal
rolling strain during cold rolling [33], the processing time in surfacemechanical attrition treatment [34], as well
as the current density, additive content and pulse parameters in electrodeposition [32, 36].Grain growth capacity
gradient can be tuned by adding alloying elements to selected areas of the sample, the pinning effect of which
reduces grain boundarymobility and thus, retards grain growth [92], by altering experimental temperature [32],
and by adjusting annealing parameters [93]. Developing a complete understanding of the structure–property
relationship of GNS metals and alloys is crucial to optimizing the properties and performance of this class of
materials, as well as to designing novel and superior heterostructured materials for engineering applications.
The author hopes that the conclusions made in this work will be helpful to that end.
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4 Conclusion

In this study, a crystal plasticity finite element model is created incorporating the formulations for the evolution
of statistically stored and geometrically necessary dislocations as well as back stress resulting from disloca-
tion pileups to reveal the individual effects of grain size, texture and grain growth capacity gradients on the
deformation mechanisms and mechanical properties of gradient nanostructured metals. It is found that:

• Increasing the grain size gradient, which increases the volume fraction of the coarse grains at the expense
of the fine grains, leads to only limited changes in the average SSD density due to the competition between
simultaneously diminished dislocation storage and dynamic recovery. The average GND density, on the
hand, decreases consistently due to decreasing strain gradient intensity, giving rise to a similar trend in
the variation of the average back stress. As a result, there is a pronounced decrease in the back stress
hardening, in contrast to the moderate changes manifested by the forest dislocation hardening. Together
with a significantly weakened Hall–Petch effect, an increase in the grain size gradient of GNSmetals lowers
the overall strength of the materials.

• Increasing the texture gradient, which increases the average Schmid factor of the sample, leads to consistent
declines in the average SSD density, GND density and back stress. The decrease in the average SSD density
is attributed to decreasing average shear strain rate of the slip systems as a result of the Schmid effect,
whereas the Schmid effect and decreasing intergranular misorientation are both responsible for the decrease
in the average GND density and back stress with increasing texture gradient. Together, the yield and flow
stresses of GNS metals decrease with an increase in texture gradient.

• Increasing the grain growth capacity gradient, which increases the average grain size at a given strain level,
leads to an increase in the average SSD density due to diminished dynamic recovery of dislocations, as
well as decreases in the average GND density and back stress, which arise from a reduced strain gradient
intensity. As a result, the Hall–Petch effect and back stress hardening decrease with increasing grain growth
capacity gradient, whereas the forest dislocation hardening is largely unaffected due to the opposite patterns
of variation in SSD and GND densities, leading to a decrease in the strength of GNS metals.

• Strain localization decreases with increasing grain size gradient and texture gradient, and it is less sensitive
to grain growth capacity gradient.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China under Grant No.
12002269 and by Xi’an University of Science and Technology under Grant No. 2019QDJ009.

Appendix A: Procedure for the numerical implementation of GND density evolution

In Eq. (17), the increase rate of GND density is dependent on the spatial gradient of the strain rate. Therefore,
the first step in the numerical implementation of Eq. (17) is calculating the strain rate gradient, which is
calculated by modifying a numerical procedure developed in [94] and adopted in [95]. To begin with, the
gradient of shear strain rate in slip system in the global Cartesian coordinate system, ∇γ̇ α , is written as:

∇γ̇ α � ∂γ̇ α

∂x
ex +

∂γ̇ α

∂y
ey +

∂γ̇ α

∂z
ez (A1)

where (ex, ey, ez) are unit vectors along the TD, RD and ND, respectively, as shown in Fig. 2.
The value of a field variable at a given point in an element can be calculated by interpolating the values at

the Gaussian integration points using the interpolation functions. Hence, the shear strain rate can be calculated
as:

γ̇ α �
8∑

i�1

Ni γ̇
α
i (A2)

where i is an index referring to one of the eight integration points in a C3D8 finite element, as shown in Fig. 18.
Ni and γ̇ α

i are the interpolation function and shear strain rate in slip system α at the ith integration point,
respectively.
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Fig. 18 Schematic illustration of the finite element C3D8, which contains 8 integration points

It then follows that the strain rate gradient can be calculated by calculating the partial derivative of the
interpolation function with respect to the displacement at each integration point in the element:

∂γ̇ α

∂x �
8∑

i�1

∂Ni
∂x γ̇ α

i

∂γ̇ α

∂y �
8∑

i�1

∂Ni
∂y γ̇ α

i

∂γ̇ α

∂z �
8∑

i�1

∂Ni
∂z γ̇ α

i

(A3)

The partial derivative of the interpolation function with respect to displacement at an integration point,
∂Ni
∂x , ∂Ni

∂y and ∂Ni
∂z , can be calculated using the chain rule:

∂Ni
∂x � ∂Ni

∂g
∂g
∂x + ∂Ni

∂h
∂h
∂x + ∂Ni

∂r
∂r
∂x

∂Ni
∂y � ∂Ni

∂g
∂g
∂y + ∂Ni

∂h
∂h
∂y + ∂Ni

∂r
∂r
∂y

∂Ni
∂z � ∂Ni

∂g
∂g
∂z +

∂Ni
∂h

∂h
∂z +

∂Ni
∂r

∂r
∂z

(A4)

where g, h and r are the counterparts of x, y and z, respectively, in the isoparametric space, i.e., coordinates in
the local coordinate system. Equation (A4) can be further written in a matrix form:

⎡

⎢
⎢⎢
⎢
⎣

∂Ni
∂x

∂Ni
∂y

∂Ni
∂z

⎤

⎥
⎥⎥
⎥
⎦

� J−1

⎡

⎢
⎢⎢
⎢
⎣

∂Ni
∂g

∂Ni
∂h

∂Ni
∂r

⎤

⎥
⎥⎥
⎥
⎦

(A5)

where J is the Jacobian matrix:

J �

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

∂x
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∂y
∂g

∂z
∂g

∂x
∂h

∂y
∂h

∂z
∂h

∂x
∂r

∂y
∂r

∂z
∂r

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

�

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

8∑

i�1

∂Ni (g,h,r)
∂g xi

8∑

i�1

∂Ni (g,h,r)
∂g yi
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i�1

∂Ni (g,h,r)
∂g zi
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i�1

∂Ni (g,h,r)
∂h xi
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i�1
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∂h yi
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i�1
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∂r xi
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i�1

∂Ni (g,h,r)
∂r yi

8∑

i�1

∂Ni (g,h,r)
∂r zi

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(A6)

where xi , yi and zi are the coordinates of the ith integration point in the global coordinate system.
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Equation (A6) indicates that the calculated strain rate gradient is dependent on the displacements of
integration points, and thus, on element size. Therefore, in theory, the size of each element in the finite element
model should be identical to the actual size of the grain it represents. However, due to the large difference
in grain sizes in the GNS nickel, which span three orders of magnitude from 25 to 4 μm, it is infeasible to
model the material using such a modeling scheme, since the numerous fine grains would make the simulation
computationally intractable. Instead, the same element size is used throughout the sample, as shown in Fig. 2,
and the displacement of each integration point in an element is scaled down based on the ratio of the size of
the grain that the element represents to the size of the element. Accordingly, Eq. (A6) is rewritten as:

J � d

l

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

8∑

i�1

∂Ni (g,h,r)
∂g xi

8∑

i�1

∂Ni (g,h,r)
∂g yi

8∑

i�1

∂Ni (g,h,r)
∂g zi
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∂h xi

8∑

i�1
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∂h yi

8∑

i�1
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(A7)

where d and l are the grain size and the size of the finite element, respectively.
Once the gradient of shear strain rate, ∇γ̇ α , is calculated, it is substituted into Eq. (17) to calculated the

rate of GND density evolution, i.e., ρ̇ξ
gnd. Finally, the GND density at the end of the current time step can be

calculated as:

ρ
ξ ,n
gnd � ρ

ξ ,n−1
gnd + ρ̇

ξ
gnd · t (A8)

where ρ
ξ , n
gnd and ρ

ξ , n−1
gnd are the GND densities at the end of the current time step and the previous time step,

respectively. t is the time increment during a time step.

Appendix B: Convergence analysis for the determination of model size and element numbers
along the rolling and transverse directions

A convergence analysis is performed to determine the size of the model and the number of elements along
the RD and TD. The deformations of two finite element models, one with a dimension of 0.05×0.05×

Fig. 19 a Two finite element models consisting of 10×10×100 elements and 15×15×100 elements, respectively, used in the
convergence analysis. b Engineering stress–strain curves of Sample I, II and III, respectively, predicted by these two models
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Fig. 20 a The average SSD density, b the average GND density and c the average back stress per slip system as a function of
engineering strain in gradient nanostructured nickel samples I, II and III, respectively, calculated using the two models with
different dimensions and meshes shown in Fig. 19a

0.5 mm3 consisting of 10×10×100 elements and the other 0.075×0.075×0.5 mm3 consisting of 15×15×
100 elements, are simulated, as shown in Fig. 19a. The engineering stress–strain responses of Sample I, II and
III, respectively, predicted by these two models are shown in Fig. 19b, while the average SSD density, GND
density and back stress per slip system are shown in Fig. 20, respectively. It is seen that the results calculated
with these two models are almost completely identical to each other, indicating that the analysis results have
converged with respect to both models, and that a finite element model with a dimension of 0.05×0.05×
0.5 mm3 consisting of 10×10×100 elements is sufficiently large to provide accurate results for the study, and
there is no need to further increase the size of the model. Therefore, a finite element model with a dimension
of 0.05×0.05×0.5 mm3 consisting of 10×10×100 elements is used throughout this work.

Appendix C: Gradient nanostructured nickel samples under uniaxial compression as further
validation of the model

To further validate the model by demonstrating that it can also be applied to deformation modes other than
uniaxial tension, the uniaxial compression of Sample I, II and III is simulated at a constant strain rate of
3×10–4 s−1. The engineering stress–strain responses of the three samples under uniaxial compression are
illustrated in Fig. 21a, while the average SSD density, the average GND density and the average back stress per
slip system as a function of engineering strain in these three samples are presented in Fig. 21b–d, respectively.
The CPFE model proposed in this work successfully predicted the evolution of deformation mechanisms and
the mechanical behaviors of the samples under uniaxial compression, further substantiating its validity and
applicability. In addition, it is seen that the predicted flow stresses of the samples under compression are
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Fig. 21 a Engineering stress–strain curves of gradient nanostructured nickel Sample I, II and III under uniaxial compression,
respectively, predicted by the model. b The average SSD density, c the average GND density and d the average back stress per
slip system as a function of engineering strain in these three samples under uniaxial compression

higher than those under tension, as shown in Fig. 4, especially near the points of uniform elongation, which is
consistent with previous studies [96–98].
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