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Abstract The analysis of a composite plate by refinedplate theories is presented in this paper. The displacement
fields of monolayer plate are expressed by means of Carrera unified formulation (CUF), and Taylor-like series
expansion is employed along the thickness direction. The governing differential equation of monolayer plate
is derived by Hamilton’s principle, and the related element stiffness matrix, mass matrix, and load vector are
obtained. The element matrix of composite plate is obtained by superimposing single-layer plate elements, and
the global matrix is obtained in the finite element framework. Due to the shear locking phenomenon of thin
plate, the higher-order model is revised by tensor component mixed interpolation (MITC). The accuracy and
reliability of the presentmodel are demonstrated by comparingwith classical platemodel (classical plate theory
and first-order shear deformation theory) and a solid model generated in the commercial software ANSYS.
Meanwhile, the geometric parameter optimization of composite plate is studied based on the constructed
higher-order model by the multi-objective genetic algorithm.

1 Introduction

The plate model is widely used in various fields, and the earliest modeling methods cannot satisfy the require-
ments of accuracy and efficiency, which prompts people to conduct in-depth research on plate model. A system
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of equations is developed for the theory of bending of thin elastic plates which takes into account the trans-
verse shear deformability of the plate by Reissner [1]. The results show that this theory can be applied to
other problems with deviations from the classical plate theory. A two-dimensional theory of flexural motions
of isotropic, elastic plates is deduced from the three-dimensional equations of elasticity by Mindlin [2]. A
general three-dimensional solution for the statics and dynamics of laminated plates of orthotropic materials is
presented by Srinivas and Rao, and the solution is in the series form [3]. Özakça analyzed the plate structure,
studied the characteristics of tetrahedral three-dimensional solid elements of various nodes, and compared and
tested them at the same time [4]. Classical lamination theory and first-order and Reddy’s higher-order shear
deformation theory are considered by Carvelli, and the deformation and plate thickness stress distribution are
compared with equivalent three-dimensional elastic solutions. Sufficiently accurate equilibrium equations of
stress distribution are obtained from CLT, FSDT, and HSDT [5]. However, the classical plate theories have
inherent disadvantages. The transverse shear deformation is ignored in CPT, and a constant shear stress is
assumed in FSDT.

More precise plate models are required to solve the problems of structures with complicated boundary
conditions and geometries. The equivalent single-layer model (ESL) and the layer-wise model (LW) were con-
sidered by Ballhause. A unified formulation for the electro-mechanical analysis of multilayer plates embedding
piezo-layers was proposed [6]. The characteristics of functionally graded material (FGM) plates under lat-
eral mechanical loads were studied by Brischetto, and the unified formulation (UF) and Reissner’s mixed
variational theorem (RMVT) are extended to FGMs [7]. The Kirchhoff and Reissner–Mindlin theories were
improved by Carrera by adding generalized displacement variables to the Taylor-like series expansion of the
thickness plate direction [8]. Carrera and Cinefra adopted the tensor component mixed interpolation technique
to reduce the influence of shear locking on the results [9–11]. Mixed plate elements for accurate evaluation
of transverse mechanical stresses and electrical displacement are developed and compared by Carrera and
Büttner [12]. Meanwhile, classical formulation based on the principle of virtual displacements is implemented
for comparison purposes. Classical (Kirchhoff and Reissner–Mindlin), refined (Reddy and Kant), and other
higher-order displacement fields are implemented up to fourth-order expansion by Carrera and Miglioretti
[13]. A number of classical and refined two-dimensional theories for the analysis of metallic and composite
layered plates are evaluated by Carrera. And thin plate, shear deformation, and higher-order plate theories are
compared [14].

With further study of plates, it is found that Carrera unified formulation is more accurate than traditional
methods in describing the displacement field of plate models. The free vibration of composite plates with
Carrera unified formulation under the finite element framework is analyzed by Pagani, Zappino, Carrera,
and Daraei. The solution under mechanical response is given [15–18]. Carrera and Zappino have compared
the results obtained by using an improved one-dimensional model based on CUF theory with classical finite
element analysis [19]. Piezoelectric laminated plate is studied by Jiang [20] and Rouzegar [21] based on refined
plate theory. Yarasca adopted Carrera unified formulation and proposed an effective objective optimization
method. An improved equivalent single-layer plate theory with multiple displacements and multiple stresses
as output parameters is developed [22, 23]. The free vibration behavior of functionally graded plates with in-
plane material inhomogeneity is studied by Xue [24] by combining isometric analysis and refined plate theory.
Cinefra [25] applied Carrera unified formulation to describe the fluid cavity with a standard pressure-based
finite element formulation of the acoustic field. Meanwhile, the numerical results of the case of the plate back
to a fluid filled cavity are given. Foroutan [26] adopted a total Lagrange approach and established the unified
formulation of the full geometrically nonlinear refined plate theory. Van Do establishes thermal buckling
response based on higher-order shear deformation plate theory and proposes an enhanced mesh-free radial
point interpolation method (RPIM) [27]. According to the Carrera unified formulation (CUF), all equations for
shells of revolution of higher order are presented by Carrera [28]. Meanwhile, Carrera and Zozulya research
a Navier closed-form solution method for elastic shells of revolution developed using the CUF approach
[29]. A layer-wise beam model based on the CUF theory was established by Hui to solve the geometrically
nonlinear problem of sandwich beams [30]. CUF higher-order theory is used by Nagaraj [31] and Ferreira [32]
to analyze the damage of composite plates. Carrera established a higher-order model of orthotropic plates [33,
34]. CUF theory and multi-objective particle swarm optimization algorithm are adopted by Rahmani to study
the multi-objective optimal material distribution of porous functionally graded plates under free vibration [35,
36].

In this paper, the mechanics properties of composite plate are analyzed based on the Carrera unified
formulation. And the results are compared with the commercial finite element method (FEM) code analyses.
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Fig. 1 Composite plate geometric structure and coordinate system

Finally, the geometric parameters of the higher-order model are optimized according to the analysis results,
and some meaningful conclusions are found.

2 Geometric and constitutive relations of composite plates

The geometric structure and coordinate system of the composite plate are shown in Fig. 1. It is made of three
different metal plates, and the thickness is t1, t2, and t3, respectively, in which � represents the cross section
of the composite plate and a andb represent the length and width of the composite plate, respectively. For the
convenience of research, the upper surface is the xoy plane of coordinates and the thickness direction is the
z-axis. The Cartesian coordinate system is established.

The stress vector σ and strain vector ε are divided into six components, expressed as follows:

σ � [
σxx σyy σxy σxy σxz σzz

]T

ε � [
εxx εyy εxy εxy εxz εzz

]T (1)

where the same subscripts stand for the normal stress (strain) and the different subscripts stand for the shear
stress (strain).

Based on the hypothesis of small deformation, the relationship between strain and displacement can be
expressed as:

ε � Bu (2)

where linear differential operator matrix B can be expressed as:

B �
⎡

⎣
∂
/
∂x 0 ∂

/
∂y ∂

/
∂z 0 0

0 ∂
/
∂y ∂

/
∂x 0 ∂z

/
∂x 0

0 0 0 ∂
/
∂x ∂

/
∂y ∂

/
∂z

⎤

⎦ (3)

According to Hooke’s law, the stress–strain relationship can be expressed as:

σ � Cε (4)

where C is the material coefficient matrix. It can be expressed by elastic modulus E and Poisson’s ratio v,
given as follows:

C �

⎡

⎢⎢⎢
⎢⎢
⎣

2μ + λ λ λ
λ 2μ + λ λ
λ λ 2μ + λ

μ
μ

μ

⎤

⎥⎥⎥
⎥⎥
⎦

(5)

where μ and λ are, respectively:

μ � E

2(1 + v)
, λ� vE

(1 + v)(1 − 2v)
(6)
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In order to obtain the following fundamental nuclei, material coefficient matrix C is divided into Cpp, Cnn,
Cpn, and Cnp, expressed as:

C pp �
⎡

⎣
C11 C12 0
C12 C22 0
0 0 C66

⎤

⎦,Cnn �
⎡

⎣
C55 0 0
0 C44 0
0 0 C33

⎤

⎦,C pn � CT
np �

⎡

⎣
0 0 C13
0 0 C23
0 0 0

⎤

⎦ (7)

For isotropic materials, each element can be expressed as:

C11 � C22 � C33 � 2μ + λ

C12 � C13 � C23 � λ

C44 � C55 � C66 � μ

(8)

3 Refined plate model based on CUF theory

According toCarrera unified formulation, the extended functionFτ is introduced to describe the cross-sectional
displacement field of composite plate:

u(x , y, z) � Fτ (z)uτ (x , y), τ � 0, 1, · · · N (9)

where u(x,y,z) represents the displacement field in three directions of the composite plate model in Cartesian
coordinate system, Fτ is a function of thickness coordinate z, uτ is a generalized displacement vector about
cross-sectional coordinates x and y, N represents the expansion order of the model, repeated subscript τ
represents the dummy index, and the paired subscript τ represents summation according to Einstein summation
convention.

The higher-order model of composite plate is established based on CUF frame and the thickness direction
of the plate adopts Taylor-like series expansion:

Fτ � zτ (τ � 0, 1, · · · N ) (10)

The displacement field of composite plate cross section can be expressed as:

u � u0 + zu1 + z2u2 + z3u3 + · · · + zNuN

v � v0 + zv1 + z2v2 + z3v3 + · · · + zNvN

w � w0 + zw1 + z2w2 + z3w3 + · · · + zNwN

(11)

where CPT and FSDT are special cases of expansion order N � 1. The displacement field is expressed in the
following form:

u � u0 + zu1, v � v0 + zv1,w � w0 + zw1 (12)

4 Finite element formulation

The cross section was divided by four-node plate element, and the displacement vector was obtained by
Lagrange function Ni(x,y) interpolation:

u(x , y, z) � Fτ N i (x , y)uτ i , i � 1, 2, 3, 4 (13)

where uτ i is the generalized displacement vector of the node. The expression form of Ni(x,y) is as follows:

N1 � 0.25(1 − ξ)(1 − η), N2 � 0.25(1 + ξ)(1 − η)

N3 � 0.25(1 + ξ)(1 + η), N4 � 0.25(1 − ξ)(1 + η)
(14)

where the value interval of non-dimensional natural coordinate ξ and η is [−1,1]. The four-node plate element
and natural coordinate system are shown in Fig. 2. The expression of natural coordinate is as follows:

ξ � 2x

aa
− 1, η � 2y

bb
− 1 (15)

where aa and bb stand for the length and width of the four-node plate element.
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Fig. 2 Four-node plate element and natural coordinate system: a actual element; b basic element

5 Differential equation of motion

The governing differential equation of plate element is derived by Hamilton principle, and the formulation is
as follows:

δH � δ

t2∫

t1

Ldt � 0

L � T −U −Up

δu
∣∣t�t1 � δu

∣∣t�t2 � 0

(16)

where δ is the imaginary strain, U is the strain energy, Up is the potential energy, and T is the kinetic energy.
Their expressions are written as follows:

U � 1

2

∫

V

εT σdV

Up � −
∫

A

uT pd A −
∫

l

uT qdy − uT r

T � 1

2

∫

V

ρ
∂uT

∂t

∂u
∂t

dV

(17)

where ρ represents the density, V represents the volume of the composite plate, A represents the area of surface
force p, l represents the length of line load q, and r represents the concentrated load. Substituting Eq. 17 into
Eq. 16 gives the unified formulation:

∫

V

NT FT
τ ρFτ N

∂2uτ

∂t2
dV +

∫

V

NT FT
τ BTCBFτ NuτdV �

∫

A

NT FT
τ pd A +

∫

l

NT FT
τ qdy + NT FT

τ r

(18)

The following formulation can be obtained by changing the form:

m
∂2uτ

∂t2
+ kuτ � f (19)
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where m stands for the element mass matrix, k stands for the element stiffness matrix, and f stands for the
boundary conditions. Their expressions are as follows:

m �
∫

V

NT FT
τ ρFτ NdV

k �
∫

V

NT FT
τ BTCBFτ NdV

f �
∫

A

NT FT
τ pd A +

∫

l

NT FT
τ qdy + NT FT

τ r

(20)

kτ sij is described in the form of the fundamental nuclei and does not depend on the expansion order. Its
expression is written as follows:

kτ si j �

⎡

⎢
⎢⎢
⎣

kτ si j
xx kτ si j

xy kτ si j
xz

kτ si j
yx kτ si j

yy kτ si j
yz

kτ si j
zx kτ si j

zy kτ si j
zz

⎤

⎥
⎥⎥
⎦

(21)

The nine components are listed as follows:

kτ si j
xx � Z τ s

pp11

∫

�

Ni ,x N j ,xd� + Z τ s
pp66

∫

�

Ni ,y N j ,yd� + Z
τ,zs,z
nn55

∫

�

Ni N jd�

kτ si j
xy � Z τ s

pp12

∫

�

Ni ,y N j ,xd� + Z τ s
pp66

∫

�

Ni ,x N j ,yd�

kτ si j
xz � Z

τ,zs
pp13

∫

�

Ni N j ,xd� + Z
τ s,z
nn55

∫

�

Ni ,x N jd�

kτ si j
yx � Z τ s

pp12

∫

�

Ni ,x N j ,yd� + Z τ s
pp66

∫

�

Ni ,y N j ,xd�

kτ si j
yy � Z τ s

pp22

∫

�

Ni ,y N j ,yd� + Z τ s
pp66

∫

�

Ni ,x N j ,xd� + Z
τ,zs,z
nn44

∫

�

Ni N jd�

kτ si j
yz � Z

τ,zs
pn23

∫

�

Ni N j ,yd� + Z
τ s,z
nn44

∫

�

Ni ,y N jd�

kτ si j
zx � Z

τ,zs
nn55

∫

�

Ni N j ,xd� + Z
τ s,z
np13

∫

�

Ni ,x N jd�

kτ si j
zy � Z

τ,zs
nn44

∫

�

Ni N j ,yd� + Z
τ s,z
np23

∫

�

Ni ,y N jd�

kτ si j
zz � Z τ s

nn55

∫

�

Ni ,x N j ,xd� + Z τ s
nn44

∫

�

Ni ,y N j ,yd� + Z
τ,zs,z
nn33

∫

�

Ni N jd�

(22)

where the following notation is introduced to indicate the line integrals along the thickness direction:
(
Z τ s
pp, Z

τ s
pn , Z

τ s
np, Z

τ s
nn

)
� (

C pp,C pp,C pp,C pp
)
Eτ s

(
Z

τ s,z
pn , Z

τ s,z
nn , Z

τ,zs
np , Z

τ,zs
nn , Z

τ,zs,z
nn

) � (
C pn Eτ s,z ,Cnn Eτ s,z ,CnpEτ,zs ,Cnn Eτ,zs ,Cnn Eτ,zs,z

)

(
Eτ s , Eτ s,z , Eτ,zs , Eτ,zs,z

) �
∫

A

(
Fτ Fs , Fτ Fs,z , Fτ ,z Fs , Fτ ,z Fs,z

)
dz

(23)

where mτ sij is the mass matrix in the form of the finite element. Its components are

mτ si j
xx � mτ si j

yy � mτ si j
zz � ρ

∫

A
Fτ Fsdz

∫

�

Ni N jd�

mτ si j
xy � mτ si j

xz � mτ si j
yx � mτ si j

yz � mτ si j
zx � mτ si j

zy � 0

(24)
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Fig. 3 Shear strain interpolations and sample points (M, N, P, Q) of the MITC4 plate element

Global integration of the stiffness matrices of the composite plate model is based on the four indices i, j,
τ , and s which are associated with the expansion functions and the shape functions.

The contact surfaces of different materials are equivalent to two different four-node plate elements super-
imposed on each other in the thickness direction, and each element node corresponds to each other. Therefore,
the formulation of the element mass matrix mc and element stiffness matrix kc of the composite plate is as
follows:

mc �
n∑

j�1

m j �
n∑

j�1

∫

V

NT FT
τ ρ j Fτ NdV , j � 1, 2, · · · , n

kc �
n∑

j�1

k j �
n∑

j�1

∫

V

NT FT
τ BTC i BFτ NdV , j � 1, 2, · · · , n

(25)

wheremj and kj represent the element mass matrix and stiffness matrix of single-layer plate, respectively, and
n represents the number of layers of composite plate.

For the composite plate structure, the global stiffness matrix, mass matrix, and load vector can be obtained
in the finite element frame through the assembly program.

6 Shear locking phenomenon and MITC4 element

Shear locking is a numerical problem in finite element analysis. In the analysis of thin plate, when the plate
thickness becomes very small, the shear strain energy becomes very larger. This results in shear locking
phenomenon. Therefore, the tensor component mixed interpolation (MITC) method is adopted to revise the
four-node plate element characteristic matrix.

The shear strains γ xz and γ yz were interpolated into the sample points (M, N, P, Q) as shown in Fig. 3.
The revised transverse strain vector εm is written as follows:

εm �

⎡

⎢⎢
⎢
⎣

NT
a

NT
b

1

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

γxz

γxz

εzz

⎤

⎥⎥
⎥
⎦

(26)

where interpolation vector and strain vector are written as follows:

Na � [
Na1 Na2

]T , Nb � [
Nb1 Nb2

]T

γ xz �
[
γ P
xz γ

Q
xz

]T
, γ yz � [

γ N
yz γ M

yz

]T (27)
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where the component of the strain vector is the value of the corresponding strain at the sample point. The
interpolation function of the sample point is constructed by using the method of element interpolation function.
The expression is as follows:

Na1 � 1

2
(1 + ξ), Na2 � 1

2
(1 − ξ), Nb1 � 1

2
(1 + η), Nb1 � 1

2
(1 − η) (28)

For the convenience of mathematical formulation derivation, stress vector and strain vector are divided
into two groups according to their physical meanings:

σ p � [
σxx σyy σxy

]T , σ n � [
τxz τyz τzz

]T

ε p � [
εxx εyy εxy

]T , εn � [
γxz γyz γzz

]T (29)

where subscript p stands for the stress–strain term of the vertical cross section and subscript n stands for the
stress–strain term within the cross section.

The linear differential operator matrix is divided into two groups:

B p �
⎡

⎣
∂
/

∂x 0 0
0 ∂

/
∂y 0

∂
/

∂y ∂
/

∂x 0

⎤

⎦, Bn �
⎡

⎣
∂
/

∂z 0 ∂
/

∂x
0 ∂

/
∂z 0

0 0 ∂
/

∂z

⎤

⎦ (30)

According to the formulation of the stiffness matrix, the revised matrix BFτN:

An �
[
(BnFτ N)x�P

i�1 (BnFτ N)
x�Q
i�1 (BnFτ N)

y�N
i�2 (BnFτ N)

y�M
i�2 (BnFτ N)i�3

]T

Ap � B pFτ N
(31)

where the subscript i represents the number of rows in the matrix. The superscript x � P represents the value
of point P on the x-axis. The following similar superscripts will not be explained repeatedly.

Am � Nm An (32)

where Nm is expressed as follows:

Nm �
⎡

⎣
1
2 (1 + ξ) 1

2 (1 − ξ)
1
2 (1 + η) 1

2 (1 − η)

1

⎤

⎦ (33)

The revised matrix is as follows:

A � [
Ap Am

]T (34)

The stiffness matrix of MITC4 element is written in the following form:

km �
∫

V

ATCAdV (35)

The revised element stiffness matrix of composite plate can be expressed as:

kcm �
n∑

j�1

k jm �
n∑

j�1

ATC i AdV , j � 1, 2, · · · , n (36)

Because the stress–strain does not participate in the derivation of the element mass matrix and load vector,
the expressions of the element mass matrix and load vector do not change.
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Table 1 Material and geometric parameters

parameters Modulus of elasticity Poisson’s ratio Density Length Width Thickness
E (Pa) u ρ (kg/m3) a (m) b (m) t (m)

First layer 2.1e11 0.3 7850 1 1 3t/10
Second layer 1.7e11 0.28 3850 1 1 4t/10
Third layer 2.1e11 0.3 7850 1 1 3t/10

Table 2 The first ten natural frequencies of the TEN model

Model Modal (Hz)

1 2 3 4 5 6 7 8 9 10

TE1 117.8 240.5 592.0 685.8 852.4 896.6 1412 1488 1591 1906
TE2 111.4 237.0 591.8 664.6 802.3 873.8 1412 1443 1591 1823
TE3 111.3 235.5 591.8 660.8 798.3 865.7 1412 1426 1591 1803
TE4 111.3 235.5 591.8 660.8 798.2 865.6 1412 1426 1591 1803

7 Numerical results

Firstly, the convergence of the higher-order model is verified by mechanical analysis of the composite plate.
Secondly, the accuracy of the model in this paper is determined by comparing the displacement of the higher-
order model and ANSYS model at the verification points (the midpoint of the cross section). Considering
the shear locking phenomenon of thin plate, the higher-order model is revised by tensor component mixed
interpolation (MITC). Finally, in order to reduce the material loss, the geometric parameters of the composite
plate were optimized based on the established higher-order model.

A square plate structure is used for numerical results in this section. The material and geometric parameters
of composite plates are given in Table 1. The length and width are fixed, and the ratio of the thickness of each
layer to the total thickness is 3:4:3, respectively.

7.1 Convergence study

The convergence of the present higher-order theory is demonstrated by implementing the dynamics analysis
of the composite plate model. A 10×10 mesh was used to divide the cross section, the thickness t � 0.1 m,
and one side was completely fixed. The first ten natural frequencies of the TEN (N-order Taylor-like series
expansion) model were obtained, and the results are given in Table 2.

According to the data of the first ten modes in the table, when the expansion order N � 2, the modes of
the higher-order model tend to be stable.

To obtain the convergence of mesh of the higher-order model, the static analysis of the TE2 model is
carried out, and different meshes are used to divide the cross section. The midpoint of cross section is set as
the verification point. Meanwhile, the y-displacement (uy) and the z-strain (εz) at the verification points of
the composite plate cross section were obtained, and the displacement-mesh and strain-mesh variation curves
were drawn, as shown in Fig. 5. The mechanical model is shown in Fig. 4. It should be noted that S stands for
the fixed constraint.

As can be illustrated from the curve in Fig. 5, with the increase in the number of meshes, the z-displacement
at the verification points of composite plate cross section presents an upward trend and the z-strain presents a
downward trend. When the mesh reaches 20×20, both curves tend to be stable. Therefore, it can be concluded
that stable displacement and strain of the higher-order model can be obtained by employing 20×20 finite
elements and the expansion order N � 2.

7.2 Accuracy study

The accuracy of the higher-order model is verified by carrying out the statics study of the composite plate
model. The expansion order N � 2, the mesh was 20×20, and the thickness of the composite plate was a
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Fig. 4 Mechanical model

Fig. 5 Research on mesh convergence

Table 3 Y -displacement at the verification points under different thicknesses

Model DOF −uy(×10−6 m)

t � 1 m t � 0.8 m t � 0.6 m t � 0.4 m t � 0.2 m t �
0.08 m

t �
0.06 m

t �
0.04 m

t �
0.02 m

CPT 2205 0.422 0.527 0.702 1.05 2.08 4.85 6.12 8.02 10.9
FSDT 2205 0.416 0.517 0.684 1.01 1.98 4.60 5.80 7.66 10.6
TE2 3969 0.565 0.675 0.862 1.24 2.36 5.33 6.66 8.64 11.7
ANSYS 14,553 0.792 0.895 1.07 1.43 2.48 5.35 6.65 8.57 11.5

variable. The y-displacement of CPT, FSDT, TE2, and ANSYS models at the verification points is given in
Table 3, where eight-node solid element (solid185) is selected for ANSYS model, and 20×20 mesh is used
to divide the cross section. The mechanical model is shown in Fig. 4.

According to the data in the table, as the composite plate thickness decreases, the y-displacement at the
verification points of cross section increases, and the error with the ANSYS solid model decreases. When the
plate thickness decreases to 0.2 m, the error of displacement reaches an acceptable range. The y-displacement
of the TE2model is closer to ANSYSmodel than CPT and FSDTmodels under different thicknesses. That is to
say, the CPT and FSDT models cannot achieve reasonable results compared to the ANSYS solid model. It can
be concluded that the higher-order model has accuracy and is suitable for thin plate analysis. Meanwhile, the
degree of freedom (DOF) of the TE2 model is much smaller than that of the ANSYS model, which indicates
that the model in this paper has a high computational efficiency.
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Fig. 6 Mechanical model of composite plate

Fig. 7 Displacement of nodes on the middle line

In order to verify the accuracy of other nodes of higher-order model, a force of 50,000N is applied to the
middle area of the cross section, and the upper and lower sides are completely fixed. The mechanical model
is shown in Fig. 6, where S stands for the fixed constraint and aa stands for the length of the four-node plate
element. The displacements of nodes on the middle line of the cross section are shown in Fig. 7. Meanwhile,
the geometric parameter width-to-thickness ratio St � a/t is introduced. It should be noted that a stands for
the width of the composite plate and t stands for the thickness of the composite plate.
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Fig. 8 Mechanical model

Table 4 The meaning of the letters in Fig. 9

Letter a b c d e f

Model TE2 higher-order model ANSYS solid model
St � a/t 1/1 1/0.5 1/0.08 1/1 1/0.5 1/0.08

Table 5 The meaning of the letters in Fig. 10

Letter a b c d e f

Model TE2 higher-order model ANSYS solid model
St � a/t 1/0.08

Figure 7a represents the y-displacement of TEN higher-order model, and Fig. 7b represents the y-
displacement of ANSYS solid model. The mesh of the two figures is 20×20 and the width-to-thickness
ratio St � 1/0.08. Figure 7c represents the z-displacement of the TE2 higher-order model under different
thicknesses, and Fig. 7d represents the z-displacement of ANSYS solid model. The two figures both adopt
20×20 mesh dividing cross section.

As can be seen from Fig. 7a and c, when the expansion order N � 2, the higher-order model converges.
The variation trend of higher order is consistent with the ANSYS model, and the y-displacement is also very
close to the ANSYSmodel. Meanwhile, it can be shown from Fig. 7b and d that the curve variation trend under
different width-to-thickness ratios is the same as the ANSYS model, and the z-displacement is also consistent
with the ANSYS model, which proves the accuracy of the higher-order model.

To master the accuracy of the higher-order model under different width-to-thickness ratios and constraints,
the y-displacement nephogram of cross section with width-to-thickness ratios St � 1/1, 1/0.5, and 1/0.08
was drawn, respectively, as shown in Fig. 9 (mechanical model: Fig. 8b). Meanwhile, the z-displacement
nephogram of cross section under different constraints and loads conditions was drawn, as shown in Fig. 10
(mechanical model: Fig. 8a–c), where the width-to-thickness ratio St � 1/0.08. The mechanical model of the
two figures is shown in Fig. 8. It should be noted that S stands for the fixed constraints and aa and bb stand
for the length and width of the four-node plate element, respectively. The higher-order model of Figs. 9 and
10 adopts a 20×20 mesh dividing cross section, and the expansion order N � 2 (Tables 4 and 5).

As shown in Fig. 9, with the decrease in the composite plate width-to-thickness ratio, the y-displacement
nephogram of the higher-order model approaches the ANSYS model gradually. When the width-to-thickness
ratio St � 1/0.08, the displacement nephogram and chromatogram of the two models are consistent, indicating
that the model has accuracy for the analysis of thin plates. As can be seen from Fig. 10, with the change in
constraints and loads, the z-displacement nephogram and chromatogram of the higher-order model are always
consistent with the ANSYS model, which proves that the model has accuracy for different constraints and
loads. That is to say, the modeling method presented in this paper can be used for the analysis of composite
plates under complex working conditions.

For mastering the deformation of the three-dimensional model, a deformation figure of the higher-order
model with a width-to-thickness ratio St � 1/0.08 was drawn. In order to improve the accuracy, draw a more
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Fig. 9 Y-displacement nephogram of cross section under different width-to-thickness ratios

accurate deformation figure. Therefore, a mesh of 41×41 was adopted to divide the cross section, and the
expansion order N � 3, as shown in Fig. 11.

As can be shown from Fig. 11, the three-dimensional deformation figure of composite plates conforms to
the correspondingmechanical model under different constraints and loads. That is to say, the three-dimensional
modeling of the higher-order model has accuracy.
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Fig. 10 Z-displacement nephogram of cross section under different constraints and loads

7.3 Shear locking

Considering the shear locking phenomenon in the thin plate model, MITC4 element is used to revise the
higher-order model and verify the availability of the constructed model in this paper. A 20×20 mesh is used
to divide the cross section, and the expansion order N � 2. The z-displacement uz at the verification points
of the cross section under different width-to-thickness ratios is obtained, as shown in Table 6. The width of
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Fig. 11 Three-dimensional deformation figure of composite plate
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Table 6 Z-displacement at the verification points of cross section

St TE2 higher-order model ANSYS solid model

a/t Q4 (uz/m) MITC4 (uz/m) Solid185 (uz/m)

2 7.301×10–7 7.291×10–7 7.684×10–7

4 2.761×10–6 2.757×10–6 2.816×10–6

6 6.029×10–6 6.023×10–6 6.112×10–6

8 1.041×10–5 1.040×10–5 1.053×10–5

10 1.575×10–5 1.574×10–5 1.590×10–5

12 2.187×10–5 2.187×10–5 2.206×10–5

14 2.858×10–5 2.860×10–5 2.882×10–5

16 3.572×10–5 3.576×10–5 3.599×10–5

18 4.312×10–5 4.319×10–5 4.343×10–5

20 5.063×10–5 5.074×10–5 5.097×10–5

22 5.814×10–5 5.828×10–5 5.849×10–5

24 6.553×10–5 6.571×10–5 6.590×10–5

26 7.273×10–5 7.296×10–5 7.312×10–5

28 7.969×10–5 7.997×10–5 8.008×10–5

30 8.636×10–5 8.669×10–5 8.675×10–5

Fig. 12 Error curve figure

the width-to-thickness ratio remains unchanged and the thickness changes. The mechanical model is shown
in Fig. 4.

According to the z-displacement data in the table, with the increase in the width-to-thickness ratio St , the
z-displacement at the verification points of the cross section also increases. When St <12, the displacement
of MITC4 revised model is less than that of Q4 model, and the displacement of Q4 model is closer to that of
ANSYS model. When St >12, the opposite conclusion was obtained, which proved that MITC4 model played
a role in revising the thin plate.

In order to directly represent the critical value of MITC4 model correction effect, Q4-ANSYS error curve
and MITC4-ANSYS error curve were drawn, as shown in Fig. 12.

It can be seen from Fig. 12 that St � 12 is the critical value of MITC4 revised model. Because composite
plate causes the shear locking phenomenon, the error reduction margin of Q4 model and ANSYS model keeps
decreasing with the increase in the width-to-thickness ratio. However, the correction effect of MITC4 model
is enhanced gradually, which proves that the MITC4 model has a certain correction effect on thin plate.
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Fig. 13 Mechanical model

7.4 Optimization of composite plate geometric parameters

To allocate material of plate reasonably and reduce material loss, the geometric parameters of the composite
plate are optimized based on the constructed higher-order model. The length (a) and thickness (t) of the plate
are set as symbolic variables. The z-displacement and z-strain at the verification points of the cross section are
solved by MATLAB software. In order to express the change relation of the objective function, the function
expression was used to draw the z-displacement nephogram and z-strain nephogram, as shown in Fig. 14A
and B. The horizontal coordinate represents the length of the plate, and the vertical coordinate represents the
thickness of the plate. Meanwhile, to make the nephogram clearer, the result of 14-A is represented by log10u,
and the result of 14-B is represented by 1/u.

According to the change relation of the objective function, the multi-objective genetic algorithm is used
to optimize the objective function. The genetic algorithm is chosen in the MATLAB software optimization
tool. The mechanical model is shown in Fig. 13, where S stands for the fixed constraint. Meanwhile, the
cross-sectional mesh is 20×20, and the expansion order N � 2. The mathematical model of optimization is
shown in formulations 37, 38, and 39.

Function : Min �
{
uz(a, t) � (Fτ Nuτ0)(x ,y,z)�(0,0,0)

εz(a, t) � (BFτ Nuτ0)(x ,y,z)�(0,0,0)
(37)

Constrains : S � a/ t ≥ 12 (38)

Search domain :

{
0 ≤ a ≤ 2

0 ≤ t ≤ 0.3
(39)

It should be noted that uτ0 represents the generalized node displacement vector containing the verification
points of cross section, and it is obtained by extracting a global generalized displacement vector uτ corre-
sponding node, where uτ � k\f , k represents the global stiffness matrix, f represents global load vector, and
(x,y,z) � (0,0,0) represents the coordinate value at the verification points of the cross section in the rectangular
coordinate system. The results optimized by MATLAB software are shown in Fig. 14C and D, where the
objective function 1 of 14-C stands for the z-displacement and the objective function 2 stands for the z-strain.

As can be seen from Fig. 14A and B, with the increase in the length and thickness of the higher-order
model, the z-displacement at the verification points of the cross section decreases and the strain increases.
Therefore, it is more appropriate for the model in this paper to adopt the multi-objective genetic algorithm.

It can be shown from Fig. 14D that the distribution of individuals decreases gradually. The distribution is
the most in region 1 and the least in region 9, and the middle is relatively uniform. That is to say, Fig. 14C
contains most of the optimal cases and has strong applicability. As can be seen from Fig. 14C, multi-objective
optimization function forms a plane curve. Under the condition of Pareto optimality, it is impossible to make
the other party’s objective better without damaging an optimization objective. According to the actual working
conditions, the z-displacement should be as small as possible. Therefore, it can be seen from the iterative table
that when a � 1.3352, t � 0.0919, the objective function reaches the optimal value, where uz � 2.542×10−7

m and εz � -3.986×10–6.
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Fig. 14 Function variation nephogram and optimization results figure

8 Conclusion

(1) The higher-order model in this paper is based on the Carrera unified formulation and adopts the Taylor-
like series expansion along the plate thickness direction. This modeling method can select the appropriate
expansion series according to the actual model so that the model will be more accurate and the application
occasions will be more abundant.

(2) The higher-order model established is suitable for thin plate analysis. Compared with the ANSYS solid
model, the composite plate model has higher computational efficiency while ensuring accuracy, which
means that the constructed model is more suitable for engineering application under complex working
conditions.

(3) For the shear locking phenomenon that occurs in thin plate models, MITC4 element is used to revise the
higher-order model. When the width-to-thickness ratio St <12, higher-order models are more accurate.
When St >12, MITC4 model is more accurate. Therefore, St � 12 can be considered as the critical value
of the revised model, as well as the critical value of thick plate and thin plate.

(4) According to the actual working conditions, the multi-objective genetic algorithm is used to optimize the
geometric parameters of the higher-order model. When a � 1.3352, t � 0.0919, the z-displacement and
z-strain at the verification points of cross section reach optimal.
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