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Abstract A three-dimensional dynamic model of a transversally isotropic thermoelastic medium satisfying
the Gassman conditions is used to study the problem of the formation of horizontal cracks in a printed array
arising during 3Dprinting during its cooling andmaturation. For a systemof second-order differential equations
defining this model, a group foliation is performed with respect to the pseudogroup admitted by this system.
As a result, a system of first-order differential equations equivalent to the equations of the original model is
obtained. This system consists of an automorphic system and a resolving system. With a help of a resolving
system, a system (R) of first order equations for the components of the displacement vector and temperature is
obtained. The system (R) contains fewer additional functions than the union of the automorphic and resolving
systems of the performed group stratification. Two submodels are found, which are determined by exact
invariant solutions of the system (R). The first submodel describes a wave traveling inside of the layer along
one of the coordinate axes. The second submodel describes a plane wave traveling inside of the layer. For these
submodels, heating modes are indicated that do not lead to the formation of horizontal cracks in the product,
and modes in which horizontal cracks will necessarily appear.

1 Introduction

The most acute problem in 3D printing of enclosing structures of buildings and structures is the formation
of a large number of horizontal cracks in the printed array during its cooling and maturation [1–8]. The
study of the physical processes of thermoelastic deformation of the material occurring in this case becomes a
central issue in the development of 3D printing technology. In this paper, to study this problem, we took a three-
dimensional dynamicmodel of a transversely isotropic thermoelastic medium [9–11], which is used to describe
the thermoelastic deformation of materials with anisotropy of elastic properties with the predominant direction
of anisotropy. These materials include layered and composite materials used in construction, engineering,
aircraft and shipbuilding, and also mountain ranges and glaciers.

For this model, the components of the strain tensor are determined by the relations

ε11 � ∂u1

∂x ′ , ε22 � ∂u2

∂y′ , ε33 � ∂u3

∂z′
, 2ε12 � ∂u1

∂y′ +
∂u2

∂x ′ , 2ε13 � ∂u1

∂z′
+

∂u3

∂x ′ ,
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2ε23 � ∂u2

∂z′
+

∂u3

∂y′ , (1)

where u1 � u1
(
x ′, y′, z′, t ′

)
, u2 � u2

(
x ′, y′, z′, t ′

)
, u3 � u3

(
x ′, y′, z′, t ′

)
are the displacement vector com-

ponents. Here x′ � (
x ′, y′, z′

)
are the coordinates of a point in space, t ′ is a time.

Hooke’s law for a transversely isotropic thermoelastic medium has the form

σ11 � (λ + 2μ)ε11 + λε22 + λ′ε33 − βθ ′, σ22 � λε11 + (λ + 2μ)ε22 + λ′ε33 − βθ ′,
σ33 � λ′(ε11 + ε22) +

(
λ′ + 2μ′)ε33 − β ′θ ′, σ12 � 2με12, σ13 � 2G ′ε13, σ23 � 2G ′ε23, (2)

where σi j are the stress tensor components, λ,μ, λ′, μ′,G ′ are the coefficients of a transversely isotropic
medium, β, β ′ are the thermal expansion coefficients, and θ ′ � θ ′(x ′, y′, z′, t ′

)
is the temperature.

The system of the equations for dynamic deformation of a transversally isotropic thermoelastic medium,
due to (1), (2), is written in the form [9–11]

ρu1t ′t ′ � (λ + 2μ)u1x ′x ′ + μu1y′y′ + G ′u1z′z′ + (λ + μ)u2x ′y′ +
(
λ′ + G ′)u3x ′z′ − βθ ′

x ′,

ρu2t ′t ′ � (λ + μ)u1x ′y′ + μu2x ′x ′ + (λ + 2μ)u2y′y′ + G ′u2z′z′ +
(
λ′ + G ′)u3y′z′ − βθ ′

y′,

ρu3t ′t ′ � (
λ′ + G ′)u1x ′z′ +

(
λ′ + G ′)u2y′z′ + G ′u3x ′x ′ + G ′u3y′y′ +

(
λ′ + 2μ′)u3z′z′ − β ′θ ′

z′ . (3)

This system is closed by the heat equation

c0θ
′
t ′ + θ ′

0

(
βu1t ′x ′ + βu2t ′y′ + β ′u3t ′z′

)
� kθ ′

x ′x ′ + kθ ′
y′y′ + k′θ ′

z′z′, (4)

where k, k′ are the thermal conductivity coefficients, c0 is the heat capacity coefficient and ρ is density, θ0 is
a temperature of a state in which deformations and stresses are absent.

We will consider a thermodynamic process for which β � β ′ � 1, k � k′, θ0 � c0. In this case, with a
help of the variables

t � c0
kρ

t ′, x � c0
k
√

ρ
x′, x � (x, y, z), θ � k

√
ρ

c0
θ ′

Equations (3), (4) take the form

u1t t � (λ + 2μ)u1xx + μu1yy + G ′u1zz + (λ + μ)u2xy +
(
λ′ + G ′)u3xz − θx ,

u2t t � (λ + μ)u1xy + μu2xx + (λ + 2μ)u2yy + G ′u2xy +
(
λ′ + G ′)u3yz − θy,

u3t t � (
λ′ + G ′)u1xz +

(
λ′ + G ′)u2yz + G ′u3xx + G ′u3yy +

(
λ′ + 2μ′)u3zz − θz,

θt + u1t x + u2t y + u3t z � θxx + θyy + θzz . (5)

Let h � h(x) is any harmonic function. The functions θ � const, u � ∇ h(x, y, z) are a solution of
system (5) only in the following four cases: (1) λ′ � λ+2μ− 2G ′, μ′ � G ′; (2) hzzz � 0, λ′ � λ+2μ− 2G ′,
(3) hzz � const ; (4) hzz � f (z), μ′ � G ′.

Only in the first case there are no restrictions on the harmonic function. Restrictions are imposed only on
the elastic modules. In this case, Gassmann condition [12, 13], which is widely used in geophysics to study
wave propagation in transversely isotropic elastic media, is certainly satisfied.

At the elastic modules λ′ � λ + 2μ − 2G ′, μ′ � G ′ system (5) takes the form

ut t − (λ + 2μ)∇div u + rot (M rot u) + ∇θ � 0, θt + div ut � 	θ, (6)

where matrix M � diag
(
G ′,G ′, μ

)
,∇ � ∂x , 	 � ∇2.

Mathematical models ofmany phenomena of the real world and, of course, models of continuummechanics
are formulated in the form of differential equations. Group analysis of these models is one of the most effective
ways to obtain quantitative and qualitative characteristics of the physical processes they describe.

The symmetry (group) analysis of differential equations is based on the theory of Lie groups and Lie
algebras. It has shown well in finding classes of exact solutions of the differential equations. The fundamen-
tal beginning was made by the Norwegian mathematician Sophus Lie (1842–1899). In Russia, the method
developed as a theory of dimensions. The theory of Lie groups for a long time remained aloof from possible
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applications to differential equations of mathematical physics. However, since the middle of the last century,
studies carried out by academician L. V. Ovsiannikov, his students and followers have shown that the methods
of Lie group theory are an effective way to study the structure of the solution set of differential equations (for
example, see [14–16] and references given there). At present, this mathematical direction is called the group
or symmetry analysis of differential equations.

We will study the system (6) by methods of group analysis of differential equations.

2 Group foliation

It is easy to check that among the operators admitted by system (6) there are operators of the form:

X � ∇h(x) · ∂u + ∂θ , (7)

where h � h(x) is any harmonic function. Operators (7) generate a Lie pseudogroup of transformations, which
is an infinite subgroup of the main group of system (6). First-order differential invariants for this pseudogroup
are determined by the formulas

I1 � t, I2 � x, I3 � rot u , I4 � div u, I5 � u1 − hxθ, I6 � u2 − hyθ, I7 � u3 − hzθ,

I8 � ut , I9 � θt , I10 � θx , I11 � θy, I12 � θz .

The structure of these invariants makes it possible to carry out a group foliation of system (6). That is, to
represent this system as an equivalent union of two first-order systems: automorphic and resolving.

An automorphic system has a form

ut � v(t, x), rot u � ω(t, x), div u � q(t, x), ∇θ � ϕ(t, x), θt � ψ(t, x), (8)

where v � (
v1, v2, v3

)
, ω � (

ω1, ω2, ω3
)
, ϕ � (

ϕ1, ϕ2, ϕ3
)
, q, ψ are additional functions of the variables

t, x, determined from the resolving system.
A resolving system has a form

vt � (λ + 2μ)∇q − rot(Mω) − ϕ, div (ϕ − v) � ψ,ωt � rot v, qt � div v,

ϕt � ∇ ψ, divω � 0, rotϕ � 0. (9)

The pseudogroup generated by operators (7) acts transitively on an automorphic system. That is, if one
solution of system (8) is known, then its general solution is obtained as a result of the action of a pseudogroup
on this solution. This pseudogroup acts identically on an automorphic system.

System (9) contains subsystems that define widely known models of continuummechanics and mathemat-
ical physics. Namely [17]:

(1) For ω � const system (5) coincides with the system of the equations for irrotational acoustics with
thermodynamics:

vt � (λ + 2μ)∇q − ϕ, ϕt � gradψ, qt � div v, div(ϕ − v) � ψ, rot v� 0, rotϕ � 0.

(2) For q � const system (5) coincides with Maxwell’s equations in an inhomogeneous medium with
thermodynamics:

vt � −rot(Mω) − ϕ, ωt � rot v, ϕt � ∇ ψ, div v � 0 , divω � 0, divϕ � ψ, rotϕ � 0.

(3) For ψ � const we get a system with a stationary thermodynamics.
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3 System (R)

In resolving system (9) we denote a function v by u and function ψ by θ . In this case, system (9) takes the
form

ut � (λ + 2μ)∇q − rot(Mω) − ϕ, div (ϕ − u) � ψ,ωt � rot u, qt � div u,

ϕt � ∇ θ, divω � 0, rotϕ � 0. (R)

Differentiation with respect to t of the first and second equations of system (R) in view of the remaining
equations of this system gives system (6). Consequently, for any solution (u, ω, ϕ, q, θ) of system (R) a pair
of the functions is the solution of system (6).

System (R) contains fewer additional functions than system (8), (9), namely: ω, ϕ and q . Therefore, to
describe a dynamic deformation of a transversally isotropic thermoelastic medium we use system (R).

Operator, admitted by system (R), is sought in the form

X � ξ0(t, x, p)∂t + ξ (t, x, p) · ∂x + η(t, x, p) · ∂ p,

where ξ0, ξ , η are unknown functions of its variables, and p � (u, ω, ϕ, q, θ).
The condition of invariance [14–16] of the manifold, defined by system (9), with respect to this operator,

and the splitting by parameter derivatives gives a overdetermined system of the determining equations. After
the second continuation, this system is reduced to involution and can be integrated. The solution of this system
shows that a main Lie group of transformations of system (9) (factor group by the standard invariant subgroup
associated with the linearity and homogeneity of this system) is generated by the operators

X1 � ∂t , X2 � ∂x , X3 � ∂y, X4 � ∂z .

4 Invariant submodels of rank 1

We consider dynamic invariant submodels of rank 1. All these submodels are determined by the invariant
solutions of rank 1 and describe the traveling waves.

In the subsequent formulas: α, β, γ , ck(k � 1, 2, . . . , 7) are arbitrary real constants.

4.1 Invariant 〈X1 + αX2, X3, X4〉- submodel (α �� 0)

This submodel is defined by the solution of the form

u � U(ξ) � (
U1,U 2,U 3),ω � �(ξ) � (

�1, �2, �3) , ϕ � �(ξ) � (
�1, �2, �3),

θ � �(ξ),q � Q(ξ), ξ � αt − x . (10)

Submodel (10) describes a wave traveling inside of the layer along the Ox axis.
Substitution (10) into system (R) gives the factor system

αU1
ξ + (λ + 2μ)Qξ + �1 � 0, αU 2

ξ + μ�3
ξ + �2 � 0, αU 3

ξ − G ′�2
ξ + �3 � 0,U 1

ξ � �1
ξ + �,

α�1
ξ � −�ξ,U

1
ξ � −αQξ ,U

2
ξ � −α�3

ξ ,U
3
ξ � −α�2

ξ , �
1
ξ � 0,�3

ξ � �2
ξ � 0. (11)

From (11) it follows that the characteristic of this wave is determined from the relation.

Qξξ � c1 exp
(
α
(
α2 − 1 − (λ + 2μ)

)
ξ
)
.

If α2 �� 1 + (λ + 2μ), then the components of the displacement vector and the temperature are determined
by the formulas

U1 � − c1

α
(
α2 − 1 − (λ + 2μ)

)2 exp
(
α
(
α2 − 1 − (λ + 2μ)

)
ξ
)
+ c4ξ + c5,

U 2 � − α2

μ + α2 ξ + c6,U
3 � − αc3

G ′ + α2 ξ+7,
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� � − 1
(
1 +

(
α2 − (λ + 2μ)

)(
α2 − 1 − (λ + 2μ)

))

(
α2 − 1 − (λ + 2μ)

) exp
(
α
(
α2 − 1 − (λ + 2μ)

)
ξ
) − c4. (12)

For c2 � c3 � c4 � 0, c1 < 0, α > 0 and
(
α2 − (λ + 2μ)

)
< 0 displacement U 1 and temperature �

decrease exponentially with a time. This means that under such conditions, horizontal cracks will not appear
in the product. And at

(
α2 − 1 − (λ + 2μ)

)
> 0 displacement U1 and temperature � exponentially increase

with a time. This means that under such conditions, horizontal cracks will definitely appear.
If α2 � 1 + (λ + 2μ), then the components of the displacement vector and the temperature are determined

by the formulas

U1 � −α1

2
ξ2 + c4ξ + c5,U

2 � − α2

μ + α2 ξ + c6,U
3 � − αc3

G ′ + α2 ξ + c7,

� � −αc1ξ − 2c1
α

+ c4. (13)

Foe c2 � c3 � c4 � 0, αc1 < 0, displacement U 1 increases according to the quadratic law with a time.
A temperature � increases according linearly with a time. This means that under such conditions, horizontal
cracks will definitely appear.

4.2 Invariant 〈X1 + αX3, X2 + βX3, X4〉- submodel (αβ �� 0)

This submodel is defined by the solution of the form

u � U(ξ) � (
U 1,U 2,U 3),ω � �(ξ) � (

�1, �2, �3) , ϕ � �(ξ) � (
�1, �2, �3),

θ � �(ξ), q � Q(ξ), ξ � αt + βx − y. (14)

Submodel (14) describes a plane wave traveling inside of the layer.
Substitution (14) into system (R) gives the factor system

αU1
ξ � β(λ + 2μ)Qξ + μ�3

ξ − �1 � 0, αU 2
ξ � −(λ + 2μ)Qξ + μβ�3

ξ − �2,

αU 3
ξ � −G ′(β�2

ξ + �1
ξ

) − �3, β
(
�1

ξ −U 1
ξ

) − (
�2

ξ −U 2
ξ

)
, α�1

ξ � −U 3
ξ , α�2

ξ � −βU 3
ξ ,

α�3
ξ � βU 2

ξ +U 1
ξ , αQξ � βU 1

ξ −U 2
ξ , α�1

ξ � β�ξ , α�2
ξ � −�ξ, α�3

ξ � 0ξ , β�1
ξ − �2

ξ ,

�3
ξ � 0, β�2

ξ + �1
ξ � 0. (15)

From (15) it follows that the components of the displacement vector and temperature are the solution of
the following system of the equations

(
β2(λ + 2μ) + μ − α2)U 1

ξ − β(λ + μ)U 2
ξ � αβ

β2 + 1

(
βU 1 −U 2) + c1,

− β(λ + μ)U1
ξ +

(
(λ + 2μ) + μβ2 − α2)U 2

ξ � α

β2 + 1

(−βU1 +U 2) + c2,

(
G ′(β2 + 1

) − α2)U 3
ξ � c3, � � − α

β2 + 1

(−βU1 +U 2) + c4. (16)

If
(
G ′(β2 + 1

) − α2
) � 0, then it follows from the third equation of this system that c3 � 0, and the

third component of the displacement vector is an arbitrary function. Therefore, submodel (14) has a physical
meaning only under the condition

(
G ′(β2 + 1

) − α2) �� 0. (17)

In this case a third component of the displacement vector is defined by the formula

U 3 � c3ξ(
G ′(β2 + 1

) − α2
) + c4. (18)
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The system consisting of the first and second equations of system (16) at
(
β2 + 1

)
μ(λ + 2μ) − α2(λ + 3μ) �� 0. (19)

is reduced to the normal form

d

dξ

(
U 1

U 2

)

� αβ

σ

(
βa −a
−βb −b

)(
U 1

U 2

)

+

(
c1
c2

)
, (20)

where:

σ � (
β2 + 1

)2((
β2 + 1

)
μ(λ + 2μ) − α2(λ + 3μ)

)
,

a � (λ + 2μ) + μβ2 − α2 − β(λ + μ), b � β(λ + μ) − β2(λ + 2μ) − μ + α2. (21)

If βa − b � (β + 1)
(
μ

(
β2 + 1

) − α2
) �� 0, then it follows from (20) that components U 1,U 2 of the

displacement vector and temperature � are determined by the formulas

U1 � c5a exp

(
αβ(βa − b)

σ
ξ

)
+
a(c2 − α1)

βa − b
ξ +

aσ(c2 − αc1)

αβ(βa − b)2
+ c6,

U 2 � c5b exp

(
αβ(βa − b)

σ
ξ

)
+

βa(c2 − αc1)

βa − b
ξ +

bσ(c2 − αc1)

αβ(βa − b)2
+ βc6,

� � α

β2 + 1

(
c5(βa − b) exp

(
αβ(βa − b)

σ
ξ

)
+

σ(c2 − αc1)

αβ(βa − b)

)
+ c7. (22)

Let c1 � c2 � c3 � 0. At β(βa−b)
σ

< 0 components U 1,U 2 of the displacement vector U 1,U 2 and
temperature � decrease exponentially with a time. This means that under such conditions, horizontal cracks
will not appear in the product. And at β(βa−b)

σ
> 0 componentsU 1,U 2 of the displacement vectorU 1,U 2 and

temperature � exponentially increase with a time. This means that under such conditions, horizontal cracks
will definitely appear.

If βa − b � (β + 1)
(
μ

(
β2 + 1

) − α2
) � 0, then it follows from (20) that components U 1,U 2 of the

displacement vector and temperature � are determined by the formulas

U 1 �
(
c1 +

αβa(βc5 − c6)

σ

)
ξ + c5,U

2 �
(
c2 +

αβa(βc5 − c6)

σ

)
ξ + c6,

� � α

β2 + 1
((βc1 − c2)ξ + (βc5 − c6)) + c7. (23)

ComponentsU 1,U 2 of the displacement vector and temperature� increase according linearly with a time.
This means that under such conditions, horizontal cracks will definitely appear.

5 Conclusion and discussion

The most acute problem in 3D printing of enclosing structures of buildings and structures is the formation of
a large number of horizontal cracks in the printed array during its cooling and maturation. The study of the
physical processes of thermoelastic deformation of the material occurring in this case becomes a central issue
in the development of 3D printing technology. In this paper, to study this problem, we took a three-dimensional
dynamic model of a transversely isotropic thermoelastic medium, which is used to describe the thermoelastic
deformation of materials with anisotropy of elastic properties with the predominant direction of anisotropy.

We studied this model, using the methods of group analysis of differential equations, which is one of the
most powerful and effective means of obtaining exact solutions. The group foliation of the system of second-
order differential equations that defines this model was carried out over the pseudogroup allowed by this system
under the Gassmann conditions widely used in geophysics. The result was a system of differential equations of
the first order, equivalent to the equations of the original model. This system consists of an automorphic system
and a resolving system. The unknown functions in an automorphic system are physical variables (displacement
vector components and temperature) and additional functions. These additional functions are determined from
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the resolving system. Using the change of variables in the resolving system, system (R) was obtained in which
the unknown functions are the components of displacement vector, temperature, and additional functions.
System (R) contains a smaller number of additional functions than the union of automorphic and resolving
systems.

Two submodels are found, which are determined by exact invariant solutions of system (R). The first
submodel is given by Eqs. (12), (13). It describes a wave traveling inside of the layer along one of the
coordinate axes. The second submodel is given by Eqs. (16), (18), (19), (21)–(23). It describes a plane wave
traveling inside of the layer. For these submodels, heating modes are indicated that do not lead to the formation
of horizontal cracks in the product, and modes in which horizontal cracks will certainly appear.
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