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Abstract This paper presents a novel framework combining the state-based peridynamics (SBPD) with the
extended finite element method (XFEM) for crack propagation in two-dimensional solids. Numerical exami-
nation is conducted fulfilling both the quasi-static and time-dependent loading conditions. The computational
domain is partitioned into two regions: (a) SPBD region: the vicinity of crack tips and potential region where
the crack is likely to propagate, and (b) XFEM region: the area behind the crack tip and the rest of the body.
The salient features of the developed framework include: (a) avoiding requirement of a priori knowledge of
enrichment functions like the conventional XFEM; (b) without fracture criteria for crack propagation; (c) no
restriction on the value of Poisson’s ratio like the bond-based peridynamics; and (d) higher computational effi-
ciency than the pure peridynamics. The efficiency and accuracy of the proposed framework are systematically
demonstrated through benchmark examples involving quasi-static crack growth and dynamic crack branching
problems.

1 Introduction

Peridynamics (PD) [1] based on a non-local theory uses integro-differential equations rather than differential
equations to describe the governing equations of motion. This facilitates easy modelling of problems involving
discontinuous and/or singular solutions without any additional pre- and post-processing techniques. This is
in contrast to conventional approaches that require conforming mesh with special elements, viz., singular
elements or enrichment techniques to capture the necessary physics of the problem. Further, the conventional
approaches require additional post-processing techniques to estimate the fracture parameters and a fracture
criteria for the discontinuous surface to evolve.

Since its inception, the PD theory has been applied to wider variety of problems in science and engineering
[2–9]. As with any other numerical method, the PD theory has its share of difficulties. The biggest disadvantage
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of the PD is the low computational efficiency, which limits the engineering application of this method. Hence,
improving the computational efficiency of PD has been concerning in the scientific community and the recent
focus amongst the researchers is on improving the computational efficiency of the framework [10–14].

The local theory-based numerical methods (e.g. the finite element method (FEM), extended FEM (XFEM),
boundary element method (BEM), isogeometric analysis (IGA), meshfree method, etc.) have high computa-
tional efficiency. The coupling of PD and the local theory-based numerical method becomes an effective
technique to enhance the computational efficiency of PD. PD has been coupled with FEM [15–19], BEM [20–
22], IGA [23–25], and XFEM [26–29], to name a few.

Amongst aforementioned approaches, coupling with the XFEM has gained attention. This is because the
XFEM does not require the discontinuities to conform to the background discretization, but requires a fracture
criteria for modelling crack propagation. So a combination of the PD theory with the XFEM is an ideal choice,
especially for three-dimensional problems with complex crack patters and morphologies. The coupling of
the PD with the XFEM yields a framework that shares the advantages of both the methods, thus facilitating
simulation of fracture process of large-scale engineering structures.

Recently, the present authors developed a coupling approach that combines the PDwith theXFEMfor three-
dimensional crack propagation fulfilling both the quasi-static and dynamic loadings [30]. In our previous study,
the bond-based PD [31] was used, and so Poisson’s ratio is limited to 1

4 under plane strain and 3D conditions
and 1

3 under plane stress condition. Existing coupling approaches between the PD and the XFEM are all based
on the bond-based PD [26–29]. To improve the modelling capability and to relax the constraint on Poisson’s
ration, Silling [32] proposed a state-based peridynamics theory (SBPD) that is suitable for anymaterial. Hence,
the primary objective of this work is to develop a coupling strategy between the SBPD and the XFEMmethod.
To facilitate easy discussion, we have restricted the focus to two-dimensional crack propagation problems
under quasi-static and dynamic loading conditions. This is accomplished by dividing the domain into two
regions, namely, SBPD region, which is used in the crack tip and the potential crack growth domain, thus
the fracture criteria for crack growth is not required, and the XFEM region, which is applied in the rest of
the computational domain to reduce the computational cost and improve the computational efficiency. The
accuracy and efficiency of the proposed coupled framework are demonstrated through a few standard problems
involving quasi-static crack propagation and dynamic crack branching. The coupling approach based on the
state-based PD with the XFEM method has not been found in the literature, and this study is an extension of
our previous work, i.e. relaxing the constraint on Poisson’s ration.

The manuscript is organized as follows. The coupling scheme between the state-based PD and the XFEM
is presented in Sect. 2, and its accuracy verification is discussed in Sect. 3. Several 2D crack propagation and
dynamic crack branching simulations are discussed in Sect. 4. Some major conclusions are given in Sect. 5.

2 Formulation for coupling SBPD and XFEM

The main idea of coupling the SBPD and the XFEM is to capture the physics in the vicinity of the crack tip
and potential crack propagation regions using the PD, and the rest of the computational domain is modelled
using the XFEM.

The coupled method possess the advantages of the SBPD for the crack propagation and the XFEM for
describing the discontinuous displacements independent of the underlying background discretization. Thus,
the coupled method enhances the computation efficiency in comparison with the conventional SBPD and
avoids the need for a fracture criteria for crack propagation. A coupling scheme between the SBPD and the
XFEM is presented in this section.

2.1 The state-based peridynamics

In PD, a solid consists of some material points, and x, the material point, interacts with other material points
within its horizon Hx with horizon radius δ. Under the external loading condition, the displacements of the
material points xi and x j in the initial configuration are u(xi ) and u(x j ), and the locations in the deformed
configuration are yi and y j , respectively. In the SBPD, the force density vectors have unequal magnitudes and
are parallel to the relative position vector in the deformed state, and the balance of angular momentum can be
satisfied. Assuming small deformation, the equations of motion in discrete form for a material point xi at time
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t is expressed as [33]:

N∑

j=1

ψi j

(
4bδVjVi∥∥x j − xi
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(
ui − u j

) +
N∑

m=1

ψim
2ad2δ2VmVjVi∥∥x j − xi

∥∥ ‖xm − xi‖ (ui − um)

+
N∑

n=1
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+ ρ üi Vi = b (xi ) Vi

(1)

where N is the number of material points within the horizon of xi and ρ denotes the mass density. üi , Vi and
b(xi ) are the acceleration vector, the volume and the body force density of a material point xi , respectively.
ψi j is the status function and a, b and d are the PD parameters. For 2D problem, the PD parameters are defined
as [34]:

a = 1

2
(k − 2μ), b = 6μ

πhδ4
, d = 2

πhδ3
(2)

where h is the thickness, k is E
2(1−ν)

for plane stress and E
2(1+ν)(1−2ν)

for plane strain, μ = E
2(1+ν)

, E and ν are
Young’s modulus and Poisson’s ratio.

It is assumed that two material points xi and x j are connected by a bond and the stretch si j is computed
by:

si j =
∥∥ y j − yi

∥∥ − ∥∥x j − xi
∥∥

∥∥x j − xi
∥∥ (3)

where, ψi j = 1 for si j < sc, 0 for si j ≥ sc, sc is the critical bond stretch. For 2D problem, the critical bond
stretch is defined as [34]:

sc =
√

Gc

( 6
π
μ + 16

9π2 (k − 2μ))δ
(4)

where Gc is the macroscopic critical energy release rate.
Equation (1) can be written in matrix form as follows:
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where RPD
i = b (xi ) Vi , mPD

i = ρVi , l = x j−xi
‖x j−xi‖ and m = y j−yi

‖x j−xi‖ .
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Fig. 1 Region divisions, a coupling elements, and b coupling bonds

2.2 The extended finite element method

In XFEM setting, the standard finite element approximation is augmented by some special functions based
on the partition of unity. This process is commonly referred to as enrichment strategy. This facilitates the
representation of the discontinuities independent of the underlying background mesh. For a domain with a
discontinuous surface, the enriched displacements approximation is expressed as [35]

u =
∑

i∈Na

Ni (x)ui +
∑

m∈Ns

Nm(x)[φ(x) − φ(xm)]am (9)

where ui and am are the nodal displacements and enriched variables, respectively. Na is the set of all nodes
in the considered domain, while Ns is the set of enriched nodes. Ni (x) and Nm(x) denote the standard finite
element shape functions. In this work, the enrichment function φ is +1 on one side of the crack and -1 on
the other side. The corresponding weak form and discretized form are obtained by employing the standard
Bubnov-Galerkin method. For additional details, interested readers are referred to [36] and references therein.

2.3 The coupling approach between SBPD and XFEM

A schematic of the computational domain partitioned into regions, viz., SPBD region, XFEM region and an
overlapping region is shown in Fig. 1. The original crack without the crack tip is considered as a part of the
XFEM region. The crack tip and the potential crack propagation region are included in the SBPD region and
in the overlapping region, both the descriptions coexist. An overlapping region is required because the XFEM
region is modelled using the local theory and the PD region is modelled using the non-local theory. In Fig. 1,
‘blue’ square and ‘red’ diamond represent the standard and the enriched nodes in XFEM region, while the
‘blue’ circle represents the standard PD nodes, and the ‘green’ circle denotes the coupled nodes.

In the coupling region, the XFEM element contains PD material points to form a coupling element, and
the PD material points in the coupling region also interacts with the XFEM nodes in the horizon to form a
coupling bond. In the coupling element, all nodes (including PD material points and XFEM nodes) only exert
force on the XFEM nodes. In the coupling bond, all nodes (including PD material points and XFEM nodes)
only exert force on PD material points. Aforementioned definition of coupling element and bond ensures that
the information between the XFEM region and the PD region is transferred seamlessly and smoothly.

In the coupling region, XFEM nodes in the coupling element interact with all surrounding nodes (including
nodes that belong to the XFEM region and material points of PD region). Using the above coupling element
treatment scheme, the relevant terms of PD material points in the stiffness and mass matrices of the coupling
element are zero. To present the displacement of the XFEM accurately, the terms corresponding to the enriched
variables (including XFEM nodes and PD material points) in the stiffness and mass matrices of the coupling
element are retained. A material point in the coupling region interacts with all nodes in its horizon (including
XFEM nodes and PD material points). According to the processing method of coupling bond, the material
points are set to zero for the term corresponding to XFEM nodes in the stiffness and mass matrices.
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Fig. 2 Schematic illustration of the cantilever beam with an edge crack

With δ denoting the global nodal variable vector and F being the global external nodal force vector, the
governing equation of the coupling XFEM-PD is obtained as follows:

M δ̈ + Kδ = F (10)

where K and M are the global stiffness and mass matrices, respectively. Through the assembly of stiffness and
mass matrices of all XFEM elements and PD nodes, the global stiffness and mass matrices are thus obtained.

In this study, PD region denotes the vicinity of crack tips and potential region where the crack is likely to
propagate, and XFEM region is the area behind the crack tip and the rest of the body. Thus PD theory is not
used in the whole computational domain, so the role of XFEM is to reduce the computational cost and improve
the computational efficiency. In order to simplify the problem, the PD region remains unchanged in this study,
in fact a variable PD region can further save time. It is noted that the coupling region can be a free-shape zone.
The coupling scheme and numerical implementation are the same as those given in Ref. [30].

In the coupled SBPD and FEM, the computational domain is also divided two regions, namely, SBPD
region and FEM region. The FEM region in the coupled SBPD and FEM is the XFEM region in the coupled
SBPD and XFEM. In addition, the FEM region contains cracks. In the FEM, element edges should be aligned
with crack faces, while meshes are independent of the internal geometry and physical interfaces (such as
cracks) in the XFEM, as shown in Fig. 1. It is obvious that the XFEM is more convenient than the FEM for
modelling cracks. Hence, the XFEM is adopted instead of the ordinary FEM in the cracked domain in this
study, i.e. the coupled SBPD and XFEM is used instead of the coupled SBPD and FEM.

3 Accuracy verification

To verify the accuracy of the proposed framework, a cantilever beam with an edge crack under a uniformly
distributed shearing force is considered, as shown in Fig. 2. The length D of the cantilever beam is 50mm, the
height L is 20mm, the crack length d1 is 5mm, and d2 is 2.5mm. The shear force on the right end is P = −1
KN/m. Following material properties are considered for this study: Young’s modulus E =1 GPa, Poisson’s
ratio ν = 0.2. A state of plane stress condition is assumed. In order to investigate the influence of region
division on the accuracy, two different region division schemes are adopted, as shown in Fig. 3. In Fig. 3,
L1 = 3.5 mm, L2 = 1.5 mm, L3 = 15 mm, L4 = 20 mm, L5 = 1.5 mm, L6 = 15 mm, and L7 = 13.5 mm.
The grid is evenly divided with a spacing of �x =0.5mm. In the PD region, the size of horizon δ = 3�x is
used.

The horizontal displacements on y = L
2 and the vertical displacements on x = D

2 , respectively, and the
results obtained with XFEM are also given in Figs. 4 and 5 for comparison. From Figs. 4 and 5, it is found that
(1) the displacements obtained by the coupling model with the two region division schemes match well with
the results obtained by XFEM, which shows that the coupling model has good solution accuracy, and (2) the
results of the coupling model with the two region division schemes are almost the same, which show that the
influence of region division is small.
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Fig. 3 Two region division schemes of the cantilever beam, a coupling model 1, and b coupling model 2

Fig. 4 Comparison on horizontal displacements on x = D
2

4 Numerical examples

To show the performance of the present framework for 2D crack propagation problem, four numerical exam-
ples, viz., two for quasi-static boundary conditions and two for dynamic loading, are considered. For all the
numerical examples, a state of plane stress condition is assumed unless mentioned otherwise. A structured
4-node quadrilateral element is used.
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Fig. 5 Comparison on vertical displacements y = L
2

4.1 Quasi-static analysis: Mode-I crack propagation in an edge-cracked plate

The first example deals with a square plate with an edge crack under uniaxial tension as depicted in Fig. 6. The
plate length is L = 0.1 m, the thickness is t = 1 mm, and the crack length is 50mm. The top and the bottom
edges of the plate are subjected to Dirichlet boundary conditions. The material properties considered for this
example include: Young’s modulus is E = 35,770MPa, Poisson’s ratio is ν = 0.38, and critical energy release
rate is GIC = 9.8 N/m. The computational domain is disctretized with a uniform grid size of �x = 1 mm. In
the PD region, the size of horizon is δ = 3�x .

The region division is shown in Fig. 7, L1 = 53 mm, L2 = 20 mm, L3 = 3 mm and L4 = 34 mm. The
Dirichlet boundary conditions are imposed incrementally with �uy = 5×10−5 mm before fracture. Once
the bond is broken, the displacement increment is reduced to �uy = 5 × 10−6 m, until crack propagation is
completed. The crack growth process is shown in Fig. 8, in which Fig. 8a–c are the crack propagation processes
obtained by the coupling method and Fig. 8d–f are the crack propagation processes simulated by the pure PD.
It can be found that the crack path simulated by the two methods are consistent, and conform to the mode-I
crack propagation path. When the displacement increment reaches 0.0041mm, the crack starts propagation,
and the plate is snapped when the displacement increment reaches 0.005mm. The calculation time estimated
for the coupling method and the pure PD is 2543s and 3564s, respectively, and this means that the coupling
method has much higher efficiency than the pure PD.

4.2 Quasi-static analysis: mixed-mode crack propagation in a central-cracked-square plate

Mixed-mode crack propagation in a square plate with a central crack as shown in Fig. 9 is considered. The
side length of the plate is 2W = 150mm, the plate thickness is t = 5mm, the crack length is 2a = 45mm,
and the inclined angle of the crack is α. There are two loading circular holes on the upper and lower corners,
r = 4mm, and d = 25mm. The material parameters are: Young’s modulus E = 2940 MPa, Poisson’s ratio
ν = 0.38, and average fracture toughness KIC = 1.33 MPa

√
m. The conversion relationship between energy

release rate GIC and average fracture toughness KIC is GIC = K 2
IC
E . The displacement loading is adopted, it

is loaded step by step, and the increment of each loading is �uy = 1× 10−7 m. The computational domain is
evenly divided, and the grid spacing is �x = 1mm. In the PD region, δ = 3�x . The region division is shown
in Fig. 10, L1 = 49mm, L2 = 85mm, L3 = 3mm, L4 = 46mm, and L5 = 82mm.

Two crack angles are considered, i.e. 45◦ and 62.5◦. The ultimate load can be obtained by calculating the
sum of the nodal forces in the loaded circular hole. When the crack angle is 45◦, the plate begins to damage
when the load is about 2050 N. The ultimate failure load is about 2350 N, and the final crack paths are shown
in Fig. 11a, which matches well with the experimental crack paths shown in Fig. 11b. For the crack with 62.5◦
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Fig. 6 Schematic illustration of the square plate with an edge crack

Fig. 7 Schematic representation of sub-division of the computational domain into three regions

inclined angle, the crack grows when the load is about 2350 N, and the ultimate failure load is about 2900 N.
The crack paths are shown in Fig. 12a, which agrees well will with the path predicted in the experiment [37]
shown in Fig. 12b. It is noted that the computed figures are rotated by 90◦ counterclockwise for comparing
with the experimental results.

The ultimate failure loads obtained with the coupling method for the 45◦ crack and 62.5◦ crack are 2200
N and 2950 N, respectively. The average ultimate failure loads obtained with the experiment for the 45◦ crack
and 62.5◦ crack are 2330 N and 3197.5 N [37], respectively. It is found that the ultimate failure loads obtained
by the coupling method almost match with the experimental values.

The computational time is 38,333s for the 45◦ crack and 45,973s for the 62.5◦ crack using the coupling
method. The computational time is 52,439s for the 45◦ crack and 63,264 s for the 62.5◦ crack using the pure
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Fig. 8 Crack propagation paths, a–c for the coupling method, and d–f for the pure PD
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Fig. 9 Schematic illustration of the plate with a central crack

Fig. 10 Region division of the plate with a central crack
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(a) (b)

Fig. 11 Comparison on the crack propagation paths for 45◦ crack between the present study (a) and the experimental data (b)

)a( (b)

Fig. 12 Comparison on the crack propagation paths for 62.5◦ crack between the present study (a) and the experimental data (b)

PD. This shows that the proposed framework can significantly improve the calculation efficiency compared
with the pure PD.

4.3 Dynamic crack propagation and branching in an edge-cracked plate

An edge-cracked plate subjected to uniaxial tension, as shown in Fig. 13, is simulated to verify the performance
of the proposed framework for dynamic crack propagation problem. The plate length is L = 0.4m, the plate
width is D = 0.1m, and the plate thickness is t =0.001m. Young’s modulus is E = 65 GPa, Poisson’s ratio is
ν = 0.2, material density is ρ= 2235kg/m3, and critical energy release rate is GIC = 204 N/m. The top and
the bottom face is subjected to uniform pressure of P = 14 MPa. The time integration step is �t = 25 ns, and
the total computational time is 40 μs.

The domain is divided into uniform grid, and two different spacing division methods are adopted, i.e.
�x = 1mm and �x = 0.5mm. In the PD region, δ = 3�x . Figure14 presents the schematic of the division
of the computational domain into three regions. For �x = 1 mm, L1 = 47mm, L2 = 3mm, and L3 = 50mm.
For �x = 0.5mm, L1 = 48.5mm, L2 = 1.5mm, and L3 = 50mm. In order to prevent the loading boundary
from being damaged first in the calculation process, the material points less than δ from the upper and lower
boundaries are set as non-destructive areas.

The crack paths obtained by the couplingmethod under two different discrete schemes and the pure PD [38]
are represented in Fig. 15. It is found that the crack propagation and branching paths simulated by the proposed
framework are almost consistent with crack paths obtained by the pure PD, but the crack paths for the coupling
method with �x = 0.5 mm is more consistent with the results obtained by the pure PD. This shows that the
coupling method has good convergence in solving the dynamic crack propagation problem.
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Fig. 13 Geometry model of the rectangle plate with an edge crack

Fig. 14 Region division of the plate with an edge crack

The crack propagation velocity is also an important index to measure the dynamic crack propagation. The
fixed time interval �t = 2μs is adopted. Figure16 shows the comparison of crack growth speeds of the
coupled method under two different discrete schemes. It is obvious that the fluctuation of crack propagation
speed decreases with themesh refinement. In addition, the crack growth speeds obtained by the coupledmethod
with �x = 0.5 mm are compared with those simulated by the PD, as shown in Fig. 17. The crack propagation
speed curve of the coupling method is almost consistent with the results calculated by the PD, the maximum
velocities of the crack propagation obtained from the coupling method, the PD and the experiment [38]
are 1721m/s, 1681m/s and 1580m/s, respectively. The Rayleigh wave velocity is about 3244m/s, and the
maximum crack growth velocity calculated by the coupling method is far less than the Rayleigh wave velocity,
so the coupling method can also have high accuracy in the simulation of crack growth velocity.

4.4 Simulation of Kalthoff–Winkler experiment

The last numerical example is devoted to simulation of dynamic crack growth for the Kalthoff–Winkler
experimenting test. The details of geometry and boundary conditions of the Kalthoff–Winkler test are then
shown in Fig. 18a. The impactor velocity is v0 = 16.5 m/s. Due to the geometric symmetry, only the upper
part of the plate as shown in Fig. 18b is used for simulation. Young’s modulus E = 190 Gpa, Poisson’s ratio
ν = 0.3, material density ρ= 8000kg/m3, and critical energy release rate GIC = 22170 N/m are adopted. The
time integration step is �t = 50 ns, and the total computational time is 80 μs.

The grid is evenly divided, and the grid spacing is �x = 1mm. In the PD region, δ = 3�x . Figure19
represents the region division, L1 = 0.047m, L2 = 0.003m and L3 = 0.05m.

The crack paths obtained by the proposed framework are plotted in Fig. 20. The crack path results from the
present approach are then compared with the reference crack paths derived from the XFEM. The crack path
obtained by the coupling method extends linearly along the direction of 65◦, which is consistent with the value
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(a)

(b)

(c)

Fig. 15 Crack propagation and branching paths, a coupling model for �x = 1 mm, b coupling model for �x = 0.5 mm, and c
PD model
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Fig. 16 Comparison on crack propagation velocities for the coupling method with different discrete schemes

Fig. 17 Comparison on crack propagation velocities for different methods

of 67.5◦ given in Ref. [39]. It shows that the proposed framework has good accuracy for simulating dynamic
crack propagation problem.

The crack growth velocity is also investigated. The fixed time interval�t = 2.5μs is adopted. TheRayleigh
wave velocity is CR = 2799.2 m/s. In this analysis, the relative crack propagation velocity is defined as V

CR .
Figure21 shows the relative crack propagation velocity obtained by the coupling method, which is compared
with the results obtained by the NOSB-PD [40], discrete method (DM) [41], 2D XFEM-PD [29] and discrete
element method (DEM) [42]. In the coupling method, the crack growth starts at 22.5 μs, and the propagation
velocity is always much lower than that of Rayleigh wave speed. The results from the coupling method match
well with those obtained by other numerical methods.
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Fig. 18 Geometry model of the rectangular plate, a the whole geometry model, and b the computational model

Fig. 19 Region division of the rectangle plate

5 Conclusions

In this work, we have presented an efficient coupling approach between the XFEM and the state-based PD
for two-dimensional crack propagation problems. Numerical simulations are accounted for fulfilling both the
quasi-static and time-dependent dynamic boundary conditions. The SBPD is used in the vicinity of the crack
tips and along the potential crack propagation regions, while the XFEM is adopted in the other regions. The
coupling method has the advantages of the state-based PD and the XFEM, and can overcome the disadvantages
of the two methods, so it can effectively simulate the crack propagation. The PD region remains unchanged in
this study, and the potential crack propagation region is known in advance. A variable PD region can further
save time, and this is a topic for future communication. The current development is flexible and has no limitation
to solve other more complex problems such as fracture in three dimensions.
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Fig. 20 Comparison on the crack propagation paths between the coupling method (a) and the XFEM (b)

Fig. 21 Comparison on the crack growth speeds amongst different methods
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