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Abstract This paper deals with the propagation of bending waves along the free edge of a piezoelectric
sandwich plate. The structure consists of a piezoelectric layer sandwiched between two metal layers. The
first-order Zig-Zag approximation for in-plane displacements through the thickness of each layer is used.
Interfacial continuity of the displacement and the transverse shear stress between the piezoelectric layer and
the metal layer is ensured which is very important and also experienced by layered structures. The number
of independent unknown variables is reduced from 14 to 4 by using the interfacial continuity and the zero
shear stresses conditions at the top and bottom surfaces. The governing equations and corresponding boundary
conditions are derived using Hamiltonian principle. The dispersion relations for electrically open and shorted
boundary conditions imposed at the edge of the semi-infinite piezoelectric sandwich plate are obtained. The
effects of electrical edge condition, layer thickness ratio and material property on dispersion characteristics
of the localized bending waves are discussed. The numerical results show that the electrical edge condition
has significant influence on dispersion property compared to edge wave in a piezoelectric single-layer plate.
The phase velocity and the localization of bending edge wave significantly depend on the thickness of metal
layer, and a thick metal layer can result in a high wave velocity and a strong localization. The phase velocity
of bending wave is positively related to the velocities of classical Rayleigh surface wave in piezoelectric
half-space and metal half-space under plane strain.

1 Introduction

An edge wave in a thin elastic plate is a traveling wave that propagates along the edge of the plate and decays
exponentially with the distance from the edge. The existence of the flexural wave guided by the free edge of
a semi-infinite isotropic elastic thin plate was first demonstrated by Konenkov in 1960 [1]. Theories related
to the edge waves have attracted much attention in the last few decades due to its potential applications in the
measurement of material properties and nondestructive evaluation of thin elastic structures, such as aircraft
wings, submarine hulls, turbine or propeller blades, and so on [2]. It was demonstrated that a flexural wave
localized along the free edge of a thin plate occurs only when Poisson’s ratio is unequal to zero. This is because
the free edge locally relieves the transverse stresses which are accompanied with a flexural wave. There are no
transverse stresses to be relieved in the case of zero Poisson’s ratio, and the localized flexural wave vanishes
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[3]. When waves localize along the edge of a thin elastic plate, complicated wave forms generate due to the
interaction of Rayleigh–Lamb modes diffracted by either the edge, a defect close to the edge or both. This
presents considerable challenges in identifying and interpreting these modes.

In view of the potential importance and applications, the existence and propagation of edgewaves in various
elastic structures have become an important research topic in the field of wave motion. Norris [4] proved that
the edge wave also exists in the anisotropic plates using the classical theory of plate flexural. A unique wave
solution was found on an orthotropic plate when the free edge is parallel to a principal direction of the
material. Thompson and Abrahams [5] further studied edge wave propagating along non-principal directions
of orthotropic plates. They also found that a unique solution of edge wave exists for arbitrary inclination angle.
Zakharov and Becker [6] extended the studies to anisotropic media and presented some unique properties of
Rayleigh type bending waves resulting from the anisotropic orientation. Fu [7] derived an explicit secular
equation of the edge waves in a generally anisotropic elastic plate with a Stroh-like formalism and found that
whenever an edge wave exists it must be unique. Liu et al. [8] proposed a semi-exact method to study the edge
wave in semi-infinite isotropic plates, as well as anisotropic and anisotropic laminated plates. Fu and Brookes
[9] demonstrated that a semi-infinite asymmetrical anisotropic thin plate can support at most two edge waves
based on the Stroh-like formalism derived. Lu et al. [10] further extended the work by Fu and Brookes [9] to
discuss and present the existence conditions for one or two subsonic edge waves propagating in such a plate.
An efficient procedure for computing the explicit secular equation for the edge wave speed was proposed.

Most of the previous studies on the flexural edge wave in a semi-infinite thin elastic plate were derived
from the classical Kirchhoff plate theory. Lagasse and Oliner [11] presented a comparative study on flexural
edge wave including a finite element calculation and a measurement which were in good agreement with each
other. It was shown that the thin plate results agree well with the finite element calculations and measured
data in the low frequency limit, but for higher frequencies those results are no longer valid. Norris et al. [12]
demonstrated that the essential characteristics of the flexural edge wave are also captured by the Mindlin plate
theory. Their results agreedwell with themeasured data. Piliposian et al. [13] derived the dispersion equation of
bending edge wave propagation in a transversely isotropic plate within the framework of the high-order refined
theories of elastic plates. They found that there are no qualitative differences between the results obtained by
the first-order Reissner–Mindlin plate theory and the high-order Ambartsumian plate theory. Relevant research
progress includes bending edge wave in a semi-infinite thin plate with edge reinforced by a strip plate [14, 15]
or a beam [16, 17], as well as a semi-infinite plate supported by a Winkler foundation [18–21] or a Pasternak
foundation [22], and a semi-infinite plate immersed in a fluid [23]. Lawrie and Kaplunov [2] gave a periodic
overview on edge waves and edge resonance in elastic structures before the 2010s. More recently, Kaplunov
et al. [24] established a set of asymptotically justified boundary conditions for a semi-infinitely asymmetric
sandwich strip with high-contrast properties under anti-plane shear using the Saint-Venant principle. Wilde
et al. [25] constructed the asymptotically the refined boundary conditions for dynamics of plate bending. Two
dynamics examples were considered to demonstrate that the derived refined boundary conditions extend the
applicable range in 10 times comparing with that of the Kirchhoff theory.

Piezoelectric materials are widely used to develop electro-mechanical transducers for converting mechan-
ical energy to electric energy or vice versa, and acoustic wave devices for frequency operation and sensing.
Propagation of elastic wave in various piezoelectric materials and structures has received much interest due to
its importance. From the existing literature, most studies dealt with the infinite piezoelectric media extended
in one or two dimensions. As we know, a edge wave localizes near the edge of a thin elastic structures which
means that there is nearly no resonances away from the active edge. This is very beneficial for mounting and
supporting acoustic wave devices without interference to their operations. For edge waves in the semi-infinite
piezoelectric structures, however, available theoretical results are very limited and most of them are for the
single-layer plates. Piliposian and Ghazaryan [26] studied bending waves propagation along the free edge of
a semi-infinite piezoelectric plate using Ambartsumian refined plate theory. The existence conditions were
given. Recently, Althobaiti and Hawwa [21] considered bending edge waves propagating in a semi-infinite
Kirchhoff piezoelectric plate supported by a Winkler–Fuss foundation. The dispersion relation was derived
analytically. Our recent work showed that propagation of the bending edge wave can be multi-mode when
a metal strip plate is bonded to the edge of a semi-infinite piezoelectric plate [15]. We further presented a
comparative study on bending edge waves in a semi-infinite piezoelectric plate using three different plate
theories [27]. We found that the dispersion curves predicted by the two-variable refined plate theory and the
first-order Reissner–Mindlin plate theory have very small difference over the complete frequency range, but
the results by the classical plate theory are much larger than the two theories.
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Fig. 1 Geometry of a semi-infinite piezoelectric sandwich plate

In this paper, we study the propagation of bending waves localized along the free edge of a semi-infinite
piezoelectric sandwich plate. Zig-Zag theory of first-order approximation is used. The governing equations are
derived using Hamiltonian principle. Our aim is to examine the effects of electrical edge condition, geometry
andmaterial property on dispersion characteristics of edgewaves. To the best of our knowledge, the propagation
of edge waves in a semi-infinite piezoelectric sandwich plate has not been previously considered and also has
not been analyzed in the context of Zig-Zag theory.

2 Problem formulation and basic equations

Consider a semi-infinitely piezoelectric sandwich plate of total thickness H, as shown in Fig. 1. The
structure consists of a transversely isotropic piezoelectric layer of thickness hm sandwiched between
a upper metal layer of thickness hu and a lower metal layer of thickness hl. The sandwich plate
(−∞ < x < ∞, 0 ≤ y < ∞, −H/2 ≤ z ≤ H/2) is referred to rectangular coordinates (x, y, z) and is
bounded by a free edge at y � 0. We consider bending wave propagating along the free edge of the semi-
infinitely piezoelectric sandwich plate. A first-order Zig-Zag approximation theory [28–32] is used to model
the considered piezoelectric sandwich plate. In each layer, the in-plane displacements are assumed to vary
linearly along the thickness of the sandwich plate. The constant transverse displacement is assumed in the
thickness direction, so that the transverse strain εzz � 0. Based on the above assumptions, the displacement
of an arbitrary point along the x-axis, y-axis and z-axis, denoted as ukx (x , y, z, t), u

k
y(x , y, z, t) and ukz (x , y,

z, t), can be expressed as
⎧
⎪⎨

⎪⎩

ukx (x , y, z, t) � Uk(x , y, t) + zϑk
x (x , y, t)

uky(x , y, z, t) � V k(x , y, t) + zϑk
y (x , y, t)

ukz (x , y, z, t) � W (x , y, t)

(1)

where the superscript k � m, u and l, representing the middle piezoelectric layer, the upper metal layer and the
lower metal layer, respectively. Uk(x , y, t), V k(x , y, t) and ϑk

x (x , y, t), ϑ
k
y (x , y, t) denote displacement and

rotation variables of the corresponding k layer.W (x,y,t) is the transverse displacement of the sandwich plate.
For the piezoelectric sandwich plate under consideration, it is assumed that the middle piezoelectric layer,

the upper and lower metal layers (can be regarded as two electrodes) are all very thin and are of comparable
thickness. In this case, the two metal electrodes should be, respectively, modeled as two layers with finite
thickness, not the thin electrodes with negligible mechanical effects treated in most of the literature. The two
electrodes may be made of different materials or with different thicknesses. Due to the relatively thick metal
layers, the electric field distributes in the middle piezoelectric layer only, not through the entire thickness of
sandwich plate. As a result, the distribution of the electric field in the middle piezoelectric layer must satisfy
the Maxwell equation. The electric potential ϕm is approximately assumed as a combination of a half-cosine
and linear variation [33]

ϕm(x , y, z, t) � − cos(βz)�(x , y, t) +
2zV0
hm

(2)

where β � π/hm . V0 is the value of the external electric voltage along z-direction.�(x , y, t) is the spatial and
time variation of the electric potential in the mid-plane of the piezoelectric layer. Since only wave propagation
analysis is addressed in this paper, the linear term in Eq. (2) can be ignored, i.e., V0 � 0 [33].
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The strain–displacement relations of the sandwich plate are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εkxx � ∂Uk

∂x
+ z

∂ϑk
x

∂x
, εkyy � ∂V k

∂y
+ z

∂ϑk
y

∂y
,

εkyz � 1

2

(

ϑk
y +

∂W

∂y

)

, εkxz � 1

2

(

ϑk
x +

∂W

∂x

)

,

εkxy � 1

2

(
∂Uk

∂y
+

∂V k

∂x

)

+
z

2

(
∂ϑk

y

∂x
+

∂ϑk
x

∂y

)

(3)

The constitutive relations for a transversely isotropic piezoelectric layer with z-axis being the crystallo-
graphic axis of symmetry are given by [15]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σm
xx

σm
yy

σm
zz

σm
yz

σm
xz

σm
xy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c11 c13 0 0 0

c33 0 0 0
c44 0 0

sym. c44 0
c66

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εmxx

εmyy

εmzz

2εmyz
2εmxz
2εmxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎨

⎪⎩

Em
x

Em
y

Em
z

⎫
⎪⎬

⎪⎭
(4)

⎧
⎪⎨

⎪⎩

Dm
x

Dm
y

Dm
z

⎫
⎪⎬

⎪⎭
�
⎡

⎣
0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εmxx

εmyy

εmzz

2εmyz
2εmxz
2εmxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡

⎣
s11 0 0
0 s11 0
0 0 s33

⎤

⎦

⎧
⎪⎨

⎪⎩

Em
x

Em
y

Em
z

⎫
⎪⎬

⎪⎭
(5)

where σm and εm are the stress and strain of piezoelectric layer, Dm and Em are the electric displacement
and electric field, respectively. c, e and s are the elastic stiffness constant, piezoelectric constant and dielectric
constant, respectively, and c66 � (c11 − c12)/2.

Using Eq. (2), the electric fields of the middle piezoelectric layer can be expressed as
⎧
⎨

⎩

Em
x � cos(βz)

∂�

∂x
, Em

y � cos(βz)
∂�

∂y
,

Em
z � − β sin(βz)�

(6)

Then, the transverse shear stresses of the middle piezoelectric layer σm
yz and σm

xz are

⎧
⎪⎪⎨

⎪⎪⎩

σm
yz � c44

(

ϑm
y +

∂W

∂y

)

− e15

[

cos(βz)
∂�

∂y

]

σm
xz � c44

(

ϑm
x +

∂W

∂x

)

− e15

[

cos(βz)
∂�

∂x

] (7)

Similarly, transverse shear stresses of the upper and lower metal layers are

⎧
⎪⎪⎨

⎪⎪⎩

σ u,l
yz � μu,l

(

ϑu,l
y +

∂W

∂y

)

σ u,l
xz � μu,l

(

ϑu,l
x +

∂W

∂x

) (8)

where μu and μl are the shear modulus of the upper and lower metal layers, respectively.
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Then, the unknown functions Uk , V k , ϑk
x and ϑk

y are determined using the interface conti-
nuity and the traction-free conditions. At the top and bottom surfaces of the sandwich plate(
z � hu + hm/2 and z � −hl − hm/2

)
, the traction-free condition requires:

ϑ l
x � ϑu

x � −∂W

∂x
, ϑ l

y � ϑu
y � −∂W

∂y
(9)

The transverse shear stresses are continuous at the interfaces z � ±hm/2, i.e., σ l
xz � σm

xz , σ l
yz � σm

yz .
Using Eqs. (7) and (8) obtains:

ϑm
x � −∂W

∂x
, ϑm

y � −∂W

∂y
(10)

The in-plane displacements are also continuous at the interfaces z � ±hm/2, that is, ulx � umx , u
l
y � umy .

With the aid of Eqs. (9) and (10), we give the following relations:

Ul � Uu � Um , V l � V u � Vm (11)

LettingUk(x , y, t) � U (x , y, t) and V k(x , y, t) � V (x , y, t), and taking account of the above relations,
we rewrite the strain–displacement relation in the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εkxx � ∂U

∂x
− z

∂2W

∂x2
, εkyy � ∂V

∂y
− z

∂2W

∂y2
,

εkxy � 1

2

(
∂U

∂y
+

∂V

∂x

)

− z
∂2W

∂x∂y

(12)

3 Governing equations and boundary conditions

The total strain energy 
S of the piezoelectric sandwich plate is given by [34]


S � 1

2

∫

A

∫ −hm/2

−hl−hm/2

(
σ l
xxε

l
xx + σ l

yyε
l
yy + 2σ l

xyε
l
xy

)
dzdA

+
1

2

∫

A

∫ hu+hm/2

hm/2

(
σ u
xxε

u
xx + σ u

yyε
u
yy + 2σ u

xyε
u
xy

)
dzdA

+
1

2

∫

A

∫ hm/2

−hm/2

(
σm
xxε

m
xx + σm

yyε
m
yy + 2σm

xyε
m
xy

)
dzdA

− 1

2

∫

A

∫ hm/2

−hm/2

(
Dm
x Em

x + Dm
y E

m
y + Dm

z Em
z

)
dzdA (13)

where A denotes the domain occupied by the mid-plane of each layer. Substituting Eqs. (6) and (12) into
Eq. (13) yields


S � 1

2

∫

A

(

Nx
∂U

∂x
+ Ny

∂V

∂y
+ Nxy

∂U

∂y
+ Nxy

∂V

∂x

)

dA

− 1

2

∫

A

(

Mx
∂2W

∂x2
+ My

∂2W

∂y2
+ 2Mxy

∂2W

∂x∂y

)

dA

− 1

2

∫

A

∫ hm/2

−hm/2

{

Dm
x cos(βz)

∂�

∂x
+ Dm

y cos(βz)
∂�

∂y
+ Dm

z β sin(βz)�

}

dzdA (14)

where Nx � Nl
x + Nu

x + Nm
x , Ny � Nl

y + Nu
y + Nm

y , Nxy � Nl
xy + Nu

xy + Nm
xy , Mx � Ml

x + Mu
x + Mm

x ,
My � Ml

y +Mu
y +Mm

y , Mxy � Ml
xy +Mu

xy +Mm
xy . N

k
x , N

k
y and Nk

xy are the axial forces and shearing force; M
k
x ,

Mk
y and Mk

xy are the bending moments and twisting moment, respectively. The expressions of these parameters
can be found in Appendix A.
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The kinetic energy 
K of the piezoelectric sandwich plate is calculated by


K � 1

2
ρl
∫

A

∫ −hm/2

−hl−hm/2

⎡

⎣

(
∂ulx
∂t

)2

+

(
∂uly
∂t

)2

+

(
∂ulz
∂t

)2
⎤

⎦dzdA

+
1

2
ρu
∫

A

∫ hu+hm/2

hm/2

[(
∂uux
∂t

)2

+

(
∂uuy
∂t

)2

+

(
∂uuz
∂t

)2
]

dzdA

+
1

2
ρm
∫

A

∫ hm/2

−hm/2

[(
∂umx
∂t

)2

+

(
∂umy
∂t

)2

+

(
∂umz
∂t

)2
]

dzdA

� 1

2

∫

A
I1

[(
∂U

∂t

)2

+

(
∂V

∂t

)2

+

(
∂W

∂t

)2
]

dA

+
1

2

∫

A
2I2

(
∂U

∂t

∂2W

∂x∂t
+

∂V

∂t

∂2W

∂y∂t

)

dA +
1

2

∫

A
I3

[(
∂2W

∂x∂t

)2

+

(
∂2W

∂y∂t

)2
]

dA (15)

where the inertial coefficients I1 � I l1 + I u1 + Im1 , I2 � I l2 + I u2 + Im2 , I3 � I l3 + I u3 + Im3 , and I k1 , I
k
2 , I

k
3 are

given by

⎧
⎪⎪⎨

⎪⎪⎩

I k1 � ρkhk , I u2 � hu + hm

2
ρuhu , I l2 � −hl + hm

2
ρl hl , Im2 � 0,

I u3 � 3hm2 + 6hmhu + 4hu2

12
ρuhu , I l3 � 3hm2 + 6hmhl + 4hl2

12
ρl hl , Im3 � ρmhm3

12

(16)

where ρu, ρl and ρm are mass density of the piezoelectric layer, the upper metal layer and the lower metal
layer, respectively. For the general case of ρu � ρl and hu � hl , the inertial coefficient I2 is equal to zero.

The governing equations and corresponding boundary conditions can be derived by Hamilton principle
[35]

δ

∫ t2

t1

(

S − 
K

)
dt � 0 (17)

Substituting Eqs. (14) and (15) into the above equation, letting the coefficients of δU, δV, δW and δ� in
Eq. (17) be zero, the governing equations can be obtained as

δU :
∂Nx

∂x
+

∂Nxy

∂y
� 2I1

∂2U

∂t2
− 2I2

∂3W

∂x∂t2
(18)

δV :
∂Nxy

∂x
+

∂Ny

∂y
� 2I1

∂2V

∂t2
− 2I2

∂3W

∂y∂t2
(19)

δW :
∂2Mx

∂x2
+

∂2My

∂y2
+

∂2Mxy

∂x∂y
� 2I1

∂2W

∂t2
+ 2I2

∂2

∂t2

(
∂U

∂x
+

∂V

∂y

)

− 2I3
∂2

∂t2

(
∂2W

∂2x
+

∂2W

∂2y

)

(20)

δ� :
∫ h/2

−h/2

[
∂Dm

x

∂x
cos(βz) +

∂Dm
y

∂y
cos(βz) − Dm

z β sin(βz)

]

dz � 0
(21)
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and the corresponding boundary conditions are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx + Nxy � 0 or U � 0

Nxy + Ny � 0 or V � 0

∂Mx

∂x
+

∂My

∂y
+

∂Mxy

∂x
+

∂Mxy

∂y
− 2I2

(
∂2U

∂t2
+

∂2V

∂t2

)

+2I3
∂2

∂t2

(
∂W

∂x
+

∂W

∂y

)

� 0 or W � 0

Mx − Mxy − NxeW � 0 or
∂W

∂x
� 0

My − Mxy − NyeW � 0 or
∂W

∂y
� 0

∫ h/2

−h/2

[
Dm
x cos(βz) + Dm

y cos(βz)
]
dz � 0 or � � 0

(22)

4 Solutions of localized bending waves

For bending wave propagating along x-direction, we seek the general solution satisfying the governing equa-
tions in the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U (x , y, t) � A exp[−ipky − ik(x − ct)]

V (x , y, t) � B exp[−ipky − ik(x − ct)]

W (x , y, t) � iC exp[−ipky − ik(x − ct)]

�(x , y, t) � iD exp[−ipky − ik(x − ct)]

(23)

where i � √−1, c is the phase velocity, k is the wavenumber, p is a parameter to be determined. A, B, C and
D are unknown amplitudes. Substituting Eq. (23) into Eqs. (18)–(21) obtains:

Q · X �
⎡

⎢
⎣

Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

⎤

⎥
⎦

⎛

⎜
⎝

A
B
C
D

⎞

⎟
⎠ � 0 (24)

where X � [A, B, C , D]T is the unknown wave amplitude, and the elements of matrix Q are given in
Appendix B. The non-trivial solution for the wave amplitude X requires the determinant of Q be zero, which
yields ten roots of p representing the propagation direction of the ten partial waves, respectively. In order to
satisfy the attenuation condition that the mechanical displacements and electrical potential should vanish as
y → ∞, only five roots having a negative imaginary part, denoted by pj (j � 1–5), should be retained. The
general solution to the governing equations can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x , y, t) �
5∑

j�1

α j D j exp
[−ip j ky − ik(x − ct)

]

V (x , y, t) �
5∑

j�1

β j D j exp
[−ip j ky − ik(x − ct)

]

W (x , y, t) �
5∑

j�1

iγ j D j exp
[−ip j ky − ik(x − ct)

]

�(x , y, t) �
5∑

j�1

iDj exp
[−ip j ky − ik(x − ct)

]

(25)
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where α j � A j/Dj , β j � Bj/Dj and γ j � C j/Dj are amplitude ratios given by

α j �

∣
∣
∣
∣
∣
∣

−Q14 Q12 Q13
−Q24 Q22 Q23
−Q34 Q32 Q33

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

∣
∣
∣
∣
∣
∣

, β j �

∣
∣
∣
∣
∣
∣

Q11 −Q14 Q13
Q21 −Q24 Q23
Q31 −Q34 Q33

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

∣
∣
∣
∣
∣
∣

, γ j �

∣
∣
∣
∣
∣
∣

Q11 Q12 −Q14
Q21 Q22 −Q24
Q31 Q32 −Q34

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

∣
∣
∣
∣
∣
∣

(26)

The boundary conditions at the free edge y � 0 are imposed in such a way that the axial force, the shearing
force, the bending moment and the twisting moment are set to zero, i.e., Ny � Nxy � My � Mxy . For the
piezoelectric layer, we further consider two types of electrical boundary conditions at the edge y � 0, i.e.,
∫ hm/2
−hm/2 D

m
y dz � 0 for electrically open case, and

∫ hm/2
−hm/2 ϕmdz � 0 for electrically shorted case. Substituting

the general solution (25) into the expresses of force and moment resultants given in Appendix A and then, into
the abovemechanical and electrical boundary conditions for free edge, a system of 5-order linear homogeneous
equations with unknown amplitudes Dj yields, i.e., T · D � 0, where D � [D1, D2, D3, D4, D5]T. The
nonzero elements of the matrix T for electrically open case at the free edge are given by

T1 j � c12 + p jα j n
l
(
λl + 2μl

)
+ p jα j n

u(λu + 2μu) + p jα j c11

+ p2jξβ j

(
λl + 2μl

)
nl
(
nl + 1

)
/2 − p2jξβ j

(
λu + 2μu)nu

(
nu + 1

)
/2
,

T2 j � (p j + α j
)(
nlμl + nuμu + c66

)
+ p jξβ j nl

(
nl + 1

)
μl − p jξβ j nu(nu + 1)μu ,

T3 j � − p jξα j

(
λl + 2μl

)
nl
(
nl + 1

)
/2 + p jξα j

(
λu + 2μu)nu

(
nu + 1

)
/2

− p2jξ
2β j

(
λl + 2μl

)(
3nl + 6nl2 + 4nl3

)
/12,

− p2jξ
2β j
(
λu + 2μu)(3nu + 6nu2 + 4nu3

)
/12 − p2jξ

2β j (c11 + c12)/12 − 2e31γ j/π

T4 j � − ξμl(p j + α j
)
nl
(
nl + 1

)
/2 + ξμu(p j + α j

)
nu
(
nu + 1

)
/2

− p jξ
2β jμ

l
(
3nl + 6nl2 + 4nl3

)
/12 − p jξ

2β jμ
u(3nu + 6nu2 + 4nu3

)
/12 − p jξ

2β j
c66
6

,

T5 j � ξ
2s11 p j

π
γ j .where ξ � khm is the non-dimensional wavenumber. nu � hu/hm and nl � hl/hm are

the thickness ratios of the upper and lower metal layers to the piezoelectric layer, respectively. The elements
of matrix T for electrically shorted case are the same except for T5 j � 2γ j/π . When the determinant of the
matrix T vanishes, we obtain the dispersion relation for localized bending waves propagating in the considered
piezoelectric sandwich plate.

5 Numerical results and discussions

In this section, some numerical results are provided to demonstrate the dispersion characteristics of localized
bendingwaves propagating along the free edge of ametal/piezoelectric/metal sandwich plate. Unless otherwise
specified, the piezoelectric layer is considered as PZT-4, the metal layers are copper, and the thickness ratios
nu � nl � n. Their material constants can be found in Table 1 [36] and Table 2 [37].

To demonstrate the influence of electrical edge condition on wave dispersion, Fig. 2 shows the dispersion
curves of localized bending wave along the edge of a copper/PZT-4/copper piezoelectric sandwich plate under
electrically open and shorted edge conditions, where the thickness ratio n � 0.1. It is found that the electrical
edge condition has very small impact on dispersion curve at the relative low non-dimensional wavenumber
ξ (nearly no effect within the range 0< ξ <0.1). This means that the effect of electrical condition imposed
at the free edge can be ignored when the thickness of the sandwich plate is very thin, or the wavenumber is
relatively low. The difference in phase velocity between electrically open case and shorted case becomes more
significant as increasing ξ . It is clear that the phase velocity of electrically open case is higher than that of
electrically shorted case.

To deeply understand the dispersion characteristics of edge wave in a piezoelectric sandwich plate, we use
our previous results [15, 27] to calculate the edge wave velocity for a single-layer PZT-4 piezoelectric thin pate.
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Fig. 2 Dispersion curves of localized bending wave under different electrical boundary conditions at the edge. Solid dots and
open circles represent copper/PZT-4/copper sandwich plate under electrically open and shorted edge conditions, respectively;
Asterisks and squares represent PZT-4 single-layer plate under electrically open and shorted edge conditions, respectively

Fig. 3 Effect of thickness ratio on dispersion curves for electrically shorted case at the edge. Solid dots, open circles, solid squares,
open squares, solid triangles and open triangles represent the case of thickness ratio n � 0.5, 0.4, 0.3, 0.2, 0.1 and 0, respectively

The obtained results agree very well with the present piezoelectric sandwich plate in the case of n � 0 which
verify the validity of the present results. The dispersion curves of a PZT-4 single-layer pate are also plotted in
Fig. 2 for comparison. It is found that the difference in phase velocity of the PZT-4 single-layer pate between
electrically open case and shorted case is very undistinguished compared to that of the copper/PZT-4/copper
sandwich plate. Moreover, the phase velocity of edge wave in PZT-4 single-layer plate is much lower than that
of copper/PZT-4/copper sandwich plate. This demonstrates that the edge wave velocity is lowered when the
surface electrodes are considered as the metal layers of finite thickness. At the same time, the change of wave
velocity resulted from electrical condition imposed at the edge also becomes more significant. In the following
examples, our discussions are focused on the case of electrically shorted condition at the edge.

To clearly show the effect of thickness of the metal layers on the dispersion property, Fig. 3 presents the
dispersion curves of bending edge waves in copper/PZT-4/copper sandwich plate for selected thickness ratios.
In this calculation, the thickness of PZT-4 layer is fixed, while the thicknesses of the upper and lower copper
layers are the same and are taken as 0.1hm, 0.2hm 0.3hm, 0.4hm and 0.5hm, respectively. It is shown that the
wave velocity significantly depends on the thickness of the metal layers. The larger the thickness of the metal
layers, the higher the phase velocity of bending edge waves for a given non-dimensional wavenumber ξ . The
wave velocity for the case of n � 0 is much lower than other cases as expected.

Localization of edge waves is an important performance reflecting the extent to which the vibration energy
is confined to the edge region of a plate. The lowest absolute value of imaginary part of the five attenuation
coefficients pj (j � 1–5), denoted by η, is used to characterizing the localization of edge waves [13]. Figure 4
gives the effect of the thickness ratio on the localization coefficient η. It is shown that ηmonotonically increases
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Table 2 Material constants of metal layer [35]

Metal Young’s modulus (109 N
m−2)

Shear modulus (109 N
m-2)

Poisson ratio Density (kg m−3) Rayleigh surface wave
velocity (m s−1)

E μ N ρ cR

Steel 210 82.03 0.28 7800 2998.7
Copper 119 44.87 0.326 8900 2091.5
Silver 62.3 22.8 0.366 10,500 1380.7

Fig. 4 Effect of thickness ratio on attenuation coefficient. Solid dots, open circles, solid squares, open squares, solid triangles
and open triangles represent the case of thickness ratio n � 0.5, 0.4, 0.3, 0.2, 0.1 and 0, respectively

with increasing ξ . The localization of edge waves of a piezoelectric single plate (the case of n � 0) is much
weaker than that of piezoelectric sandwich plate which means that when a bending edge wave propagating in
a piezoelectric single plate, it decays slower from the free edge compared with a piezoelectric sandwich plate.
The localization of edge waves of piezoelectric sandwich plate strongly depends on its thickness ratio. The
larger the thickness of the metal layers, the stronger the localization of edge waves for a given ξ . This means
that the bending edge wave is attenuating faster from the free edge of a piezoelectric sandwich plate with thick
metal layers.

To reveal the effect of piezoelectric material property on dispersion characteristics of bending edge wave,
we calculate the dispersion curves of three sandwich plates having different piezoelectric layer combined with
copper layers, i.e., copper/BaTiO3/copper, copper/PZT-4/copper and copper/PZT-5H/copper, which are shown
in Fig. 5. The used materials constants can be found in Table 1. As we know, the propagation of edge waves in
a semi-infinite isotropic elastic plate is the analogue of the classical Rayleigh surface wave in a traction-free
half-space under plane strain. We thus calculate the Rayleigh surface wave velocities cR of the considered
three piezoelectric materials under electrically shorted surface condition, also listed in Table 1, which are
2777.94 m/s for BaTiO3, 2192.34 m/s for PZT-4, and 1980.94 m/s for PZT-5H. Combined Fig. 4 and the above
Rayleigh surface wave velocities, it is found that the phase velocity of bending edge wave is positively related
to that of classical Rayleigh surface wave of piezoelectric layer. The larger the Rayleigh surface wave velocity,
the faster the localized bending wave propagation along the edge of the semi-infinite piezoelectric sandwich
plate. Figure 6 gives the dependence of metal material property on dispersion curves. In our calculation, the
upper and lower metal layers are the same and are taken as steel, copper and silver, respectively. Their material
constants are found in Table 2. Similarly, we calculate the Rayleigh surface wave velocities cR of three different
metal half-spaces under plane strain, also listed in Table 2, which are 2998.7 m/s for steel, 2091.5 m/s for
copper, and 1380.7 m/s for silver. As it is expected, a metal layer with high cR can produce a high velocity of
bending edge wave. From this, it is deduced that any constituent of a metal/piezoelectric/metal sandwich plate
having high Rayleigh surface wave velocity contributes to produce a high velocity of bending edge wave.
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Fig. 5 Dispersion curves of bending wave with different piezoelectric materials for electrically shorted case at the edge. Solid
dots, open squares and solid triangles represent the case that the middle piezoelectric layer materials are BaTiO3, PZT-4 and
PZT-5H, respectively

Fig. 6 Dispersion curves of bending wave with different metal materials for electrically shorted case at the edge. Solid dots, open
squares and solid triangles represent the case that the upper and lower metal layers are steel, copper and silver, respectively

6 Conclusions

Propagation of localized bending waves along the free edge of a piezoelectric sandwich plate is investigated
using the first-order Zig-Zag approximation theory. Interfacial continuity of the displacement and the transverse
shear stress is ensured. The general solution satisfying the governing equations is obtained. Dispersion relation
of localized bending waves is derived using the mechanical and electrical edge conditions. The effects of
electrical edge conditions, thickness ratio and material property on the dispersion characteristics are discussed
through the numerical examples. It is found that the electrical boundary condition imposed at the edge shows
more significant influence on dispersion property of edge waves in a piezoelectric sandwich plate compared
to such waves in a piezoelectric single-layer plate. The phase velocity of electrically open case is higher than
that of electrically shorted case. The phase velocity and the localization of edge wave significantly depends on
the thickness of metal layer. A large thickness of the metal layer results in a high wave velocity and a strong
localization. The propagation velocity of bending edge wave in a piezoelectric sandwich plate is positively
related to the classical Rayleigh surface wave velocities of piezoelectric half-space and metal half-space under
plane strain.

Acknowledgements This study is supported by the National Natural Science Foundation of China (No. 11872041) and the Top-
notch Young Talent Program of Hebei Province Education Department of China (No. BJK2022055).
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Appendix A

Expressions of the axial forces, shearing force, bending moments and twisting moment in Eq. (14) are given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nl
x �

∫ −hm/2

−hl−hm/2

(
λl + 2μl

)(∂U

∂x
− z

∂2W

∂x2

)

dz � hl
(
λl + 2μl

)(∂U

∂x
+
hl + hm

2

∂2W

∂x2

)

Nu
x �

∫ hu+hm/2

hm/2

(
λu + 2μu)

(
∂U

∂x
− z

∂2W

∂x2

)

dz � hu
(
λu + 2μu)

(
∂U

∂x
− hu + hm

2

∂2W

∂x2

)

Nm
x �

∫ hm/2

−hm/2
c11

(
∂U

∂x
− z

∂2W

∂x2

)

+ c12

(
∂V

∂y
− z

∂2W

∂y2

)

+ e31β sin(βz)�dz � hm
(

c11
∂U

∂x
+ c12

∂V

∂y

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nl
y �

∫ −hm/2

−hl−hm/2

(
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∂y
− z
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(
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y �
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⎧
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where λu, μu and λl, μl are the Lame constants of upper and lower metal layer, respectively.

Appendix B

The nonzero elements of matrix Q in Eq. (24) are given by.

Q11 � nl
(
λl + 2μl

)
+ nu

(
λu + 2μu) + c11

+ p2
(
nlμl + nuμu + c66

)
− 2c2

(
nlρl + nuρu + ρm

),

Q12 � p
(
nlμl + nuμu + c12 + c66

)
,

Q13 � ξ
(
λl + 2μl

)nl
(
nl + 1

)

2
− ξ
(
λu + 2μu)n

u(nu + 1)

2

+ ξp2nl
(
nl + 1

)
μl − ξp2nu

(
nu + 1

)
μu + ξc2nu

(
nu + 1

)
ρu − ξc2nl

(
nl + 1

)
ρl
,

Q21 � p
(
nlμl + nuμu + c12 + c66

)
,

Q22 � p2nl
(
λl + 2μl

)
+ p2nu

(
λu + 2μu)

+ p2c11 + nlμl + nuμu + c66 − 2c2
(
nlρl + nuρu + ρm

),

Q23 � ξp3
(
λl + 2μl

)nl
(
nl + 1

)

2
− ξp3

(
λu + 2μu)n

u(nu + 1)

2

+ ξpnl
(
nl + 1

)
μl − ξpnu

(
nu + 1

)
μu + pξc2nu

(
nu + 1

)
ρu − pξc2nl

(
nl + 1

)
ρl
,
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Q31 � −
(
λl + 2μl

)nl
(
nl + 1

)

2
+
(
λu + 2μu)n

u(nu + 1)

2

− p2μl n
l
(
nl + 1

)

2
+ p2μu n

u(nu + 1)

2
− 2c2nu

(
nu + 1

)
ρu − 2c2nl

(
nl + 1

)
ρl

,

Q32 � − p3
(
λl + 2μl

)nl
(
nl + 1

)

2
+ p3

(
λu + 2μu)n

u(nu + 1)

2

− pμl n
l
(
nl + 1

)

2
+ pμu n

u(nu + 1)

2
− pc2nu

(
nu + 1

)
ρu + pc2nl

(
nl + 1

)
ρl

,

Q33 � − ξ
(
1 + p4

)(
λl + 2μl

)3nl + 6nl2 + 4nl3

12

− ξ
(
1 + p4

)(
λu + 2μu)3n

u + 6nu2 + 4nu3

12
− ξ
(
1 + p4

) (c11 + c12)

12
+

− ξp2μl 3n
l + 6nl2 + 4nl3

12
− ξp2μu 3n

u + 6nu2 + 4nu3

12
− ξp2

c66
6

+ 2ξ−1c2
(
nlρl + nuρu + ρm

)
+ ξ
(
c2 + p2c2

)
ρl 3n

l + 6nl2 + 4nl3

6

+ ξ
(
c2 + p2c2

)
ρu 3n

u + 6nu2 + 4nu3

6
+ ξ
(
c2 + p2c2

)ρm

6

,

Q34 � −2ξ−2
(
1 + p2

) e31
π

, Q43 � 2
(
1 + p2

) e31
π
, Q44 � −(1 + p2

) s11
2 − ξ−2π2 s33

2 .
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