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Abstract This study presented an equivalent continuummodelingmethod for analysis of the transient response
of the large space truss structures with nonlinear elastic joints. Firstly, a two-node hybrid joint-beam element
model was established for a truss member with two nonlinear joints at its both ends based on the geometrical
relationship and equilibrium condition between the truss member and the nonlinear joints. Subsequently, an
equivalent 8-DOFs nonlinear beam element including the warping and distortional deformations was derived
for approximating the repeating element of the beam-like truss structure with rectangular cross-sections based
on the energy equivalence method, the external force vector and nonlinear restoring force vector of the truss
structure were transferred to the external force vector and nonlinear restoring force vector of the equivalent
beam element. The equation of motion of the equivalent nonlinear beammodel was solved by the combination
of the Newmark-β method and the Newton–Raphson iteration method. In the numerical studies, a cantilevered
truss structure and a spacecraft with a truss support structurewere simulated by considering the joint have piece-
wise linear stiffness. The correctness and high efficiency of the presented modeling method was verified by
comparison of the results of the equivalent models with the original nonlinear finite element models established
by ANSYS.

1 Introduction

Large space truss structures (LSTS) are ideal support platforms in various space applications such as satellite
communication, earth observation and deep space exploration [1–3]. The high precision and high stability
of space missions put forward very high requirements on the dynamic performance of the LSTS. In order to
realize on-orbit deployment or assembly, a large number of mechanical joints are used in LSTS [4, 5]. These
joints inevitably have nonlinear factors such as clearance, contact, friction, and slip [6–8], which make the
overall structure possess the characteristics of high dimensionality, strong nonlinear and non-smooth [9–11],
and bring great challenges to the dynamic modeling, analysis, and control of the LSTS.

The finite element modeling (FEM) method can be used to establish the dynamic model of LSTS [12],
however, for LSTS with thousands of nonlinear joints, the models established directly using the FEM method
will be very high-dimensional, and needs a huge computational cost for nonlinear dynamic analysis. The
LSTS with nonlinear joints belong to the dynamical systems with local nonlinearities; in order to obtain low-
dimensional dynamic models for such systems, various model order reduction techniques have been proposed,
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such as the dynamic condensation technique [13], the component mode synthesis method [14], the hybrid
reduced order method [15], etc. However, these methods have not been applied in a complex system having
more than thousands of local nonlinearities such as the LSTS.

The LSTS are usually repetitive structures composed of repeating elements (or named “unit cells”). From
the point view of equivalence of dynamics, if the repetitive structure consists of a considerable number of
repeating elements, it may be convenient to approximate the dynamic behavior of the repetitive structure by a
continuum model via a suitable equivalent modeling method [16]. In the past decades, the use of equivalent
continuummodeling (ECM)method to establish low-dimensional equivalentmodel for the truss-like structures
was favored by many researchers [17–22]. In the early stage, these studies were carried out on truss-like
structures with ideal pin joints or rigid joints. For examples, Noor et al. [23] proposed an ECM method based
on the equivalence of energy. Sun and Liebbe [24] proposed an ECM method based on the equivalence of
static displacement. Stephen and Zhang [25] adopted the transfer matrix method to carry out the ECM for
ideal pin-jointed truss structures. Later, in order to consider the mechanical properties of the truss joints more
accurately, the stiffness and damping characteristics of the joints are considered in the process of ECM [26–30].
For example, Salehian and Inman [26] established an equivalent beam model for the planar repetitive truss
structure considering the torsional stiffness of the joint. Liu et al. [27, 28] presented an ECM method for the
truss structures considering the joint have both stiffness and damping characteristics in the directions of all six
degrees-of-freedom, and compared the accuracies of the equivalent classical beam model and the equivalent
micropolar beam model. All the above studies modelled the truss joints as linear spring/damping elements
without considering the complex nonlinear characteristics in the joints.

The modeling and identification of the nonlinear joints in structures have been well studied [31, 32],
and different simplified models are used to characterize the nonlinear stiffness and damping of the joints
such as the piecewise linear stiffness model [6, 33], the cubic stiffness model [34], the hysteresis model [10,
35], etc. However, the studies on ECM methods for repetitive truss structures with nonlinear joints are very
limited. Webster [33] first proposed a modeling method that considered joint nonlinearity in the equivalent
continuum model of space truss structures. He used the describing function method to equivalently linearize
the joint nonlinearity and established an equivalent nonlinear beam model for analyzing the harmonic motion
of the truss structure. Zhang et al. [34] considered the cubic stiffness characteristic of truss joint, obtained the
equivalent linearized stiffness coefficient of joint using the description function method, and established the
equivalent beammodel of the truss structure based on the energy equivalencemethod. Liu et al. [35] established
the equivalent beam model of beam-like space truss structure considering the friction-slip nonlinearity of the
truss joint, and analyzed the amplitude-frequency characteristics of the truss structure. Li et al. [36] proposed
a multi-harmonic ECM method for steady-state response analysis of space truss structures by considering
higher-order harmonic components caused by the joint nonlinearity. However, all the above studies on ECM
of LSTS with nonlinear joints obtained equivalent continuum models in the frequency domain and can’t be
used for transient response analysis directly. Till now, an ECMmethod for transient dynamic analysis of LSTS
with nonlinear joints has not been established.

This study presented an ECM method for the transient dynamic analysis of repetitive truss structures with
nonlinear elastic joints. The organization of the paper is as follows: In Sect. 2, the equivalent continuum
modeling method for repetitive truss structure with nonlinear elastic joints is introduced. Section 3 gives the
solution method for the equivalent nonlinear beam model. Numerical examples including a cantilevered truss
structure and a spacecraft structure with piece-wise linear stiffness joints are given in Sect. 4 to verify the
correctness and high efficiency of the presented equivalent modeling method.

2 Equivalent continuum modeling of the space truss structure

Taking the repetitive truss structure shown in Fig. 1 as an example. Considering the nonlinearities of the joints,
the equation of motion of the truss structure can be established by using the FEM method as

Mü + Cu̇ +Ku + fNL (u, u̇) � F (1)

whereM, C and K are the mass, damping and linear stiffness matrices of the truss structure, respectively, fNL
is the nonlinear restoring force vector caused by the nonlinear joints, F is the external load vector, u, u̇ and
ü are the displacement, velocity and acceleration vectors of the truss structure, respectively. The nonlinear
dynamic model established in Eq. (1) is extremely high-dimensional. Alternatively, an ECM method will be
proposed for this kind of truss structure in order to obtain a low-dimensional equivalent dynamic model.
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Fig. 2 Hybrid joint-beam element model of the truss member with two end nonlinear joints

2.1 Model condensation

Firstly, the truss member with nonlinear joints at its two ends was modelled using the FEMmethod as a hybrid
joint-beam element model, as shown in Fig. 2, where the truss member is modelled as a spatial beam element,
the joint is modelled as a six degrees-of-freedom (DOFs) nonlinear spring-damper element connected with a
rigid link element. The length of the rigid link element equals to the real length of the joint, and the length of
the spring-damper element is zero.

The equation of motion of this hybrid joint-beam element is

MH üH + CH u̇H +KHuH + fNLH (uH , u̇H ) � FH (2)

where MH , CH , KH are the mass, damping and linear stiffness matrices of the hybrid joint-beam element
model, respectively, fNLH is the nonlinear restoring force vector, and FH is the vector of nodal internal forces
at the ends of the hybrid joint-beam element,

uH �
{
uTi ,u

T
k ,u

T
m ,u

T
n , u

T
l , u

T
j

}T
(3a)

FH �
{
FT
i , 0, 0, 0, 0,F

T
j

}T
(3b)

fNLH � {
0, − fTs1, f

T
s1, − fTs2, f

T
s2, 0

}T
(3c)

where up (p � i, j, k, l, m, n) is the nodal displacement vector of node p, fs1 and fs2 are the nonlinear restoring
force vectors caused by the left and right nonlinear joints, respectively.

Denoting q �
{
uTi , u

T
j

}T
, qa�

{
uTk , u

T
l

}T
, qb�

{
uTm , u

T
n

}T
, according to the geometric relationship, it be

obtained that

qa�(I + E)q (4)
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where I is a 12×12 identity matrix, and

E �
[
E1 0
0 E2

]
, E1 �

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 em1
0 0 0 0 −em1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
, E2 �

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 −em2
0 0 0 0 em2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(5)

where em1 and em2 (m � l, v, t, and d) are the eccentricities of the two joints connected with the member (the
superscripts l, v, t, andd represent the longitudinal, vertical, transverse, and diagonal members, respectively).

Denoting

x1� uk − um , x2� ul − un , x �{
xT1 , x

T
2

}T
(6)

where x1 and x2 represent the deformation vectors of the two nonlinear joints, then it can be obtained that

x � qa − qb (7)

The member and the two end joints satisfy the following dynamic equilibrium relationship

Ksx + Cs ẋ + fs(x, ẋ) �Mbq̈b + Cbq̇b +Kbqb (8)

where

Ks � diag
([
kuxi , kuyi , kuzi , kθxi , kθyi , kθ zi , kux j , kuy j , kuz j , kθx j , kθy j , kθ z j

])
(9a)

Cs � diag
([
cuxi , cuyi , cuzi , cθxi , cθyi , cθ zi , cux j , cuy j , cuz j , cθx j , cθy j , cθ z j

])
(9b)

fs � {−fTs1, f
T
s2

}T
(9c)

Mb,Kb andCb are themass, stiffness and the dampingmatrices of themember, respectively, the coefficients
in Eqs. (9a) and (9b) are the linear stiffness and damping coefficients in six directions of the two joints.

Considering the nonlinearity of the joint is elastic, the nonlinear restoring force vector of the two end joints
can be approximated by using the tangent stiffness of the nonlinear joint as [37, 38]

fs(x) ≈ KsT (x)x (10)

where

KsT � diag
([

k̃uxi , k̃uyi , k̃uzi , k̃θxi , k̃θyi , k̃θ zi , k̃ux j , k̃uy j , k̃uz j , k̃θx j , k̃θy j , k̃θ z j

])
(11)

The coefficients in Eq. (11) are the tangent stiffness coefficients in six directions of the two joints.
Considering that the fundamental frequencies of large space truss structures are usually very low, the

inertial force and damping force in Eq. (8) will be neglected when the low frequency vibration of the truss
structure is considered, which yields

[Ks +KsT (x)]x � Kbqb (12)

Combining Eqs. (4), (7) and (12) yields

qb � (I +Gb)q, x � Sqa � Gsq (13)

where

S � [Ks +KsT (x) +Kb]
−1Kb, Gb � −S + E − SE, Gs � S(I + E) (14)

Utilizing Eq. (13), the nodal displacement vector qb of the member and the deformation vector x of the
joints can be expressed with the displacement vector q. Afterwards, a new two-node condensed hybrid joint-
beam element can be derived by using the condensation method in [27, 37], with the mass, stiffness, and
damping matrices of

KHC � Kb + (GT
bKb +KbGb +GT

bKbGb) +GT
s KsGs (15a)
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Fig. 3 Condensed model of the repeating element of the truss structure

KHCT � Kb + (GT
bKb +KbGb +GT

bKbGb) +GT
s [Ks +KsT (x)]Gs (15b)

MHC � Mb + (GT
bMb +MbGb +GT

bMbGb) (15c)

CHC � Cb + (GT
bCb + CbGb +GT

bCbGb) +GT
s CsGs (15d)

where KHC is the linear stiffness matrix of the condensed hybrid joint-beam element, KHCT is the tangent
stiffness matrix of the condensed hybrid joint-beam element including both linear and nonlinear stiffnesses of
the joints.

The equation of the motion of the condensed hybrid joint-beam element is

MHC üHC + CHC u̇HC +KHCuHC + fNLHC (uHC , u̇HC ) � FHC (16)

where

uHC �
{
uTi , u

T
j

}T
, fNLHC � {− fTs1, f

T
s2

}T
, FHC �

{
FT
i ,F

T
j

}T
(17)

Utilizing the above condensed hybrid joint-beam element, the condensed model of the repeating element
can be assembled, as shown in Fig. 3, with the mass matrix MBC , the damping matrix CBC , the linear
stiffness matrix KBC , and the nonlinear restoring force vector fNLBC . The tangent stiffness matrix KBCT of
the condensed repeating element can be obtained by assembling the tangent stiffness matrix KHCT of the
condensed hybrid joint-beam element.

The displacement vector of the condensed repeating element is

uBC � {
uTC1,u

T
C2, u

T
C3,u

T
C4, u

T
C5,u

T
C6,u

T
C7, u

T
C8

}T
(18)

where

uCk � {
uCxk , uCyk , uCzk , θCxk , θCyk , θCzk

}T, (k � 1, 2, . . . , 8) (19)
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2.2 Equivalent continuum modeling of the truss structure

Considering the geometrical feature of the truss structure in Fig. 1, it can be equivalently modelled as a thin-
walled box beam. So, the displacement functions of an arbitrary point on the cross section of the truss structure
can be written using the deformation assumption of the thin-walled box beam [35, 39]. Making a Taylor series
expansion for the displacement functions, the nodal displacement vector of the condensed repeating element
can be expressed with the displacement and strain components at the center of the repeating element [35]

uBC ≈ TBCs0 (20)

where

s0 � {
ux0, uy0, uz0,φx0,φy0,φz0, εx0, γxy0, γxz0, κx0, κy0, κz0, �x0, ∂x�x0, γyz0, ∂xγyz0,

εy0, εz0,�y0,�z0
}T (21)

in which ux0, uy0, uz0, φx0, φy0 and φz0 are the displacements and rotations of the cross section at the center of
the repeating element, εx0, εy0, εz0, γxy0, γxz0 and γyz0 are the extensional strain and shear strains at the center
of the repeating element, �x0 is the warping of the cross section, �y0 and �z0 denote the in-plane bending of
the cross section, ∂x (·) � ∂(·)/∂x , TBC is a 48×20 transformation matrix.

As a result, the kinetic energy, strain energy and Rayleigh dissipation function of the repeating element
can be evaluated as

TBC � 1

2
u̇TBCMBC u̇BC � 1

2
ṡT0M0ṡ0 (22a)

UBCL � 1

2
uTBCKBCuBC � 1

2
sT0K0s0 (22b)

UBC ≈ 1

2
uTBCKBCTuBC � 1

2
sT0K0T s0 (22c)

RBC � 1

2
u̇TBCCBC u̇BC � 1

2
ṡT0C0ṡ0 (22d)

where

M0 � TT
BCMBCTBC , K0 � TT

BCKBCTBC (23a)

K0T � TT
BCKBCTTBC , C0 � TT

BCCBCTBC (23b)

UBCL and UBC are the strain energies of the linear part and the whole of the repeating element, respectively.
Since the classical beam theory does not consider the in-plane extension and bending of the cross section,

so the strain components εy0, εz0,�y0 and�z0 in s0 should be eliminated to obtain an equivalent beammodel.
The static condensation method [40, 41] can be used for this purpose, after condensation, Eq. (22) becomes

TBC ≈ 1

2
ṡT1M1ṡ1, UBCL ≈ 1

2
sT1K1s1, UBC ≈ 1

2
sT1K1T s1, RBC ≈ 1

2
ṡT1C1ṡ1 (24)

whereM1, K1, K1T and C1 are the condensed matrices of M0, K0, K0T and C0, respectively, s1 is the vector
contains the first 16 variables in s0.

Considering the generalized warping displacement (� x0) and the generalized distortional displacement
(γ yz0) of the cross section of the truss structure, an equivalent 8-DOFs spatial beam element is proposed for
the repeating element, whose nodal displacement vector is

uBE � {
uTE1,u

T
E2

}T
(25)

where

uEi � {
uExi , uEyi , uEzi ,φExi ,φEyi ,φEzi ,�Exi , γEyzi

}T, (i � 1, 2) (26)

Using the Taylor series expansion method, the nodal displacement vector of the equivalent beam element
can also be expressed with the vector s1 as [35]

uBE ≈ TBE s1 (27)
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where TBE is a 16×16 transformation matrix.
Then, the kinetic energy, strain energy and Rayleigh dissipation function of the equivalent beam element

can be evaluated as

TBE � 1

2
u̇TBEMBE u̇BE � 1

2
ṡT1T

T
BEMBETBE ṡ1 (28a)

UBEL � 1

2
uTBEKBEuBE � 1

2
sT1T

T
BEKBETBE s1 (28b)

UBE ≈ 1

2
uTBEKBETuBE � 1

2
sT1T

T
BEKBETTBEs1 (28c)

RBE � 1

2
u̇TBECBE u̇BE � 1

2
ṡT1T

T
BECBETBE ṡ1 (28d)

where MBE , CBE , KBE and K BET are the mass, damping, linear stiffness and tangent stiffness matrices of
the equivalent beam element, respectively.

According to the energy equivalence between the repeating element and the equivalent beam element, it
can be obtained that

MBE � (TT
BE )

−1M1T
−1
BE (29a)

KBE � (TT
BE )

−1K1T
−1
BE (29b)

KBET � (TT
BE )

−1K1TT
−1
BE (29c)

CBE � (TT
BE )

−1C1T
−1
BE (29d)

2.3 Equivalence of the external loads and the nonlinear restoring forces

Considering that the external loads are applied on the joints of the truss structures, the nodal load vector of the
condensed repeating element will be transferred to the nodal load vector of the equivalent beam element here.

Taking the case that three concentrate loads Fx1, Fy1 and Fz1 acting on node 1 of the condensed repeating
element as an example, as shown in Fig. 4.

The equivalent nodal loads on the equivalent beam element produced by the load Fx1 are

FEx1 � Fx1, MEy1 � Fx1z1, MEz1 � −Fx1y1, BEx1 � Fx1y1z1 (30)

the equivalent nodal loads produced by the loads Fy1 andFz1 are

FEy1 � Fy1, MEx1 � −Fy1z1, BEyz1 � Fy1
z1
2

(31)

and

FEz1 � Fz1, MEx1 � Fz1y1, BEyz1 � Fz1
y1
2

(32)

where FEx1, FEy1 and FEz1 are the equivalent nodal forces, MEx1, MEy1 and MEz1 are the equivalent nodal
moments, BEx1 and BEyz1 are the equivalent warping bimoment and distortional bimoment.

Denoting the external load vector of the condensed repeating element as

FBC � {
FT
C1,F

T
C2,F

T
C3,F

T
C4,F

T
C5,F

T
C6,F

T
C7,F

T
C8

}T
(33)

where

FCk � {
Fxk , Fyk , Fzk , 0, 0, 0

}T, (k � 1, 2, . . . , 8) (34)

According to Eqs. (30), (31) and (32), the external load vector of the equivalent beam element can be
written as

FBE � {
FT
E1,F

T
E2

}T � TFFBC (35)
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Fig. 4 Equivalence of the external loads on the truss structure

where

FEi � {
FExi , FEyi , FEzi ,MExi ,MEyi ,MEzi , BExi , BEyzi

}T, (i � 1, 2) (36)

TF �
⎡
⎢⎣
TF1 TF2 TF3 TF4 0 0 0 0

0 0 0 0 TF5 TF6 TF7 TF8

⎤
⎥⎦ (37)

TFk �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −zk yk 0 0 0
zk 0 0 0 0 0

−yk 0 0 0 0 0
ykzk 0 0 0 0 0
0 zk

/
2 yk

/
2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (k � 1, 2, . . . 8) (38)

Similar to the equivalence of the external loads, the nonlinear restoring force vector of the repeating element
can be transfer to the nonlinear restoring force vector of the equivalent beam element

fNLBE � TF fNLBC (39)

At last, the equation of motion of the equivalent nonlinear beammodel of the truss structure can be obtained
as

ME üE + CE u̇E +KEuE + fNLE � FE (40)
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and the global tangent stiffness matrix KET of the equivalent beam model can be assembled by the tangent
stiffness matrix KBET of the equivalent beam element.

3 Solution of the equivalent nonlinear beam model

The equation of motion (40) of the equivalent beammodel can be solved by the combination of the Newmark-β
method and the Newton–Raphson iteration method [42]. Assuming the result at time ti is known, in order to
solve the result at time ti+1, rewrite Eq. (40) in the quasi-static form

f̂E(i+1) � FE(i+1) (41)

where

f̂E(i+1) � ME üE(i+1) + CE u̇E(i+1) +KEuE(i+1) + fNLE(i+1) (42)

Using the Newton–Raphson iteration method to solve Eq. (41), in the (j + 1)th iteration step

f̂ ( j+1)E(i+1) ≈ f̂ ( j)E(i+1) +

(
∂ f̂E
∂uE

)( j)

(i+1)


u( j)E(i+1) � FE(i+1) (43)

where
(

∂ f̂E
∂uE

)( j)

(i+1)

� ME

(
∂üE

∂uE

)( j)

(i+1)
+ CE

(
∂u̇E

∂uE

)( j)

(i+1)
+KE +

(
∂fNLE

∂uE

)( j)

(i+1)
(44)


u( j)E(i+1) � u( j+1)E(i+1) − u( j)E(i+1) (45)

Making use of the Newmark-β method
(

∂üE

∂uE

)( j)

(i+1)
� 1

β(
t)2
≡ c0,

(
∂u̇C
∂uC

)( j)

(i+1)
� γ

β
t
≡ c1 (46)

where β and γ are parameters of the Newmark-β method, 
t is the time step. Then, Eq. (44) can be rewritten
as

(
∂ f̂E
∂uE

)( j)

(i+1)

� K( j)
ET (i+1) + c0ME + c1CE +KE ≡ K̂( j)

ET (i+1) (47)

where K( j)
ET (i+1) �

(
∂fNLE
∂uE

)( j)
(i+1)

is the global tangent stiffness matrix of the equivalent beam model in the jth

iteration step at timeti.
Substituting Eq. (47) into (43) yields

K̂( j)
ET (i+1)
u( j)E(i+1) � FE(i+1) − f̂ ( j)E(i+1) ≡ R̂( j)

(i+1) (48)

where R̂( j)
(i+1) is the residual force vector. Substituting Eq. (42) into (48) yields

R̂( j)
(i+1) � FE(i+1) − f ( j)NLE(i+1) − ME ü

( j)
E(i+1) − CE u̇

( j)
E(i+1) − KEu

( j)
E(i+1) (49)

According to the Newmark-β method

ü( j)E(i+1) � c0
(
u( j)E(i+1) − uE(i)

)
− c2u̇E(i) − c3üE(i) (50)

u̇( j)E(i+1) � c1
(
u( j)E(i+1) − uE(i)

)
− c4u̇E(i) − c5üE(i) (51)
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where

c2 � 1

β
t
, c3 � 1

2β
− 1, c4 � γ

β
− 1, c5 �

(
γ

2β
− 1

)

t (52)

Substituting Eqs. (50) and (51) into (49) yields

R̂( j)
(i+1) � F̂E(i+1) − f ( j)NLE(i+1) − (c0ME + c1CE )u( j)E(i+1) (53)

where

F̂E(i+1) � FE(i+1) +ME (c0uE(i) + c2u̇E(i) + c3üE(i)) + CE (c1uE(i) + c4u̇E(i) + c5üE(i)) (54)

From Eq. (48), it can be solve that


u( j)E(i+1) � (K̂( j)
ET (i+1))

−1R̂( j)
i+1 (55)

At last, the solution of the j + 1 iteration step can be obtained as

u( j+1)E(i+1) � u( j)E(i+1) + 
u( j)E(i+1) (56)

After each iteration the solution is checked and the iterative process is terminated when the convergency
criteria is satisfied. The convergency criteria can be chosen as∣∣∣
u( j)E(i+1)

∣∣∣
∣∣∣u( j+1)E(i+1) − uE(i)

∣∣∣
≤ ε (57)

where ε is a specified tolerance.
The flowchart of the above solving process of the equivalent beam model is shown in Fig. 5.
In each iteration step the nonlinear restoring force and the tangent stiffness of each nonlinear joint need to

be updated, which can be evaluated by the following procedures: Firstly, evaluate the displacement vector of
the condensed repeating element from the displacement vector of the equivalent beam element,

uBC � TBC1T
−1
BEuBE (58)

where TBC1 is a 48×16 matrix that obtained by dropping the last 4 columns of matrix TBC . Then, extract the
nodal displacement vector q of each condensed hybrid joint-beam element from the displacement vector uBC
of the condensed repeating element, and evaluate the deformation vector x of the two joints in the condensed
hybrid joint-beam element using Eq. (13). At last, the nonlinear restoring force and the tangent stiffness of the
nonlinear joint can be obtained.

4 Numerical examples

4.1 Example 1: A cantilevered truss structure

A cantilevered truss structure as shown in Fig. 6a is firstly used as a numerical example to verify the presented
modeling method. This truss structure consists of 20 repeating elements, the size of the repeating element
is Ll � Lv � Lb � 1.5 m. The truss members are made of carbon fiber tubes with the outer diameter do �
40 mm and the inner diameter di � 34 mm. The material properties of the carbon fiber cube are: Young’s
modulus E � 205 GPa, density ρ � 1720 kg/m3, and Poison ratio ν � 0.3. Considering the vertical and
transverse members are rigid connected, and the longitudinal and diagonal members are connected with them
by nonlinear joints. The eccentricities of the joints connected with the longitudinal and the diagonal members
are el1 � el2 � 20 mm and ed1 � ed2 � 30 mm, respectively. The linear stiffness and damping coefficients of
the joints are listed in Table 1.

Furthermore, considering the joint has additional piece-wise linear stiffness in axial direction, as shown
Fig. 7, the restoring force of this nonlinearity can be written as

fN L (x) � k1x + k1(α − 1)(|x |−xy)sign(x)
sign(|x |−xy) + 1

2
(59)
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of the equivalent beam element

Check  the  convergence
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Start

End
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Fig. 5 Flowchart of the solution process of the nonlinear equivalent beam model
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Equivalent beam element

(b) Equivalent dynamic model

Fig. 6 The cantilevered truss structure and its equivalent model

Fig. 7 Piece-wise linear stiffness model

Table 1 Linear stiffness and damping coefficients of the joint in six directions

Stiffness coefficients Values Damping coefficients Values

kux (N/m) 1×106 cux (N s/m) 1×103

kuy (N/m) 2×107 cuy (N s/m) 2×103

kuz (N/m) 3×107 cuz (N s/m) 3×103

kθx (N m/rad) 1×104 cθx (N m s/rad) 1×101

kθy (N m/rad) 2×104 cθy (N m s/rad) 2×101

kθz (N m/rad) 3×104 cθz (N m s/rad) 3×101
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Fig. 8 Displacement response of the cantilevered truss model under the sweep-sine excitation

t

F(t)

T0

F
0

T/2

Fig. 9 Triangular impulse excitation

where k1 is the initial stiffness coefficient, α is the stiffness ratio between the branches, α >1 represents the
stiffness-hardening nonlinearity andα <1 represents the stiffness-hardening nonlinearity, x is the deformation
of the joint, xy is the critical deformation for which a change of stiffness occurs, sign(·) is the signum function.
In this example, the parameters of the nonlinear model are set as k1 � 5×106 N/m, xy � 10 μm, and different
values of α from 0.4 to 4 are used for consideration of the joints with stiffness-hardening or stiffness-softening
nonlinearity.

The equivalent beam model of the cantilever truss structure is shown in Fig. 6b, which consists of 20
equivalent beam elements and 21 nodes. In order to verify the accuracy of the equivalent beam model, the
commercial FEM software ANSYS is used to established a full finite element model for the original truss
structure, in which, the truss member is modeled by spatial beam element (Beam4 element), the joint is
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Fig. 10 Displacement response of the cantilevered truss model under the triangular impulse excitation

modelled by spring elements (Combin14 element for linear stiffness and damping and Combin39 element for
nonlinear stiffness) and rigid constraint element (MPC184 element). The full finite element model of the truss
structure consists of 2804 elements.

At first, a sweep-sine excitation is used to excite the first resonance mode of the structure, the excitation is
applied at node A at the free end of the truss in the Z-axis direction with the magnitude of

FZ � FZ0 sin

(
ωl t +

ωu − ωl

2T
t2

)
(60)

where FZ0 is the excitation amplitude, ωl and ωu are the lower and upper limits of the excitation frequency, T
is the duration of the excitation. The equivalent loads on node 21 of the equivalent beam model are

FEZ � FZ , MEX � − FZ Lb

2
, BEY Z � − FZ Lb

4
(61)

The displacements in the Z-axis direction of node A evaluated by the equivalent beam model and the
ANSYS FEM model under the sweep-sine excitation with FZ0 � 50 N and T � 500 s are compared in Fig. 8.
It can be found that for the truss structure with stiffness-softening nonlinear joints (α � 0.2 and 0.4) the results
of the two models are almost the same, for the truss structure with stiffness-hardening nonlinear joint (α �
1.6 and 4.0), the resonant frequency obtained by the equivalent beam model is a little bigger than that of the
ANSYS model, but the error doesn’t increase with the increasement of the stiffness ratio α. This error maybe
caused by the approximation used in the derivation of the condensed hybrid joint-beam element, which uses
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Fig. 11 The spacecraft structure and its equivalent dynamic model

the static equilibrium relationship [Eq. (12)] instead of the real dynamic equilibrium relationship [Eq. (8)].
This phenomenon is also observed in the Guyan reduction method, which is also a static reduction method,
the natural frequencies obtained by the Guyan reduced model are also a little bigger than those of the original
structures [43]. From Fig. 8, it also can be found that the resonant frequency of the truss structure increases with
the increasement of the stiffness ratio α, the equivalent beam model can also accurately predict the resonant
frequency for the for the truss structure.

Next, a triangular impulse load as shown in Fig. 9 is applied at node A in the Z-axis direction to excite
multiple modes of vibration of the truss structure. The peak value and duration of the excitation are FZ0 �
1000 N and T � 0.1 s, respectively. The displacements of node A in the Z-axis direction evaluated by the
equivalent beammodel and the ANSYSmodel for this excitation are shown in Fig. 10. It can be found that joint
nonlinearity has an obvious influence on the displacement response of the truss structure, and the equivalent
beam model predicts the response accurately for truss structure with both stiffness-softening nonlinear joints
and stiffness-hardening nonlinear joints under the impulse load.

It is worth to remark that the proposed method requires only 20 elements for modeling this truss structure
instead of 2804 elements in the original FEMmodel, which brings a very high promotion on the computational
efficiency.

4.2 Example 2: a spacecraft structure

The second example is a spacecraft structure as shown in Fig. 11a, which consists of a satellite, a payload and
a supported truss structure. The truss structure is assumed the same as in the first example, one end of the truss
is attached to the satellite, and the other end is connected with the payload. For simplicity, the satellite and the
payload are all assumed to be a cube with side length of 1.5 m, the equivalent densities of the satellite and the
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Fig. 12 Displacement response of the spacecraft model under the triangular impulse excitation

payload are assumed as ρ1 � 50 kg/m3 and ρ2 � 10 kg/m3, respectively. The mass centers of the satellite and
the payload are all assumed on the central axis of the truss structure.

The equivalent dynamic model of the spacecraft is shown in Fig. 11b, where the satellite and the payload
are modelled as mass elements on the end nodes of the equivalent beam model of the truss structure. Since the
mass elements are not on the mass centers of the satellite and the payload, the effect of eccentricity should be
considered, which yields the mass matrices of the satellite and the payload as

M1 �

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 0 0 0
0 m1 0 0 0 −m1em1
0 0 m1 0 m1em1 0
0 0 0 Ix1 0 0
0 0 m1em1 0 Iy1 0
0 −m1em1 0 0 0 Iz1

⎤
⎥⎥⎥⎥⎥⎦

(62)

and

M2 �

⎡
⎢⎢⎢⎢⎢⎣

m2 0 0 0 0 0
0 m2 0 0 0 m2em2
0 0 m2 0 −m2em2 0
0 0 0 Ix2 0 0
0 0 −m2em2 0 Iy2 0
0 m2em2 0 0 0 Iz2

⎤
⎥⎥⎥⎥⎥⎦

(63)
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Fig. 13 Acceleration response of the spacecraft model under the triangular impulse excitation

where m1 and m2 are the masses of the satellite and the payload, respectively, em1 and em2 are the distances
from the truss ends to the mass centers of the satellite and the payload, respectively,

Ixi � 1

6
mia

2
i , Iyi � 5

12
mia

2
i , Izi � 5

12
mia

2
i , (i � 1, 2) (64)

a1 and a2 are the side lengths of the satellite and the payload, respectively.
A triangular impulse momentMZ is applied on the satellite for simulating the attitude maneuvering of the

spacecraft. The peak value and duration of the impulsemoment areMZ0 � 5000NmandT � 0.1 s, respectively.
The displacement and acceleration in the Y -axis direction of node A on the truss structure evaluated by the
ANSYS model and the equivalent dynamic model are shown in Figs. 12 and 13, respectively. It can be found
that the presented ECMmethod can also produce accurate transient dynamic response when used in modeling
of the spacecraft structure with repetitive truss structure.

5 Conclusions

In this study, an equivalent continuum modeling method for analysis of the transient response of the large
space truss structures with nonlinear elastic joints was presented. A two-node condensed hybrid joint-beam
element model for a truss member with nonlinear joints at its two ends was obtained, and an equivalent 8-
DOFs nonlinear beam element was derived for the repeating element of the truss structure with rectangular
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cross-sections based on the energy equivalence method. The equation of motion of the nonlinear equivalent
beam model of the whole truss structure was solved by the combination of the Newmark-β method and the
Newton–Raphson iteration method. The numerical example of a cantilevered truss structure with joints having
piece-wise linear extensional stiffnesses under sweep-sine excitation and impulse excitation demonstrated that
the presented modeling method could accurately predict the transient response of the truss structure with a very
high computational efficiency. The applicability of the presented equivalent modeling method on spacecraft
with repetitive truss structure was also validated.
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