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Abstract An analysis is performed in this research to investigate the vibration response of sandwich cylindrical
panels with piezoelectric layers. Core of the sandwich panel is made from a composite laminated media which
is reinforced with graphene platelets. The amount of graphene in the layers may be different which results in
a piecewise functionally graded media. Elasticity modulus of the core media is estimated via the Halpin–Tsai
rule, while the mass density and Poisson’s ratio are obtained via the simple rule of mixtures approach. By
means of the first-order shear deformation panel theory and linear variation of electric field for the smart layers
as the basic assumptions, the expressions of the energies of the panel are obtained. With the general idea of the
Ritz method whose shape functions are constructed via the Legendre polynomials, the matrix representation
of motion equations is obtained. The obtained form of equations may be used for both closed and open circuit
conditions of piezoelectric layers. Results of this study are first compared with the available data in the open
literature for simple cases, and after that novel numerical results are given to explore the effects of graded
patterns of GPLs, weight fraction of GPLs, mechanical and electrical boundary conditions, number of layers,
and also geometrical parameters. It is highlighted that frequencies may be controlled via proper graded pattern
and weight fraction of GPLs. Also open circuit type of electrical boundary conditions results in higher natural
frequencies in comparison to closed circuit type.

1 Introduction

Thanks to the everlasting development of nanotechnology which is led to providing super-performance com-
posite materials, great research interest is sparked in the field of composite materials reinforced with nanoscale
fillers such as nanoparticle [1], nanofiber [2, 3], CNT [4–10] and various combinations of nanofillers [11].
Revealing the remarkable superiority of graphene platelets in terms of toughness, Young’s modulus, strength,
etc., compared to other carbon reinforcements since its initial introduction, that is, since Novoselov et al. [12]
exfoliated it from a bulk graphite in 2004, it has caused the attention of the research and industrial community.
Owing to its superior mechanical properties, namely Young modulus-1TPa, ultimate strength-130 GPa and
significant thermal and electrical characteristics, a very low amount of added GPLs to polymer matrix can

Y. Tao (B) · C. Chen
Hangzhou Vocational & Technical College, Hangzhou 310018, China
e-mail: taoyong1235@163.com

C. Chen
e-mail: chenchu2025@163.com

Y. Kiani (B)
Faculty of Engineering, Shahrekord University, Shahrekord, Iran
e-mail: y.kiani@sku.ac.ir

Y. Kiani
Nanotechnology Research Institute, Shahrekord University, Shahrekord, Iran

http://orcid.org/0000-0003-1428-0034
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-023-03557-8&domain=pdf


3220 Y. Tao et al.

result in significant enhancement of properties of polymer-GPL composites, as highlighted by Rafiee et al.
[13], Biswas et al. [14], Parashar andMertiny [15]. Due to the high strength-to-weight ratio of composites rein-
forced with graphene platelets, it is predicted that such types of composites will be one of the most promising
materials in future advent industries, especially in the aerospace industry. The mentioned items, in addition
to its lower relative cost of the manufacturing process, have been the sake of the tendency of research and
industrial centers to use these materials and the inspiring for conducting extensive numerical and analytical
research in this realm. Due to the prevention of agglomeration and other problems in the manufacturing pro-
cess, graphene platelets are generally added in a low volume percentage to polymer matrices; therefore, to
increase the reinforcing efficiency, the layer-wise functionally graded distribution pattern along one or two
directions may be assumed [16]. In recent years, the dynamic and static behavior of composites reinforced
with functionally grade graphene platelets has been well modeled and discussed. Yang et al. assuming that the
randomly oriented GPLs are used to reinforce the polymer matrix, studied bending behavior [17], buckling
and post-buckling characteristics [18, 19], dynamic instability [20] and large-deflection vibrations responses
[21] of functionally graded GPL-reinforced composite (FG-GPLRC) beam [20, 21], FG-GPLRC plate [18],
FG-GPLRC trapezoidal plate [17] and FG-GPLRC cylindrical shell [19].

Ganapathi et al. [20] within the framework of trigonometric shear flexiblemodel used finite elementmethod
to study the nonlinear flutter phenomenon for the functionally graded GPL-reinforced porous curved panel.
Niu and his colleagues dealt with dynamic behavior of rotating pre-twisted functionally graded composite
cylindrical panel. They utilized Chebyshev-Ritz method to obtain the vibration responses of the FG-GPLRC
cylindrical panel. They analyzed bending response [23], thermal buckling and post-buckling [24], dynamic
instability [25] and nonlinear transient response [26] of the FG-GPLRC plates [23, 25, 26], FG-GPLRC
cylindrical panel and FG-GPLRC cylindrical shell [24] in thermal environments. On the basis of a variational
approach, Gholami and Ansari [27] explored the primary resonant dynamics of functionally graded GPL-
reinforced composites. Also, Gholami and Ansari [28] formulated the nonlinear vibrations of plates made of
functionally graded graphene platelet composites using a unified higher-order shear deformable theory. Zhou
et al. [29] based on a higher-order model excavated the nonlinear buckling responses of laminated composite
porous cylindrical shells considering various patterns ofGPLs and porosity distribution.With the aid of aNavier
solutionmethod, the effects of distribution pattern, weight fraction, geometry and size of GPLs and the effect of
total number of layers on free vibration frequency of FG-GPLRC plates were analytically studied by Song et al.
[30]. Baghbadorani et al. [31] exploited the first-order shear deformation theory of shells in accompany with
Donnell kinematic relations to perform a free vibration frequency analysis for FG-GPLRC cylindrical shells.
Esmaeili and his co-researchers through a Ritz solution method explored the free vibration characteristics of
functionally graded GPLRC doubly curved panels [32]. Besides, they analyzed thermal-induced vibrations of
FG-GPLRC flat plates [33] and curved panels [34].

Piezoelectric materials have played an important role in coupling the mechanical and electrical fields. To
utilize in various electromechanical applications as sensors and actuators, efficient structures with superior
properties can be provided by combining composite materials with piezoelectric materials. On the basis of
piezoelectricity, the direct and reverse effects of piezoelectric materials is described which system controlla-
bility is oriented from. So far, to perform dynamic analysis of piezoelectric-surrounded structures, researchers
have developed different mathematical approaches. To numerically predict static and dynamic behaviors of
smart FG-GPLRC microplates subjected to concurrently electrical and mechanical loads, Nguyen and Lee
[35] developed a numerical model on the basis of a refined plate theory, modified couple stress theory and
NURBS-based isogeometric analysis. Using 3D theory of elasticity, Jalali et al. [36] investigated free vibra-
tions of functionally graded GPL-reinforced imperfect panel surrounded with piezoelectric layers. Dong et al.
[37] perused the active vibration control of sandwich thin cylindrical shells made of FG-GPLRC core and
piezoelectric face sheets. They also obtained free vibration frequencies of the structure by regarding effects
of the thermo-electro-elastic field. Considering a high-order shear deformation model and von Kármán terms,
Lin et al. [38] obtained vibration characteristics of multilayer plates made of GPL-reinforced composite mate-
rial. They also reported aeroelastic response of the plates under the action of electrical and mechanical loads.
Alibeigloo and Nouri [39] obtained three-dimensional static solution of functionally graded (FG) cylindrical
shell with piezoelectric layers by adopting state-space approach and implementing differential quadrature
method (DQM). With the accordance of first-order shear deformation theory (FSDT), and nonlinear von Kár-
mán assumptions, Bayat et al. [40] formulated the large-amplitude vibration control of functionally graded
piezoelectric cylindrical shells subjected to concurrently axial and radial external excitations.

Jinhua et al. [41] checked bifurcation and chaos of functionally graded multilayer composite cylindrical
shells with GPL reinforcements and piezoelectric layers as a result of action of a combination of electrical,
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mechanical and thermal loads. Ebrahimi [42] exploited the 3D elasticity theory to present a general formula
for frequency analysis of a fluid conveying composite multilayer cylindrical shell made of functionally graded
material bounded with piezoelectric layers. With the accordance of a quasi-three-dimensional (3D) refined
shear and normal deformation theory and through an electromechanical model, Alghanmi et al. [43] obtained
bending response of functionally graded porous plates attached to a layermade of piezoelectric fiber-reinforced
composite (PFRC). Such plates were under the action of sinusoidal electromechanical loads. Behavior of
piezoelectric laminated composite plate exposed to various electromechanical loads was surveyed by Markad
et al. [44] using the first-order shear deformation model.

The static and dynamic behaviors of panels with rectangular planform have assigned an important posi-
tion in research topics in both scholar and industrial community; this importance comes from their various
practical applications of these structures in various realms, including civil, mechanical, architectural, marine
and aeronautical engineering. A number of theoretical analysis on such panels which performed to attain an
efficient design are listed as follows:

Lore et al. [45] probed nonlinear free vibration characteristics of functionally graded plates and shell panels.
Li et al. [46] investigated free vibrations of composite/sandwich shell panels. Shen andWang [47] studied free
vibrations of shear deformable FGM cylindrical panels considering the effects of thermal environment and
effects of interaction between panel and elastic foundation. Viola et al. [48] used a 2D higher-order shear defor-
mation theory to provide a general framework for dynamic investigation of doubly curved composite panels.
Chen et al. [49] evaluated a novel formulation to study free vibration frequency of rotating pre-twisted lami-
nated composite shell panels. Karimi et al. [50] in an orthogonal curvilinear coordinate system implemented
higher-order model to probe forced vibration of anisotropic curved panels. Karimiasl and Alibeigloo [51] car-
ried out free vibration analysis of composite sandwich cylindrical panels composed of double-V auxetic core
and GPL-reinforced composite face sheets. In the above research, the effect of the aerohygrothermal environ-
ment was investigated. Free vibration frequencies of moderately thick cylindrical composite sandwich panels
were obtained by Pourmoayed et al. [52] through an improved higher-order theory. Mohammadimehr et al.
[53] discussed the parameters affecting the free vibration frequency of functionally graded CNT-reinforced
magneto-electro-elastic cylindrical composite panel according to first-order shear deformation theory. Kelesh-
teri and Jelovica [54] investigated free vibration characteristics and buckling behavior of sandwich panels
made of functionally graded metal foam core surrounded with two thin face sheets.

The poor literature around free vibration analysis of FG-GPLRC cylindrical panel with piezoelectric layers
is revealed with the aid of the above-presented literature review. Present study attempts to provide a numerical
model with the ability of handling an arbitrary vast set of mechanical and electrical boundary conditions.
Mechanical properties of the panel are approximated via Halpin–Tsai micromechanical model in accompany
with the rule ofmixtures. Electromechanically coupled governing equations are provided by applyingHamilton
principle. Legendre-Ritz formulation is implemented to obtain discretized governing equations; accordingly,
natural frequencies are calculated. The rest of article deals with validating present model and subsequently
performing parametric studies. As shown for different combinations of edge supports, various GPL weight
fractions and patterns, open circuit type of edge support results in higher frequencies.

2 Problem description

The functionally graded GPL-reinforced cylindrical panel surrounded with two identical piezoelectric layers
is under free vibration analysis with details as follows. Its geometrical properties are symbolized as follows:
length of straight edge: a, length of curved edge: b, radius of curvature: R and total thickness of panel:
h +2h pwhereh p is the thickness of piezoelectric layer and h is the thickness of the core. Figure 1 also provides
a schematic of the structure.

It is assumed that an even number of GPL-reinforced layers (NL ) of the same size, arranged according
to a mathematical function are composed the panel. Besides, uniform dispersion and random orientation for
GPLs in each layer is considered. To describe deformations and displacements, a curvilinear coordinate system
mounted on mid-plane of the panel in such a way that it describes the panel domain as: −0.5a ≤ x1 ≤ 0.5a,
−0.5b ≤ x2 ≤ 0.5b and −0.5h − h p ≤ x3 ≤ 0.5h + h p is considered.

Several types of GPL distribution profiles through the thickness may be assumed. Herein, the following
distribution patterns with linear variations of GPL weight fraction from layer to layer are taken to account.
Such patterns are demonstrated in Fig. 2 and are listed as:
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Fig. 1 Schematic of the structure composed of GPLRC core and piezoelectric faces

Fig. 2 Layer-wise functionally graded GPL distribution patterns

(a) FG-U
Here, monotonic dispersion of GPLs through the panel thickness is assumed. Accordingly, we will deal
with an isotropic and homogeneous cylindrical panel, i.e.,

V (k)
GPL � V ∗

GPL (k � 1, 2, . . . , NL ) (1)

(b) FG-X
Based on this pattern, the layers with the highest GPL volume fraction are located in the top and bottom
surfaces, while GPL-poor layers can be found in mid-surfaces. This pattern is symmetrical with respect
to the mid-plane, i.e.,

V (k)
GPL � 2V ∗

GPL
|2k − NL − 1|

NL
(k � 1, 2, . . . , NL ) (2)

(c) FG-O
In this pattern, the positions of the GPL-rich and GPL-poor layers are completely in contrary to what was
outlined about the FG-X pattern. For instance, GPL volume fraction is the lowest at top and bottom, i.e.,

V (k)
GPL � 2V ∗

GPL

(
1 − |2k − NL − 1|

NL

)
(k � 1, 2, . . . , NL ) (3)

(d) FG-V
Next pattern which is an asymmetric pattern with respect to the middle plane provides the maximum
amount of GPLs at top and its minimum at bottom, i.e.,

V (k)
GPL � V ∗

GPL
2k − 1

NL
(k � 1, 2, . . . , NL ) (4)

(e) FG-A
The last pattern, which is again an asymmetric pattern, is defined as linearly increasing variation of GPL
volume fraction from top to bottom surface, i.e.,

V (k)
GPL � V ∗

GPL
−2k + 1 + 2NL

NL
(k � 1, 2, . . . , NL ) (5)
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The above relationships provide the GPL volume fraction of the k-th layer (V (k)
GPL ) in terms of the total

GPL volume fraction of the FG-GPLRC panel (V ∗
GPL ).

The relationship between the GPL volume fraction (V ∗
GPL ) and the GPL weight fraction (W ∗

GPL ) having
the density ratio (ρGPL/ρm) is expressed as follows [31]

V ∗
GPL � WGPL

WGPL + ρGPL
ρm

(1 − WGPL )
(6)

By having the GPL volume fraction in each layer, the mechanical properties can be calculated.
First, Young’s modulus is estimated exploiting the Voigt–Reuss model as:

E (k) � 3

8
E (k)
1 +

5

8
E (k)
2 (7)

Longitudinal modulus E (k)
1 and transverse modulus E (k)

2 are approximated via the Halpin–Tsai microme-
chanical model which is modified to include the effects of size and geometry of nanoscale fillers [31].

E (k)
1 � 1 + ξLηLV

(k)
GPL

1 − ηLV
(k)
GPL

Em

E (k)
2 � 1 + ξT ηT V

(k)
GPL

1 − ηT V
(k)
GPL

Em (8)

where

ηL � EGPL − Em

EGPL + ξL Em
ηT � EGPL − Em

EGPL + ξT Em
(9)

Here, the elastic moduli are represented by Em and EGPL , corresponding to the matrix and GPL, respec-
tively. Also, ξL and ξT are two parameters that include both GPL size and geometry effects [31].

ξL � 2
lGPL

hGPL
ξT � 2

wGPL

hGPL
(10)

wGPL , lGPL and hGPL in above are used for average width, length, and thickness of GPLs, respectively.
Next, the law of mixtures is utilized to calculate density and Poisson’s ratio of the composite media as [31]

ν(k) � νm

(
1 − V (k)

GPL

)
+ νGPLV

(k)
GPL

ρ(k) � ρm

(
1 − V (k)

GPL

)
+ ρGPLV

(k)
GPL (11)

3 Mathematic model derivation

Different theories may be used to estimate and model the displacement in beams, plates and shell, see, e.g.,
[55–63]. Considering the piezoelectric layers leads to dealing with a moderately thick panel, hence, the first-
order shear deformation model (FSDT) is the most optimal choice to describe the displacement field, accord-
ingly [32–34],

U �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U1(x1, x2, x3, t)

U2(x1, x2, x3, t)

U3(x1, x2, x3, t)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x1, x2, t) + x3θ1(x1, x2, t)

v(x1, x2, t) + x3θ2(x1, x2, t)

w(x1, x2, t)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12)

The projections of displacement on the mid-plane along with x1-, x1- and x3-axes are represented by u,
v and w, respectively. Besides, θ1 and θ2 signify to rotations of transverse normal about x2- and x1-axes,
respectively.
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On the basis of given displacement field, one can present linear strain–displacement relations as follows
for the in-plane strains

ε11 � U1,x1 � ε011 + x3κ1 � u,x1 + x3θ1,x1

ε22 � U2,x2 � ε022 + x3κ1 � v,x1 +
w

R
+ x3θ2,x2

ε12 � U1,x2 +U2,x1 � ε012 + x3κ12 � u,x2 + v,x1 + x3
(
θ1,x2 + θ2,x1

)
ε23 � ε023 � θ2 + w,x2

ε13 � ε013 � θ1 + w,x1 (13)

In above relations and hereafter, (,) stands for differential operator.

4 Constitutive relations

4.1 Constitutive relations of GPLRC layers

For GPLRC layers, Hooke law compatible with the conditions of zero value for σ
(k)
33 states that stress vector,

σ(k) � [σ (k)
11 , σ

(k)
22 , σ

(k)
12 , σ

(k)
13 , σ

(k)
23 ]

T
and strain vector, ε � [ε11.ε22, 2ε12, 2ε13, 2ε23]T are related by the

following relation:

σ(k) � C(k)ε (14)

C(k) is the elastic constant matrix for the k-th GPLRC layer.

C(k) �
[
C(k)
1 0
0 C(k)

2

]

C(k)
1 � E (k)

1 − υ(k)2

⎡
⎣1 υ(k) 0

υ(k) 1 0

0 0 1−υ(k)

2

⎤
⎦,

C(k)
2 � E (k)

2
(
1 + υ(k)

)
[
1 0
0 1

]
(15)

4.2 Constitutive relations of top and bottom piezoelectric layers

In view of the piezoelasticity theory, the constitutive relation of piezoelectric layers may be written as:{
σp

D

}
�
[
Cp −eT

e �

]{
ε
E

}
(16)

InEq. (16),Cp signifies the elastic constantmatrix for the piezoelectric layers,� is the dielectric permittivity
constant matrix and e represents the electromechanical coupling matrix; accordingly, they have following
definition:

Cp �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q
p
11 Q

p
12 0 0 0

Q
p
12 Q

p
22 0 0 0

0 0 Q
p
66 0 0

0 0 0 Qp
44 0

0 0 0 0 Qp
55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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e �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 e15 0

0 0 e15 0 0

e31 e31 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

� �

⎡
⎢⎢⎢⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤
⎥⎥⎥⎥⎥⎦

(17)

Elastic matrix components related to piezoelectric material are presented as

Q
p
11 � Q

p
22 � Qp

11 − Qp
13Q

p
13

Qp
33

, Q
p
12 � Qp

12 − Qp
13Q

p
13

Qp
33

, Q
p
66 � 1

2

(
Q

p
11 − Q

p
12

)

e31 � e31 − Qp
13

Qp
33

e33, �33 � �33 +
e233
Qp

33

(18)

Also, σp, E andD represent the stress field in piezoelectric layers compatible with the condition of absence
of σ

p
33, the electrical field and the electrical displacement field, respectively, and may be written as:

σp � [
σ
p
11, σ

p
22, σ

p
12, σ

p
23, σ

p
13

]T
D � [D1, D2, D3]

T

E � [E1, E2, E3]
T � −[�,x1 ,�,x2 ,�,x3

]T (19)

where � is electrical potential function which in accordance with the electrical boundary conditions will be
specified in follow.

The relatively thin piezoelectric layers make it reasonable to assume the linearity of the electric potential
changes along the thickness of the piezoelectric layers. Hereupon, the electrical potential function in top and
bottom piezoelectric layers can be read as:

�(x1, x2, x3) �

⎧⎪⎨
⎪⎩

x3−0.5h
h p ϕt (x1, x2)0.5h < z < 0.5h + h p

− x3+0.5h
h p ϕb(x1, x2) − 0.5h − h p < z < −0.5h

(20)

As applied in the above relation, it is assumed that the surface of piezoelectric layers bordering GPLRC
layers is grounded; accordingly, the electrical potential at this surface is equal to zero.

The governing equations are obtained by exploiting theHamilton’s principle that for the under consideration
problem is extended in the following form [41]:∫ t

0
(δU − δT )dt � 0 (21)

where t is an arbitrary time. Also the variations of strain energy, δU and kinetic energy, δT for the cylindrical
shell panel are calculated as:

δU �
0.5b∫

−0.5b

0.5a∫
−0.5a

NL∑
k�1

hk∫
hk−1

(
σ

(k)
11 δε11 + σ

(k)
22 δε22 + 2σ (k)

12 δε12 + 2κ(k)
s σ

(k)
23 δε23 + 2κ(k)

s σ
(k)
13 δε13

)
dx3dx1dx2

+

0.5b∫
−0.5b

0.5a∫
−0.5a

0.5h+0.5h p∫
0.5h

(σ p
11δε11 + σ

p
22δε22 + 2σ p

12δε12 + 2κ p
s σ

p
23δε23 + 2κ p

s σ
p
13δε13 − D1δE1 − D2δE2
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− D3δE3)dx3dx1dx2

+

0.5b∫
−0.5b

0.5a∫
−0.5a

−0.5h∫
−0.5h−0.5h p

(σ p
11δε11 + σ

p
22δε22 + 2σ p

12δε12 + 2κ p
s σ

p
23δε23 + 2κ p

s σ
p
13δε13

− D1δE1 − D2δE2 − D3δE3)dx3dx1dx2

δT �
0.5b∫

−0.5b

0.5a∫
−0.5a

NL∑
k�1

hk∫
hk−1

(
ρ(k){U̇1[δu̇ + x3δ θ1] + U̇2[δv̇ + x3δ θ2] + U̇3δẇ

})
dx3dx1dx2

+

0.5b∫
−0.5b

0.5a∫
−0.5a

0.5h+0.5h p∫
0.5h

(
ρ p{U̇1[δu̇ + x3δ θ1] + U̇2[δv̇ + x3δ θ2] + U̇3δẇ

})
dx3dx1dx2

+

0.5b∫
−0.5b

0.5a∫
−0.5a

−0.5h∫
−0.5h−0.5h p

(
ρ p{U̇1[δu̇ + x3δ θ1] + U̇2[δv̇ + x3δ θ2] + U̇3δẇ

})
dx3dx1dx2 (22)

In above, κ (k)
s and κ

p
s are the shear correction factor of k-th GPLRC layer and piezoelectric layers, respec-

tively. They are considered as:

κ
p
s � 5

6

κ(k)
s � 5(

6 − υ
(k)
m V (k)

m − υ
(k)
GPLV

(k)
GPL

) (23)

5 Solution method

The strong form of the equations of motion along with Maxwell’s equations can be derived by applying the
Green theorem to Eq. (21). But in current work, energy-based methods are employed to present a comprehen-
sive formulation for a wide set of boundary conditions. The Ritz method, as one of the energy-based methods,
has demonstrated its competence in solving solid mechanics problems due to its high accuracy, fast conver-
gence, and uncomplicated formulation that can be easily implemented. Hence, Ritz method on the basis of
Legendre-type polynomials is implemented to attain the matrix representation of governing motion equations
and Maxwell equations. Accordingly, each of the independent variables is expanded by means of a double
series of a combination of two one-dimensional admissible functions [32–34]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x1x2, t)

v(x1x2, t)

w(x1x2, t)

θ1(x1x2, t)

θ2(x1x2, t)

ϕt (x1x2, t)

ϕb(x1x2, t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
Nx1∑
n�0

Nx2∑
m�0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unm(t)

Vnm(t)

Wnm(t)

Xnm(t)

Ynm(t)

Tnm(t)

Bnm(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�n(x1)�m(x2) (24)

Nx1 and Nx2 specify the number of trial terms; besides, the one-dimensional admissible functions �n(x1)
and �m(x2) are defined as the product of the n-th and m-th-order Legendre polynomials (Ln(x1), Lm(x2)) to
boundary functions (ξα(x1), ςα(x2)) which are made in compatible with the essential boundary conditions
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Table 1 Value of χα
s (α � u, v, w, θ1, θ2 and s � 1, 2, 3, 4) for SCSF panel

χu
s χv

s χw
s χ

θ1
s χ

θ2
s

(0, 1, 0,0) (1, 1, 1, 0) (1, 1, 1, 0) (0, 1, 0, 0) (1, 1, 1, 0)

�n(x1) � Ln(x1)ξ
α(x1)

�m(x2) � Lm(x2)ς
α(x1)(

α � u, v,w, θ1, θ2,ϕ
t ,ϕb

)
(25)

where Legendre polynomials read as:

L0(x1) � L0(x2) � 1

L1(x1) � 2x1
a

, L1(x2) � 2x2
b̀

Ln+1(x1) � (2n + 1) 2x1a Ln(x1) − nLn−1(x1)

n + 1

Lm+1(x2) � (2m + 1) 2x2b Lm(x2) − mLm−1(x2)

m + 1
(26)

Boundary functions are proposed as the following general form to have the ability to easily update for the
desired combination of boundary conditions:

ξα(x1) �
(
1 +

2x1
a

)χα
1
(
1 − 2x1

a

)χα
2

ςα(x2) �
(
1 +

2x2
b

)χα
3
(
1 − 2x2

b

)χα
4

(27)

χα
i are the auxiliary parameters that must be assigned a value of zero or one in such a way as to enable the

boundary function to satisfy the essential boundary conditions. In present work, sets of clamped (C), simply
supported (S) and free (F) edges are considered. It should to be noted a conventional notation convention for
citing boundary conditions is established upon which for an instance, a panel with simply supported edge at
x � −a/2, clamped edge at y � −b/2, simply supported edge at x � a/2 and free edge at y � b/2 is cited
as “SCSF panel”. The cells of Table 1 are filled with values of χα

s (α � u, v, w, θ1, θ2 and s � 1, 2, 3, 4) as
an example for SCSF panel.

The electrical displacement and the electrical field in all four edges of each of the two piezoelectric layers
are considered equal to zero. (It is assumed that piezoelectric layers are grounded on all four edges.) Therefore,
the electrical boundary conditions for the piezoelectric layers may be expressed as:

ϕt (x1, x2) � 0 at (0.5a, x2), (−0.5a, x2), (x1, 0.5b) and (x1, − 0.5b)

ϕb(x1, x2) � 0 at (0.5a, x2), (−0.5a, x2), (x1, 0.5b) and (x1, − 0.5b) (28)

In view of the electrical boundary conditions and considering that the Legendre polynomials are not zero
at the boundaries, the boundary functions should be selected in such a way that they satisfy the electrical
boundary conditions, accordingly:

ξα(x1) �
(
1 +

2x1
a

)(
1 − 2x1

a

)

ςα(x2) �
(
1 +

2x2
b

)(
1 − 2x2

b

)
α � ϕt ,ϕb (29)

By introducing the series expansion (24) into Eq. (21) and performing integration over the domain, the
variations of essential variables are relived. Subsequently, a total of 7 Nx1Nx2 equationswhich contain unknown
time-dependent functions are attained which can be recast in matrix form as:

M�̈ +K� � 0 (30)
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where M and K are inertia and stiffness matrices, respectively. Besides, � represents unknown vector which
contains Unm(t), Vnm(t), Wnm(t), Xnm(t), Ynm(t), Tnm(t) and Bnm(t). These set also may be presented as:

M �
[
MXX MXE

MEX MEE

]
,K �

[
KXX KXE

KEX KEE

]
,� �

{
�X

�E

}
(31)

The other above-mentioned matrices read as:

MEX � MXE � MEE � 0

MXX �

⎡
⎢⎢⎢⎢⎣

Muu Muv Muθ1 Muθ2 Muw

Mvu Mvv Mvθ1 Mvθ2 Mvw

Mθ1u Mθ1v Mθ2θ1 Mθ1θ2 Mθ2w

Mθ2u Mθ2v Mθ2θ1 Mθ2θ2 Mθ2w

Mwu Mwv Mwθ1 Mwθ2 Mww

⎤
⎥⎥⎥⎥⎦

KXX �

⎡
⎢⎢⎢⎢⎣

Kuu Kuv Kuθ1 Kuθ2 Kuw

Kvu Kvv Kvθ1 Kvθ2 Kvw

Kθ1u Kθ1v Kθ2θ1 Kθ1θ2 Kθ2w

Kθ2u Kθ2v Kθ2θ1 Kθ2θ2 Kθ2w

Kwu Kwv Kwθ1 Kwθ2 Kww

⎤
⎥⎥⎥⎥⎦

KXE �
[
Kuϕ t

Kuϕb
Kvϕ t

Kwϕ t

Kvϕb
Kwϕb

Kθ1ϕ
t
Kθ2ϕ

t

Kθ1ϕ
b
Kθ2ϕ

b

]T

KEX �
[
Kϕ t u

Kϕbu
Kϕ tv Kϕ tw

Kϕbv Kϕbw

Kϕ tθ1 Kϕ tθ2

Kϕbθ1 Kϕbθ2

]

KEE �
[
Kϕ tϕ t

Kϕ tϕb
Kϕbϕ t

Kϕbϕb

]
(32)

By merging two above matrix equations, one can obtain a single equation to predict vibration behavior of
FG-GPLRC panel surrounded with piezoelectric layers

MXX�̈
X
+Ke�X � 0 (33)

Here, recast stiffness matrix has the following definition:

Ke � KXX − KXEKEE−1
KEX (34)

Since we are dealing with a free vibration problem, the solution to the problem will be in the form of
�X � δcos(ωt + β), where ω is the natural frequency. By substituting the solution in Eq. (33), we attain an
eigenvalue problem as:

(Ke − ω2MXX )δ � 0 (35)

It is worth noting, in current research, two types of electrical boundary conditions, namely closed circuit
and open circuit, are taken into account. Based upon the open circuit electrical boundary conditions, electrical
potentials at free surface of piezoelectric layers are non-zero unknowns. In closed circuit case, it’s assumed
that top and bottom surfaces of the both piezoelectric layers are grounded so Ke � KEE.

Non-trivial solutions of Eq. (35) are the natural frequencies of FG-GPLRCpanel boundedwith piezoelectric
layers.
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Table 2 Comparison of frequencies in Hertz (ω∗ � ω/2π) between our results and those of Olson and Lindberg [64] for the
case of fully clamped isotropic homogeneous panel

Present Olson and Lindberg [64]

ω∗
1 869 814

ω∗
2 958 940

ω∗
3 1287 1260

ω∗
4 1363 1306

ω∗
5 1439 1452

ω∗
6 1752 1770

ω∗
7 1777 1802

ω∗
8 2056 2100

ω∗
9 2218 2225

ω∗
10 2286 2280

6 Results and discussion

To perform numerical studies on free vibration of functionally graded GPL-reinforced cylindrical panel inte-
grated with piezoelectric layers, the following mechanical properties for Epoxy matrix and GPL reinforcement
(with lGPL � 2.5μm, wGPL � 1.5μm and hGPL � 1.5μm)μm are considered

EGPL � 1010GPa, ρGPL � 1062.5
kg

m3 , νGPL � 0.186

Em � 3GPa, ρm � 1200
kg

m3 , νm � 0.34 (36)

It is assumed that PZT-4 is used as top and bottom piezoelectric layers; accordingly, the following elec-
tromechanical properties for piezoelectric layers are taken into account:

(37)

Qp
11 � 132GPa, Qp

12 � 71GPa, Qp
33 � 115GPa, Qp

13 � 73GPa, Qp
55 � 26GPa ρ p � 7500

kg

m3 ,

e31 � e32 � −4.1
C

m2 , e15 � e24 � 10.5
C

m2 , e33 � 14.1
C

m2 ,�11 � �22 � 7.124
nF

m
and

�33 � 5.841 nF/m

Besides, if no other value is mentioned, the following geometrical specifications are used:

a

b
� 1,

a

h
� 20,

R

a
� 5,

h p

h
� 0.05 (38)

One of themain factors which affects the numerical results in Ritz method is the number of shape functions.
In the open literature this factor is analyzed as a convergence study. Previous research from the third author
of this study [5] reveals that when the number of shape functions is set equal to 14 in each direction, accurate
results are achieved for free vibrations of cylindrical panels. As a result, the number of shape functions is set
equal to 14 in each direction of the panel for all of the results.

Herein, the first subsection aims to show the validity and accuracy of the present formulation and the
numerical results subsequently.

First comparison of this study is devoted to experimental results. The case of an isotropic homogeneous
cylindrical panel is considered with all edges clamped where the geometrical characteristics are b � 0.0762m,
a � 0.1016m, h � 0.03302 cm, R � 0.762m, E � 68.947GPa, ρ � 2657.27 kg/m3, ν � 0.33. Compari-
son is performed in Table 2. First ten frequencies in Hertz are obtained and compared with those of Olson and
Lindberg [64]. It is seen that results are in close agreement.

The second comparison case is established in such a way that fundamental frequency parameters (� �
ωa2/h

√
ρm/Em) of completely clamped (CCCC) FG-GPLRC cylindrical shell panel for various values of
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Table 3 Validation of the first frequency parameter � of CCCC FG-GPLRC cylindrical panel

a/h R/a Epoxy UD FG-X FG-O FG-A

Present Ref. [65] Present Ref. [65] Present Ref. [65] Present Ref. [65] Present Ref. [65]

20 5 11.2991 11.3115 23.4889 23.5359 26.8745 26.6760 19.3561 19.4226 21.4160 21.4637
10 10.8712 10.8810 22.5992 22.6400 26.1007 25.8854 18.2662 18.3299 20.4491 20.4855
20 10.7614 10.7705 22.3708 22.4100 25.9034 25.6836 17.9827 18.0457 20.2023 20.2342

50 5 14.1390 14.1421 29.3925 29.4256 32.4804 32.4796 25.8975 25.9285 27.6118 27.6443
10 11.8652 11.8649 24.6645 24.6863 28.2604 28.2406 20.4143 20.4352 22.5374 22.5568
20 11.2192 11.2179 23.3213 23.3398 27.0953 27.0696 18.7715 18.7894 21.0639 21.0786

Table 4 Validation of the first three natural frequencies (in Hz) of FG-GPLRC plate integrated with PZT-4 layers

B.Cs Pattern Electrical B.Cs ω∗
1 ω∗

2 ω∗
3

[66] Present [66] Present [66] Present

SSSS FG-U Closed 194.6542 193.4080 473.0629 471.6230 737.1725 737.1356
Open 212.4215 208.8136 513.9120 506.6975 797.6343 788.5238

FG-X Closed 200.7564 199.4330 487.2087 485.7372 758.2765 758.3910
Open 217.9551 214.3512 526.5769 519.5653 816.3174 807.7727

FG-O Closed 188.3221 187.1678 458.3229 456.9536 715.1009 714.9752
Open 206.7111 203.1059 500.7897 493.3885 778.2083 768.5541

FG-V Closed 193.3006 192.1662 469.8815 468.6736 732.3669 732.6376
Open 211.3362 207.7056 511.3930 504.0823 793.8719 784.5564

SCSC FG-U Closed 277.1016 276.5467 515.3822 515.0804 632.1755 634.7512
Open 300.6491 294.6575 558.0915 550.4271 680.6446 671.5191

FG-X Closed 285.2832 284.7300 530.2858 530.0481 649.2736 652.1699
Open 307.9534 302.1972 571.3338 564.0734 695.5870 687.3960

FG-O Closed 268.5684 268.0344 499.8134 499.4895 614.2148 616.5213
Open 293.0748 286.8477 544.3397 536.2792 665.0458 654.9744

FG-V Closed 275.2803 274.8549 512.0238 511.9471 628.3063 631.0912
Open 299.2117 293.1382 555.4525 547.6452 677.6558 668.2622

SFSF FG-U Closed 95.7410 95.0492 157.3421 156.5439 350.9796 349.8475
Open 101.5868 100.0068 161.4380 159.9143 371.9132 367.7677

FG-X Closed 98.7446 98.0036 162.0779 161.2162 361.4859 360.2573
Open 104.4177 102.8117 166.0412 164.4746 381.7233 377.5905

FG-O Closed 92.6313 91.9952 152.4396 151.7158 340.0707 339.0614
Open 98.6659 97.1165 156.6804 155.2089 361.7656 357.6231

FG-V Closed 95.0854 94.4500 156.3207 155.6083 348.6398 347.6936
Open 101.0143 99.4513 160.4764 159.0105 369.8982 365.7724

geometrical parameters are obtained and their accuracy are evaluated in comparison with those of reported by
Van do and lee [65] which are tabulated in Table 3. Rectangular planform and 1 percent by weight fraction of
GPL reinforcement are considered for development of results of this section.

Based on what can be seen from Table 3, it can be claimed that implementing the present theory and
formulations for an FG-GPLRC cylindrical panel leads to excellent accuracy for results.

Next comparative study is carried out with the research performed by Majidi-Mozafari et al. [66] in which
through an analytical approach, the free vibrations of sandwich plates reinforced with graphene nanoplatelets
were investigated. To do so, the first three natural frequencies of FG-GPLRC plate with PZT-4 piezoelectric
layer for various types of electrical and mechanical boundary conditions are computed and compared with
those reported by Majidi–Mozafari et al. [66]. Table 4 shows the results of this comparison study. PZT-4 is
considered as the piezoelectric material, and following data are considered to perform such comparison study:
WGPL � 0.5%, a/b � 1, a/h � 20, h/h p � 20.

As Table 4 also confirms, again for free vibration analysis of the structures surrounded by piezoelectric
layers, the current model provides remarkable accuracy.

Now that through performing a number of comparison studies, the required confidence in the accuracy and
correctness of the results has been attained; by providing novel numerical data, parametric studies are planned
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Table 5 Variation of the first four frequency parameters in CCCC panels versus changing the number of layers with symmetric
distribution of GPLs

Pattern NL Electrical B.Cs �1 �2 �3 �4

FG-U 2 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

6 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

10 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

14 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

16 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

20 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

FG-X 2 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

6 Open 30.3363 57.9163 58.2632 82.4847
Closed 28.8002 55.0856 55.4498 78.6932

10 Open 30.3938 58.0227 58.3693 82.6284
Closed 28.8623 55.2019 55.5657 78.8513

14 Open 30.4096 58.0520 58.3985 82.6679
Closed 28.8793 55.2339 55.5975 78.8948

16 Open 30.4135 58.0592 58.4056 82.6776
Closed 28.8835 55.2417 55.6053 78.9054

20 Open 30.4180 58.0676 58.4140 82.6889
Closed 28.8884 55.2508 55.6145 78.9178

FG-O 2 Open 29.6031 56.5545 56.9060 80.6435
Closed 28.0081 53.5947 53.9650 76.6631

6 Open 28.8425 55.1329 55.4897 78.7153
Closed 27.1834 52.0317 52.4088 74.5275

10 Open 28.7804 55.0164 55.3736 78.5570
Closed 27.1159 51.9032 52.2810 74.3517

14 Open 28.7632 54.9842 55.3416 78.5132
Closed 27.0972 51.8678 52.2457 74.3031

16 Open 28.7590 54.9763 55.3337 78.5026
Closed 27.0927 51.8591 52.2371 74.2913

20 Open 28.7541 54.9671 55.3245 78.4900
Closed 27.0873 51.8489 52.2269 74.2773

with the aim of evaluating the effects of the number of GPLRC layers, GPLweight fraction, structure curvature,
mechanical boundary conditions and piezoelectric layer thickness on the characteristics of free vibrations of
the FG-GPLRC cylindrical panel surrounded with piezoelectric layers. It should to be noted that hereafter a
frequency parameter with definition of � � ωa2/h

√
ρm/Em is used to present results.

The effects of the number of GPLRC layers on the first five frequency parameters of completely clamped
FG-GPLRC cylindrical panel with symmetric (FG-U, FG-X, FG-O) and asymmetric (FG-V, FG-A) GPL
distributions are illustrated in Tables 5 and 6. For better grasp, the first frequency parameters are also depicted
in Fig. 3 for open circuit electrical boundary conditions. In this case study, the reinforcing parameter is fixed
as WGPL � 0.5%.

It is evident that the first natural frequency of FG-U panel, which is a homogeneous model, is not affected
by the number of layers; whereas by increasing the number of layers ascending trend is observed in variation
of frequencies of FG-X model, descending trend can be seen for FG-O, FG-V and FG-A model. The same
behavior is seen for higher frequencies.

This behavior, which is same to that observed for higher frequencies, is caused by the fact that the greater
the distribution of GPLs in the outer layers, the greater the bending stiffness of the structure and subsequently
the natural frequency of the structure. Besides, as Fig. 3 shows, frequencies hardly change when the number
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Table 6 Variation of the first four frequency parameters� in CCCC panels versus changing the number of layers with asymmetric
distribution of GPLs

Pattern NL Electrical B.Cs �1 �2 �3 �4

FG-V 2 Open 29.5061 56.3464 56.7215 80.3703
Closed 27.8950 53.3542 53.7538 76.3499

6 Open 29.4387 56.2118 56.5941 80.1892
Closed 27.8188 53.2012 53.6097 76.1442

10 Open 29.4326 56.1996 56.5825 80.1728
Closed 27.8118 53.1873 53.5965 76.1254

14 Open 29.4309 56.1962 56.5792 80.1682
Closed 27.8099 53.1834 53.5929 76.1202

16 Open 29.4304 56.1953 56.5784 80.1670
Closed 27.8094 53.1825 53.5920 76.1189

20 Open 29.4300 56.1944 56.5775 80.1657
Closed 27.8088 53.1814 53.5909 76.1174

FG-A 2 Open 29.5004 56.3859 56.7150 80.4005
Closed 27.9006 53.4134 53.7560 76.3945

6 Open 29.4313 56.2627 56.5855 80.2282
Closed 27.8259 53.2776 53.6124 76.2017

10 Open 29.4250 56.2514 56.5737 80.2124
Closed 27.8191 53.2651 53.5992 76.1840

14 Open 29.4233 56.2482 56.5704 80.2079
Closed 27.8171 53.2616 53.5956 76.1791

16 Open 29.4228 56.2475 56.5696 80.2069
Closed 27.8167 53.2608 53.5947 76.1779

20 Open 29.4223 56.2466 56.5686 80.2056
Closed 27.8161 53.2598 53.5936 76.1765

Fig. 3 Variations of fundamental frequency parameter �1 by adding the number of layers

of layers is greater than 14. Thus, an FG-GPLRC panel with 10 layers may serve as a panel with continuous
change of properties. Subsequently, the next results are obtained for a panel with 10 GPLRC layers.

The effects of the mechanical and electrical boundary conditions on the first five frequency parameters
for FG-GPLRC cylindrical panel integrated with piezoelectric layers are investigated in Tables 7 and 8. 0.5
percent by weight of GPL reinforcement is considered. As demonstrated in these tables, panels with more
edge constraints shows more natural frequencies. The observation that the frequencies are maximum for
CCCC panel and are minimum for the CFFF panel supports this claim. As the second observation from
Tables 7 and 8, the FG-GPLRC cylindrical panel with piezoelectric layers under open circuit condition has
greater natural frequencies than the case with closed circuit condition. That is because during panel vibration,
piezoelectric layers with open circuit boundary condition convert the electric potential into mechanical energy,
while piezoelectric layers with closed circuit boundary conditions don’t have this capability so evacuate the
electrical energy.
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Table 7 The effect of electrical andmechanical boundary conditions on first four frequency parameters of FG-GPLRC cylindrical
panel with piezoelectric layers in symmetric distribution of GPLS

Pattern Mechanical B.Cs Electrical B.Cs �1 �2 �3 �4

FG-U SSSS Closed 15.8703 37.8015 38.2317 59.1970
Open 17.0722 40.5804 40.975 63.2547

SFSF Closed 7.5780 12.4558 28.5567 29.9998
Open 8.0623 12.7715 29.9479 31.7083

SCSF Closed 10.0480 25.6504 31.9832 34.9438
Open 10.4843 27.0081 33.6456 34.9438

SCSC Closed 22.4757 41.3223 51.2371 68.4726
Open 23.8998 44.1236 54.1299 69.8855

CCCC Closed 28.0081 53.5947 53.965 76.6631
Open 29.6031 56.5545 56.906 80.6435

CFFF Closed 2.7602 6.5646 16.4766 21.2698
Open 3.1335 6.7409 17.1047 22.4548

FCFF Closed 2.8830 6.5883 16.7622 20.9953
Open 3.2410 6.7642 17.3241 22.2535

CCFF Closed 5.5301 18.4561 20.5969 35.6800
Open 5.8126 18.9054 21.8083 36.9392

FG-X SSSS Closed 16.3904 39.0533 39.4717 61.0824
Open 17.5522 41.7236 42.1092 64.9660

SFSF Closed 7.8388 12.8676 29.4640 30.9972
Open 8.3071 13.1723 30.8065 32.6407

SCSF Closed 10.3772 26.4626 33.0368 34.9461
Open 10.7989 27.7699 34.6353 34.9461

SCSC Closed 23.191 42.6501 52.7769 69.8902
Open 24.5608 45.3365 55.5371 69.8902

CCCC Closed 28.8623 55.2019 55.5657 78.8513
Open 30.3938 58.0227 58.3693 82.6284

CFFF Closed 2.8565 6.7791 17.0223 21.9642
Open 3.2185 6.9495 17.6271 22.8284

FCFF Closed 2.9748 6.8033 17.3016 21.6992
Open 3.3228 6.9733 17.8454 22.9122

CCFF Closed 5.7084 19.0443 21.2680 36.7810
Open 5.9821 19.4766 22.4362 37.9878

FG-O SSSS Closed 15.3307 36.4952 36.9386 57.2229
Open 16.5766 39.3937 39.7983 61.4724

SFSF Closed 7.3074 12.0286 27.6141 28.9607
Open 7.8094 12.3567 29.059 30.7409

SCSF Closed 9.7067 24.8048 30.8851 34.9461
Open 10.1591 26.218 32.6181 34.9461

SCSC Closed 21.7292 39.9334 49.6185 66.3243
Open 23.2132 42.8614 52.6575 69.8901

CCCC Closed 27.1159 51.9032 52.2810 74.3517
Open 28.7804 55.0164 55.3736 78.5570

CFFF Closed 2.6604 6.3420 15.9090 20.5485
Open 3.0462 6.5249 16.5632 21.7766

FCFF Closed 2.7880 6.3653 16.2021 20.2634
Open 3.1570 6.5478 16.7837 21.5714

CCFF Closed 5.3454 17.8446 19.8979 34.5303
Open 5.6376 18.3127 21.1567 35.8475

Tables 9 and 10 show the variation of first four frequency parameters of the SCSC FG-GPLRC panel versus
the weight fraction of augmented GPLs to epoxy matrix for different GPL distribution pattern. Needless to
more discuss, adding more GPL to the epoxy matrix leads to more increase in natural frequencies. The feature
has been verified in many of the studies on GPLRC structures; see, e.g., [67–73]. This is due to the fact the
elasticity modulus of GPL is much higher than that of Epoxy. The increasing rate is higher for the FG-X pattern
and lower for the FG-O pattern as depicted in Fig. 4. The reason for this observation can be found in the greater
bending stiffness of FG-X model and the less bending stiffness of the FG-O model.

The effect of piezoelectric layer thickness-to-panel thickness ratio on the natural frequency of the SCSCFG-
GPLRC cylindrical panel surrounded with piezoelectric layers with open/closed electrical boundary condition
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Table 8 The effect of electrical andmechanical boundary conditions on first four frequency parameters of FG-GPLRC cylindrical
panel with piezoelectric layers in asymmetric distribution of GPLS

Pattern Mechanical B.Cs Electrical B.Cs �1 �2 �3 �4

FG-V SSSS Closed 15.7553 37.4899 37.9543 58.7403
Open 16.9828 40.3182 40.7369 62.8605

SFSF Closed 7.5124 12.3630 28.3597 29.7452
Open 8.0189 12.6931 29.7697 31.4910

SCSF Closed 9.9693 25.4734 31.7167 34.9637
Open 10.4227 26.8525 33.4151 34.9637

SCSC Closed 22.3121 40.9917 50.8837 67.9748
Open 23.7622 43.8427 53.8205 69.9235

CCCC Closed 27.8118 53.1873 53.5965 76.1254
Open 29.4326 56.1996 56.5825 80.1728

CFFF Closed 2.7382 6.5141 16.3314 21.1118
Open 3.1108 6.6939 16.9763 22.3164

FCFF Closed 2.8630 6.5410 16.6433 20.8195
Open 3.2196 6.7205 17.2170 22.1023

CCFF Closed 5.4898 18.3125 20.4366 35.4220
Open 5.7741 18.7739 21.6707 36.7025

FG-A SSSS Closed 15.7519 37.5430 37.9442 58.7841
Open 16.9523 40.3358 40.7103 62.8796

SFSF Closed 7.5283 12.3686 28.3443 29.8052
Open 7.9998 12.6767 29.7456 31.5153

SCSF Closed 9.9819 25.4618 31.7753 34.9280
Open 10.4099 26.8276 33.4401 34.9280

SCSC Closed 22.3169 41.0471 50.8849 68.0248
Open 23.7470 43.8652 53.8093 69.8522

CCCC Closed 27.8191 53.2651 53.5992 76.1840
Open 29.4250 56.2514 56.5737 80.2124

CFFF Closed 2.7395 6.5219 16.3785 21.1142
Open 3.1194 6.6978 17.0041 22.3037

FCFF Closed 2.8623 6.5422 16.6411 20.8530
Open 3.2269 6.7176 17.2025 22.1136

CCFF Closed 5.4923 18.3390 20.4546 35.4419
Open 5.7778 18.7862 21.6695 36.7100

 

Fig. 4 Variation of the first frequency parameter with respect to adding more GPL to epoxy matrix in SCSC panels
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Table 9 The effect of GPL weigh fractions on first four frequency parameters of SCSC FG-GPLRC cylindrical panel surrounded
with PZT layers with symmetric pattern

Pattern WGPL% Electrical B.Cs �1 �2 �3 �4

FG-U 0.1 Closed 20.9304 38.5150 47.5722 60.6383
Open 22.4190 41.4257 50.5461 60.6383

0.2 Closed 21.3296 39.2409 48.5238 63.0758
Open 22.8019 42.1248 51.4797 63.0758

0.5 Closed 22.4757 41.3223 51.2371 68.4726
Open 23.8998 44.1236 54.1299 69.8855

0.8 Closed 23.5574 43.2844 53.7788 71.8773
Open 24.9358 46.0041 56.6024 75.7725

1.0 Closed 24.2487 44.5374 55.3958 74.0419
Open 25.5981 47.2047 58.1728 77.8767

FG-X 0.1 Closed 21.0836 38.7982 47.8981 60.6385
Open 22.5585 41.6802 50.8390 60.6385

0.2 Closed 21.6305 39.7980 49.1664 63.0766
Open 23.0771 42.6277 52.0600 63.0766

0.5 Closed 23.1910 42.6501 52.7769 69.8902
Open 24.5608 45.3365 55.5371 69.8902

0.8 Closed 24.6500 45.3167 56.1444 75.0162
Open 25.9534 47.8776 58.7848 76.1070

1.0 Closed 25.5755 47.0081 58.2774 77.8681
Open 26.8393 49.4939 60.8451 79.9894

FG-O 0.1 Closed 20.7758 38.2289 47.2423 60.6385
Open 22.2782 41.1688 50.2502 60.6385

0.2 Closed 21.0229 38.6726 47.8666 63.0766
Open 22.5219 41.6129 50.8877 63.0766

0.5 Closed 21.7292 39.9334 49.6185 66.3243
Open 23.2132 42.8614 52.6575 69.8901

0.8 Closed 22.3953 41.1148 51.2365 68.4964
Open 23.8598 44.0180 54.2717 72.6953

1.0 Closed 22.8220 41.8690 52.2600 69.8668
Open 24.2723 44.7516 55.2852 74.0584

Table 10 The effect of GPLweigh fractions on first four frequency parameters of SCSC FG-GPLRC cylindrical panel surrounded
with PZT layers with asymmetric pattern

Pattern WGPL% Electrical B.Cs �1 �2 �3 �4

FG-V 0.1 Closed 20.9211 38.4912 47.5530 60.6466
Open 22.4135 41.4087 50.5311 60.6466

0.2 Closed 21.2959 39.1660 48.4526 63.0918
Open 22.7769 42.0660 51.4203 63.0918

0.5 Closed 22.3121 40.9917 50.8837 67.9748
Open 23.7622 43.8427 53.8205 69.9235

0.8 Closed 23.2182 42.6150 53.0384 70.8518
Open 24.6395 45.4188 55.9418 74.8631

1.0 Closed 23.7804 43.6203 54.3687 72.6268
Open 25.1832 46.3931 57.2482 76.6104

FG-A 0.1 Closed 20.9215 38.5047 47.5519 60.6302
Open 22.4083 41.4129 50.5267 60.6302

0.2 Closed 21.2971 39.1916 48.4513 63.0603
Open 22.7680 42.0747 51.4129 63.0603

0.5 Closed 22.3169 41.0471 50.8849 68.0248
Open 23.7470 43.8652 53.8093 69.8522

0.8 Closed 23.2276 42.6937 53.0445 70.925
Open 24.6227 45.4548 55.9313 74.9082

1.0 Closed 23.7931 43.7123 54.3787 72.7138
Open 25.1668 46.4378 57.2397 76.6663
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Table 11 Variations of the first four frequency parameters of FG-GPLRC cylindrical panel versus the ratio of hp/h

Pattern h p/h Electrical B.Cs �1 �2 �3 �4

FG-U 0.01 Closed 17.0431 31.2411 39.1466 52.397
Open 17.5897 32.3375 40.3127 54.0243

0.02 Closed 18.8627 34.6348 43.2340 57.8493
Open 19.7427 36.3882 45.0814 60.4163

0.05 Closed 22.4757 41.3223 51.2371 68.4726
Open 23.8998 44.1236 54.1299 69.8855

0.1 Closed 23.7470 43.8652 53.8093 69.8522
Open 26.0687 47.9120 59.0300 72.8751

FG-X 0.01 Closed 18.4339 33.8586 42.2413 56.5325
Open 18.9316 34.8505 43.2869 57.9860

0.02 Closed 19.9889 36.7435 45.7114 61.1494
Open 20.8096 38.3706 47.4129 63.5069

0.05 Closed 23.1910 42.6501 52.7769 69.8902
Open 24.5608 45.3365 55.5371 69.8902

0.1 Closed 26.5029 48.7118 59.9442 72.8783
Open 28.2975 52.1817 63.4312 72.8783

FG-U 0.01 Closed 15.4976 28.3116 35.6523 47.7072
Open 16.1072 29.5444 36.9750 49.5612

0.02 Closed 17.6452 32.3440 40.5226 54.2262
Open 18.5964 34.2499 42.5457 57.0466

0.05 Closed 21.7292 39.9334 49.6185 66.3243
Open 23.2132 42.8614 52.6575 69.8901

0.1 Closed 25.6244 47.0927 58.0907 72.8783
Open 27.4993 50.7320 61.7717 72.8783

FG-V 0.01 Closed 16.5002 30.1870 37.9252 50.7253
Open 17.0784 31.3469 39.1556 52.4457

0.02 Closed 18.4907 33.9067 42.4085 56.7128
Open 19.4051 35.7281 44.3222 59.3762

0.05 Closed 22.3121 40.9917 50.8837 67.9748
Open 23.7622 43.8427 53.8205 69.9235

0.1 Closed 26.0021 47.7691 58.8909 72.9020
Open 27.8516 51.3508 62.4952 72.9020

FG-A 0.01 Closed 16.5171 30.2603 37.9449 50.8007
Open 17.0810 31.3975 39.1658 52.5059

0.02 Closed 18.5017 33.9747 42.4189 56.7790
Open 19.3973 35.7657 44.3204 59.4222

0.05 Closed 22.3169 41.0471 50.8849 68.0248
Open 23.7470 43.8652 53.8093 69.8522

0.1 Closed 26.0050 47.8116 58.8902 72.8526
Open 27.8386 51.3669 62.4848 72.8526

is studied in Table 11 and for first frequency parameter of X-GPLRC panel is displayed in Fig. 5. It can be
seen that panels with thicker piezoelectric layers experience higher natural frequencies. Also, Fig. 5 reveals
that natural frequencies of the panels with open circuit electrical boundary conditions are more sensitive to the
thickness of piezoelectric layer than those with closed circuit electrical boundary conditions.

Table 12 represents variation of frequency parameters versus R/a ratio of the SCSC FG-GPLRC panel
withWGPL � 0.5% for different GPL distribution patterns. It is observed that increasing panel curvature leads
to growing the frequencies as a consequence of increasing configuration stiffness.
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Fig. 5 How the first frequency parameter is affected by piezoelectric layer thickness changes

Table 12 The effect of R/a on first four frequency parameters of the FG-GPLRC panel with top and bottom piezoelectric layers

Pattern R/a Electrical B.Cs �1 �2 �3 �4

FG-U 3 Closed 22.9833 41.3235 51.7584 68.5677
Open 24.3969 44.1383 54.6217 69.8857

5 Closed 22.4757 41.3223 51.2371 68.4726
Open 23.8998 44.1236 54.1299 69.8855

10 Closed 22.2566 41.3219 51.0151 68.4323
Open 23.6857 44.1174 53.9206 69.8855

20 Closed 22.2014 41.3217 50.9595 68.4223
Open 23.6317 44.1159 53.8681 69.8854

FG-X 3 Closed 23.6782 42.6456 53.2798 69.8904
Open 25.0402 45.3458 56.0135 69.8904

5 Closed 23.1910 42.6501 52.7769 69.8902
Open 24.5608 45.3365 55.5371 69.8902

10 Closed 22.9811 42.6521 52.5629 69.8901
Open 24.3545 45.3326 55.3345 69.8901

20 Closed 22.9281 42.6526 52.5092 69.8901
Open 24.3025 45.3316 55.2836 69.8901

FG-O 3 Closed 22.2595 39.9407 50.1603 66.4286
Open 23.7296 42.8819 53.1662 69.8902

5 Closed 21.7292 39.9334 49.6185 66.3243
Open 23.2132 42.8614 52.6575 69.8901

10 Closed 21.5001 39.9303 49.3877 66.2802
Open 22.9904 42.8527 52.4409 69.8901

20 Closed 21.4423 39.9295 49.3298 66.2691
Open 22.9343 42.8505 52.3866 69.8901

FG-V 3 Closed 22.8225 40.9760 51.4086 68.0554
Open 24.2674 43.8513 54.3192 69.9474

5 Closed 22.3121 40.9917 50.8837 67.9748
Open 23.7622 43.8427 53.8205 69.9235

10 Closed 22.0922 41.0044 50.6603 67.9462
Open 23.5426 43.8416 53.6070 69.9056

20 Closed 22.0370 41.0111 50.6042 67.9422
Open 23.4862 43.8427 53.5527 69.8967

FG-A 3 Closed 22.8314 41.0679 51.4111 68.1385
Open 24.2439 43.8886 54.3012 69.8286

5 Closed 22.3169 41.0471 50.8849 68.0248
Open 23.7470 43.8652 53.8093 69.8522

10 Closed 22.0945 41.0322 50.6608 67.9712
Open 23.5348 43.8529 53.6013 69.8700

20 Closed 22.0381 41.0250 50.6045 67.9547
Open 23.4823 43.8484 53.5499 69.8789
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7 Conclusions

The present work deals with free vibrations of functionally graded graphene platelet-reinforced cylindrical
panels completely surrounded with top and bottom piezoelectric layers. Mechanical properties of GPLRC
layers were estimated in accordance with modified Halpin–Tsai micromechanical model, rule of mixtures
and the concept of layer-wise functionally graded distribution of GPLs. Hamilton principle was utilized to
obtain coupled PDEs of motions on the basis of FSDT and Maxwell equation. With the aid of Legendre-Ritz
technique, spatial domain was discretized and inertia and equivalent stiffness matrix were calculated. Through
a number of comparison studies, the accuracy of present solution procedure was validated and subsequently
novel numerical data were generated to establish the parameter studies. Some conclusions are outlined as:

• Increasing the number of layers leads to an increase in frequency for the FG-X pattern and a decrease in
frequency for FG-O and asymmetric patterns. However, the change in frequencies is negligible when the
number of layers is greater than 10. As a result, a panel with only 10 layers may serve as a panel with
continuous change of GPL weight fraction.

• As the piezoelectric layer becomes thicker frequencies show more dependency on electric boundary con-
ditions, for thinner piezoelectric layer, frequency parameters grow rapidly with thickening piezoelectric
layer.

• Deeper panel has higher natural frequencies.
• In general, increasing the GPL weight fraction or exploiting models with more dispersion of GPLs in the
outer layers leads to an enrichment of the panel stiffness and, as a result, a growth in natural frequencies.

• FG-X panel has the maximum frequencies, and FG-O panel has the minimum frequencies
• Open circuit condition results in higher frequencies.
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