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Abstract Propagation characteristics of SH waves in a functionally graded piezoelectric material (FGPM)
substrate with periodic gratings have been investigated in the article. The material constants of the FGPM
substrate change exponentially along the thickness direction. An effective numerical root finding method is
adopted to solve the dispersion equation of SH waves in the complex-value domain and the theoretical results
are verified by the finite element method. Effects of the material properties and height of the gratings as well
as the gradient coefficient of the FGPM substrate on band structures of SH waves are investigated in detail.
Numerical results show that more SH surface modes are trapped in the gratings when the shear wave velocity
in the gratings decreases. The surface modes are converted into the bulk modes by tuning the negative gradient
coefficient. A new low-frequency band gap is opened and SH modes with high frequencies are trapped in the
gratings completely by transforming the propagating modes into the resonant modes induced by the positive
gradient coefficient. The results in the article provide a theoretical foundation for designing surface acoustic
wave devices with high performance based on FGPMs.

1 Introduction

SAW devices have been widely used in wireless communication systems. The advantage of these devices is
the high sensitivity to external disturbances because the acoustic energy is concentrated near the surface within
a few wavelengths [1]. In order to improve the quality of the received signal in modern electronic devices,
the unwanted signals and noise should be suppressed. So, SAW filters with high performance [2–4] are very
important for advanced communication technologies.

Glass et al. [5, 6] found that a band gap (in which the propagation of elastic waves is suppressed) exists
in the band structures when Rayleigh waves propagate in a semi-infinite isotropic elastic medium with a
periodic corrugated surface. This provides an effective method to filter elastic waves by designing periodically
corrugated surfaces. Maznev and Every [7] obtained the dispersion relations of Rayleigh waves in a supported
film with periodic mass loading at the surface by using the plane wave expansion method. It was found that the
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ellipticity of the particle motion in the surface waves plays an important role in determining the width of the
band gaps. Low-frequency band gaps of SAWs were opened by the interaction of the locally resonant modes
and the surface modes when the cylindrical pillars were placed on the surface of a semi-infinite substrate
periodically [8]. The band gap features such as location, number, and width could be tuned by the cylindrical
pillars’ height, radius, and lattice symmetry [9–12]. Furthermore, the propagation of SAWs in a semi-infinite
substrate with periodic composite pillars, which consists of a cap metallic pillar and a bottom epoxy pillar,
was investigated [13]. The study showed that the bottom pillar has an important role in engineering the band
structures when the Young’s modulus is one order of magnitude smaller than that of the cap pillar.

SH waves (including BG waves [14–16] and Love waves [17–19]) are widely used in signal-processing
devices due to their high performance and simple particle motion [20]. The performance of SH wave filters is
a key parameter of microwave devices and needs to be investigated comprehensively. Tsutsumi and Kumagai
[21] studied the propagation characteristics of BG waves in a periodically corrugated piezoelectric substrate
with the aid of a singular perturbation procedure. It was found that a wide band gap is obtained by choosing the
piezoelectric constant suitably. Xu et al. [22] studied the dispersion relation of BGwaves in a magneto-electro-
elastic (MEE) substrate with a periodically inertial load surface based on the Bloch’s theorem and the coupling
of modes approximation. Wilcox et al. [23] investigated the propagation of SH waves in an elastic substrate
covered by an elastic layer of another material with a sinusoidal corrugated surface. The study found that SH
waves exist in the structure when the shear wave velocity in the layer is greater than that in the substrate, which
is different from thewell-known existence condition of SHwaves in layered structures [17–19]. This is because
the corrugation traps the mechanical energy of SH waves and this contribution is larger than the resistance
of the surface layer for the SH wave formation. The power reflection [24] and dispersion relations [25–27]
of Love waves in an elastic layered structure with a corrugated interface or surface were discussed in detail.
Pang et al. [28] analyzed the propagation characteristics of SH waves in an MEE substrate with thin metal
strips deposited periodically on the surface and effects of the metal gratings on band gap features of SH waves
were investigated. In above analysis [21–28], the small corrugations were considered and the effects of the
corrugations’ dimensions on wave motion were not analyzed. The dispersion relation of SHwaves in an elastic
substratewith periodic gratings of the large-amplitudewas studied andmore high-frequency branches appeared
in the band structureswhen the height of the gratingswas large enough [29]. Laude et al. [30–32] further studied
the dispersion relations of SH and vertical polarization (VP) modes in the piezoelectric substrates with periodic
metal gratings on the surface. Although the effects of the gratings’ height on propagation features of SH waves
were discussed [29–32], the influence of the material properties of the gratings on band structures was not
investigated.

With the development of material technology, functionally graded materials (FGMs) can be manufactured
and used as substrates to improve the propagation characteristics of SH waves [33–43]. Based on these prop-
erties, the band gap features of SH waves in homogeneous substrates with corrugated surfaces [21–32] could
be improved efficiently by the gradient change of the material properties. This study investigates the propa-
gation characteristics of SH waves in an FGPM substrate with periodic gratings on the surface. Effects of the
material properties and height of the gratings as well as the gradient coefficient of the piezoelectric substrate
on band structures of SH waves are investigated. The surface modes are convert into the bulk modes and the
propagating modes are transformed into the resonant modes by tuning the gradient coefficient of the FGPM
substrate. Consequently, a new low-frequency band gap is opened and SH modes with high frequencies are
trapped in the gratings completely. This article aims to provide an efficient method to design SAW devices
with high-performance based on FGPMs.

2 Statement of the problem

The transversely isotropic FGPM substrate with periodic dielectric gratings on the surface and the coordinate
system are shown in Fig. 1. z-axis is the poling direction, which is perpendicular to x–y plane. The plane at
x � 0 is the surface of the substrate (it is also the interface between the substrate and gratings). The material
constants in the substrate change gradually along the x-axis direction and the SH waves propagate along the
positive direction of the y-axis. The gratings’ period, width, and height are a, l, and h, respectively.

For SH waves propagation in the proposed structure shown in Fig. 1, the mechanical displacement com-
ponents and electrical potential are described as follows

u � v � 0, w � w(x , y, t), ϕ � ϕ(x , y, t), (1)
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Fig. 1 The FGPM substrate with periodic gratings (Color figure online)

where u, ν, and w are the displacement components of SH waves along the x-axis, y-axis, and z-axis, respec-
tively. ϕ is the electrical potential.

The motion differential equation of SH waves in the transversely isotropic FGPM (x >0) can be expressed
as follows [34, 43]

c44(x)∇2w1 + e15(x)∇2ϕ1 +
∂c44(x)

∂x

∂w1

∂x
+

∂e15(x)

∂x

∂ϕ1

∂x
� ρ(x)

∂2w1

∂t2
,

e15(x)∇2w1 − ε11(x)∇2ϕ1 +
∂e15(x)

∂x

∂w1

∂x
− ∂ε11(x)

∂x

∂ϕ1

∂x
� 0, (2)

where w1 and ϕ1 are the mechanical displacement and electrical potential of SH waves in the FGPM substrate.
c44(x), e15(x), ε11(x) and ρ(x) are the elastic constant, piezoelectric constant, dielectric constant, and mass
density in the substrate respectively. ∇2 is the two-dimensional Laplace operator. t is the time.

The nonzero stress τ ij and electric displacement Di components induced by SH waves in the FGPM
substrate are given [34]

τxz � c44(x)
∂w1

∂x
+ e15(x)

∂ϕ1

∂x
, τyz � c44(x)

∂w1

∂y
+ e15(x)

∂ϕ1

∂y
,

Dx � e15(x)
∂w1

∂x
− ε11(x)

∂ϕ1

∂x
, Dy � e15(x)

∂w1

∂y
− ε11(x)

∂ϕ1

∂y
. (3)

In the FGPM substrate, the variations of material constants along the thickness direction (x-axis) with the
same exponential function are assumed without loss of generality [34, 38, 43]

c44(x) � c044e
αx , e15(x) � e015e

αx , ε11(x) � ε011e
αx , ρ(x) � ρ0eαx , (4)

where α is the exponential coefficient indicating the profile of the material gradient along the x-axis direction
and the quantities with superscript 0 are the corresponding values of these parameters at the surface x � 0.

Equation (4) is substituted into Eq. (2), the following field equations can be obtained

c044

(
∇2w1 + α

∂w1

∂x

)
+ e015

(
∇2ϕ1 + α

∂ϕ1

∂x

)
� ρ0 ∂2w1

∂t2
,

e015

(
∇2w1 + α

∂w1

∂x

)
− ε011

(
∇2ϕ1 + α

∂ϕ1

∂x

)
� 0. (5)
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In the region –h <x <0, the dielectric gratings and air gaps are periodically stacked along the y-axis
direction. The motion differential equation of SH waves in this region could be expressed as follows [29, 38,
43]

c′
44(y)∇2w2 +

∂c′
44(y)

∂y

∂w2

∂y
� ρ′(y)

∂2w2

∂t2
,

ε′
11(y)∇2ϕ2 +

∂ε′
11(y)

∂y

∂ϕ2

∂y
� 0, (6)

with the nonzero stress τ ′
i j and electric displacement D′

i components

τ ′
xz � c′

44(y)
∂w2

∂x
, τ ′

yz � c′
44(y)

∂w2

∂y
, D′

x � −ε′
11(y)

∂ϕ2

∂x
, D′

y � −ε′
11(y)

∂ϕ2

∂y
. (7)

where w2 and ϕ2 are the mechanical displacement and electrical potential of SH waves in the region –h <x
<0. c′

44(y), ε
′
11(y) and ρ′(y) are the elastic constant, dielectric constant, and mass density in the region –h <x

<0, respectively.
Usually, the dielectric constant ε0 of air is much smaller than that of the dielectric gratings and is negligible.

Thus the space in the region x <–h can be treated as vacuum. The electrical potential function ϕ0(x, y, t) satisfies
the following Laplace equation [38, 43]

∇2ϕ0 � 0, (8)

with the nonzero electric displacement Di0 components

Dx0 � −ε0
∂ϕ0

∂x
, Dy0 � −ε0

∂ϕ0

∂y
. (9)

The wave motion in the proposed structure in Fig. 1 should satisfy the continuity conditions at x � 0 and
boundary conditions at x � − h, which are described as follows.

(1) The continuity conditions at x � 0

w1(0, y) � w2(0, y), τxz(0, y) � τ ′
xz(0, y),

ϕ1(0, y) � ϕ2(0, y), Dx (0, y) � D′
x (0, y), (10a)

(2) The boundary conditions at x � − h

τ ′
xz(−h, y) � 0, ϕ2(−h, y) � ϕ0(−h, y), D′

x (−h, y) � Dx0(−h, y), (10b)

(2) The attenuation conditions at x → ±∞
w1, ϕ1 → 0, for x → +∞,

ϕ0 → 0, for x → −∞,
(10c)

3 Solutions of the problem

3.1 Solutions in the FGPM substrate

For the FGPM substrate described above, the solutions of Eq. (5) can be expressed in the following forms

w1(x , y, t) �W1(x) exp(iky − iωt),

ϕ1(x , y, t) � 
1(x) exp(iky − iωt), (11)

whereW1(x) andΦ1(x) are the functions to be determined. k is the wavenumber andω is the circular frequency.
i � √−1 is the imaginary unit.

Equation (11) is substituted into Eq. (5), the following field equations can be obtained

c044
(
W ′′

1 + αW ′
1 − k2W1

)
+ e015

(

′′

1 + α
′
1 − k2
1

) � − ρ0ω2W1,

e015
(
W ′′

1 + αW ′
1 − k2W1

) − ε011
(

′′

1 + α
′
1 − k2
1

) � 0, (12)
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in which, the prime onW1 and Φ1 denotes differentiation with respect to x coordinate.
The second expression of Eq. (12) provides

(

′′

1 + α
′
1 − k2
1

) � e015
ε011

(
W ′′

1 + αW ′
1 − k2W1

)
. (13)

Equation (13) is substituted into the first expression of Eq. (12) and yields

c44
(
W ′′

1 + αW ′
1 − k2W1

) � −ρ0ω2W1, (14)

with c44 � c044 +
(
e015

)2/
ε011.

For SH surface waves considered in the article, the solution of Eq. (14) is

W1(x) � A1e
rx , (15)

with r � −α
2 −

√
α2

4 +

(
k2 − ω2

c44
/

ρ0

)
. A1 is the unknown coefficient.

According to Eq. (13), the undetermined function Φ1(x) can be obtained [15]


1(x) � A2e
px +

e015
ε011

A1e
rx , (16)

with p � −α
2 −

√
α2

4 + k2. A2 is the unknown coefficient.
Then, the mechanical displacement and electrical potential in the FGPM substrate are shown

w1(x , y, t) � A1e
rx exp(iky − iωt),

ϕ1(x , y, t) �
(
A2e

px +
e015
ε011

A1e
rx

)
exp(iky − iωt). (17)

According to the Floquet−Bloch theorem, the expressions in Eq. (17) are expanded in the Fourier series
in the y-axis direction

w1(x , y, t) �
+∞∑

m�−∞
A1me

rmx exp(ikm y − iωt),

ϕ1(x , y, t) �
+∞∑

m�−∞

(
A2me

pmx +
e015
ε011

A1me
rmx

)
exp(ikm y − iωt), (18)

where km � k +2mπ/a, k is restricted in the firstBrillouin zone [−π/a,π/a]. rm � −α
2 −

√
α2

4 +

(
k2m − ω2

c44
/

ρ0

)

and pm � −α
2 −

√
α2

4 + k2m .

3.2 Solutions in the region − h <x <0

In the region –h <x <0, the material constants are periodic functions of y with the period a due to the periodic
arrangement of the dielectric gratings and air gaps. Then, these constants are expended in the Fourier series

c′
44(y) �

+∞∑
m′�−∞

c′
44(m′)e

im′ 2π
a y , ε′

11(y) �
+∞∑

m′�−∞
ε′
11(m′)e

im′ 2π
a y , ρ′(y) �

+∞∑
m′�−∞

ρ′
(m′)e

im′ 2π
a y , (19)
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with the Fourier coefficients given as follows

c′
44(m′)

(
ε′
11(m′), ρ

′
(m′)

)
� c′

44

(
ε′
11, ρ

′) ×

⎧⎪⎪⎨
⎪⎪⎩

l

a
, m′ � 0,

sin
(
m′π l

a

)
m′π

, m′ �� 0.

(20)

The mechanical displacement and electrical potential in this region are expressed as follows

w2(x , y, t) �
+∞∑

m�−∞
W2m(x) exp(ikm y − iωt),

ϕ2(x , y, t) �
+∞∑

m�−∞

2m(x) exp(ikm y − iωt), (21)

where W2m(x) and Φ2m(x) are the functions to be determined.
Substituting Eqs. (19) and (21) into Eq. (6), the undetermined functionsW2m(x) andΦ2m(x) can be obtained

W2m(x) �
+∞∑
s�1

(
a1se

λ1s x + b1se
−λ1s x

)
βs
1m ,


2m(x) �
+∞∑
s�1

(
a2se

λ2s x + b2se
−λ2s x

)
βs
2m , (22)

where a1s, b1s, a2s, and b2s are theweighting coefficients.λ1s andβs
1m are the sth eigenvalue andmth component

of the corresponding eigenvector in the following nonstandard eigenvalue problem

λ21s

+∞∑
m�−∞

c′
44(q−m)β

s
1m �

+∞∑
m�−∞

(
kqc

′
44(q−m)km − ω2ρ′

(q−m)

)
βs
1m , (23)

similarly, λ2s and βs
2m are the sth eigenvalue and mth component of the corresponding eigenvector in the

nonstandard eigenvalue problem shown below

λ22s

+∞∑
m�−∞

ε′
11(q−m)β

s
2m �

+∞∑
m�−∞

kqε
′
11(q−m)kmβs

2m , (24)

where q � m + m′ and q , m � 0, ±1, ±2, ±3, · · ·.
The mechanical displacement and electrical potential in the region –h <x <0 are obtained by substituting

Eq. (22) into Eq. (21)

w2(x , y, t) �
+∞∑

m�−∞

+∞∑
s�1

(
a1se

λ1s x + b1se
−λ1s x

)
βs
1m exp(ikm y − iωt),

ϕ2(x , y, t) �
+∞∑

m�−∞

+∞∑
s�1

(
a2se

λ2s x + b2se
−λ2s x

)
βs
2m exp(ikm y − iωt). (25)

3.3 Solutions in the region x < − h

There is no mechanical disturbance in the region x <–h, which is treated as the vacuum. Then, the electrical
potential function ϕ0(x, y, t) can be obtained by considering Eqs. (8) and (10c)

ϕ0(x , y, t) �
+∞∑

m�−∞
A0me

√
k2mx exp(ikm y − iωt), (26)

where A0m is the unknown coefficient.
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3.4 Dispersion equation

Equations (18), (25), and (26) with the corresponding stress and electric displacement components in Eqs. (3),
(7), and (9) are substituted into Eqs. (10a) and (10b) yields an infinite set of linear equations

A1q −
+∞∑
s�1

(a1s + b1s)β
s
1q � 0,

c44rq A1q + e015 pq A2q −
+∞∑
s�1

λ1s(a1s − b1s)
+∞∑

m�−∞
c′
44(q−m)β

s
1m � 0,

A2q +
e015
ε011

A1q −
+∞∑
s�1

(a2s + b2s)β
s
2q � 0,

ε011 pq A2q −
+∞∑
s�1

λ2s(a2s − b2s)
+∞∑

m�−∞
ε′
11(q−m)β

s
2m � 0,

+∞∑
s�1

λ1s

(
a1se

−λ1sh − b1se
λ1sh

) +∞∑
m�−∞

c′
44(q−m)β

s
1m � 0,

+∞∑
s�1

(
a2se

−λ2sh + b2se
λ2sh

)
βs
2q − A0qe

−
√
k2qh � 0,

+∞∑
s�1

λ2s

(
a2se

−λ2sh − b2se
λ2sh

) +∞∑
m�−∞

ε′
11(q−m)β

s
2m − ε0

√
k2q A0qe

−
√
k2qh � 0, (27)

in which, A1q, A2q, a1s, b1s, a2s, b2s, and A0q are undetermined coefficients. In practice, Eq. (27) is reduced
to a finite set by limiting q and m to the range − M <q, m <M, where M is the positive integer and is large
enough to ensure the accuracy of the calculated results. Then, s ranges from 1 to 2M + 1 and Eq. (27) becomes
a set of 14 M + 7 linear equations with 14 M + 7 unknown coefficients. To obtain the nontrivial solution, the
determinant of the coefficient matrix of Eq. (27) has to vanish

det|Q(k,ω)| � 0, (28)

which yields the dispersion relation ω � ω(k) for the SH waves propagation in the structure depicted in Fig. 1.

4 Numerical results and discussion

In numerical calculations, the piezoelectricmaterial ZnO [38] is selected as the substrate and different dielectric
materials, such as SiO2 [38], Pb glass [43], and Si [44] are chosen as the gratings for comparison. The material
constants are summarized in Table 1. The dielectric constant of air is ε0 � 8.854×10–12 (F/m). The period of
the gratings a is 10 mm and l/a is fixed at 0.5. 5 Bloch harmonic waves (M � 2, − 2≤q, m ≤2) are adopted
appropriately for solving the dispersion equation (Eq. 28) by an effective numerical root finding method in the
complex-value domain [45] and the theoretical results are verified by numerical simulation implemented by
the finite element software COMSOL Multiphysics 5.0a. In Comsol simulation, the thickness of the substrate
is 20a and the variation of the material constants in the FGPM substrate is realized by the analytical function,
in which the expressions of the material constants along the substrate thickness are input, under the material
properties option in the model builder.

4.1 The effect of the material properties of the gratings on band structures

The effect of the material properties of the gratings on band structures of SH waves is shown in Fig. 2. The
violet hexagons represent the sound line that is defined as ω1 � kcsh, where ω1 is the cutoff frequency and

csh �
√
c44

/
ρ0 � 2841.4 m/s is the shear wave velocity in the FGPM substrate. Note that the mechanical
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Table 1 Material constants for numerical calculation [38, 43, 44]

Materials c44 (1010 N/m2) e15 (C/m2) ε11 (10–11 F/m) ρ (103 kg/m3)

Pb glass 2.18 0 4.516 3.879
SiO2 3.12 0 3.662 2.2
Si 7.94 0 1.035 2.328
ZnO 4.23exp(αx) − 0.48exp(αx) 6.703exp(αx) 5.665exp(αx)

energy of SH waves is radiated into the surrounding medium when the circular frequency ω is greater than ω1
and the surface waves become leaky or pseudo surface waves [46], which are not considered in the article. It is
seen from Fig. 2 that the band structures obtained by the theoretical calculation almost coincide with the FEM
results. The correctness of the theoretical calculation in the article is verified to a certain extent. As can be seen,
the frequencies of the first twomodes in the band structures decrease andmore surfacemodes appear in the band

structures as the shear wave velocity c′
sh in the dielectric gratings decreases (c′

sh �
√
c′
44

/
ρ′ � 5840.1 m/s

in Si, c′
sh � 3765.9 m/s in SiO2, and c′

sh � 2370.7 m/s in Pb glass). This is because the mechanical energy
of SH waves is more easily trapped in the soft gratings (the shear wave velocity is small). The flat frequency
bands shown in Fig. 2 indicate that the group velocity cg � dω

/
dk � 0 and the resonance is formed in the

gratings.

In order to explore the resonant modes formed in the gratings, the mode shapes of displacements at ka/π
� 1 marked by the red balls shown in Fig. 2 are displayed in Fig. 3. As can be seen, the low-frequency modes
are more easily trapped in the gratings than the high-frequency modes because the modes become more and
more heavily damped with the increasing frequency by radiating the mechanical energy into the substrate (seen
in the mode shapes of B1, C2, D3, and E3). Consequently, SH waves could propagate through the proposed
structure in Fig. 1 by the evanescent coupling of the resonant modes. The results obtained in this section show
that the desired filter properties of SAW devices could be realized by choosing the material components of the
gratings properly.

4.2 The effect of the gratings’ height on band structures

The effect of the gratings’ height on band structures of SH waves is shown in Fig. 4. It is seen from Fig. 4 that
the band structures obtained by the theoretical calculation and FEM simulation have a good agreement. There
is only one frequency band in the band structures when the grating height h is no more than a shown in Fig. 4a.
As h increases from 0.5a to a, the frequency band moves down and gets more flat. When h increases from a
to 2a, one more frequency band (high-order mode) falls into the band structure shown in Fig. 4b and the first
frequency band becomes flatter than that at h � a. This illustrates that more and more mechanical energy is
trapped in the higher gratings and the quality of the energy trapping (the first frequency band) is improved by
increasing the grating height because the group velocity cg � dω

/
dk decreases and the localization of SH

waves is strengthened.

To illustrate the localization of SH waves in the gratings with different heights clearly, the mode shapes of
displacements at ka/π � 1 marked by the red balls shown in Fig. 4 are displayed in Fig. 5. As seen in Fig. 5,
the mechanical energy of SH waves is not confined in the gratings completely and more mechanical energy is
trapped in the gratings with the increase of the grating height by radiating a small fraction of the mechanical
energy into the substrate. As can be seen, the penetration depth of SH waves decreases as the grating height
increase. When the grating height is large enough (h � 2a), the mechanical energy of the A4 mode is almost
localized in the gratings but the mechanical energy of the high-order mode (B4 mode) is hard to be harvested
completely. Although the quality of the energy trapping could be improved by increasing the grating height,
the dimensions of SAW devices would increase inevitably. It is not desirable in the application of microwave
devices. However, this problem could be solved effectively by choosing the material component and height of
the gratings properly.
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Fig. 2 Band structures of SH waves in the FGPM substrate with different dielectric gratings at h � 4a, α � 0 obtained by the
theoretical calculation (black circles) and FEM (dark yellow balls), a the material of the dielectric gratings is Si; b the material
of the dielectric gratings is SiO2; c the material of the dielectric gratings is Pb glass (Color figure online)
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Fig. 3 Mode shapes of displacements at ka/π � 1 marked by the red balls, A1 and B1 in Fig. 2a; A2, B2, and C2 in Fig. 2b; A3,
B3, C3,D3, and E3 in Fig. 2c (Color figure online)

4.3 The effect of the gradient coefficient of the FGPM substrate on band structures

The effect of the gradient coefficient (α <0) of the FGPM substrate on band structures of SH waves is shown
in Fig. 6. The band structures obtained by the theoretical calculation almost coincide with that obtained by
FEM simulation. As can be seen, the frequency bands move down as the gradient coefficient α decreases
from 0 to − 3000. The reason is that rm (shown in Table 2) under Eq. (18), which represents the attenuation
per unit length along the thickness direction, decreases as the gradient coefficient decreases. More and more
mechanical energy is radiated into the substrate with the increase of the penetration depth of SH waves, which
decreases the waves’ phase velocity at the substrate’s surface.

The mode shapes of displacements at ka/π � 1 marked by the red balls shown in Fig. 6 are displayed
in Fig. 7. Compares the mode shapes of A2 mode, B2 mode, and C2 mode shown in Fig. 3 with Fig. 7, it
is found that the penetration depth of the same modes (A0, A1, A2; B0, B1, B2; C0, C1, C2) increase as the
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Fig. 4 The effect of the gratings’ height on band structures of SH waves in the structure shown in Fig. 1 with the material of the
gratings is SiO2 at α � 0 obtained by the theoretical calculation (black circles, blue circles, olive circles) and FEM (dark yellow
balls), (a) h � 0.5a, 0.7a, and a; (b) h � 2a (Color figure online)

gradient coefficient α decreases. This phenomenon is different from the above results shown in Figs. 2–5
that the mechanical energy of SH waves with the lower frequency is more easily trapped in the gratings. It
is seen from Figs. 2 and 4 that the frequency bands of SH waves with low frequencies are flatter than that of
the same modes with high frequencies, which indicates the high quality of the energy trapping. In Fig. 6, the
frequency bands of SH waves with the lower frequency caused by the negative gradient coefficient become
more inclined, indicating that the quality of the energy trapping decreases. As can be seen, the penetration
depth of the high-order mode is more significant than that of the low-order mode because the attenuation
coefficient rm of the high-order mode is smaller than that of the low-order mode shown in Table 2. This makes
the proposed structure shown in Fig. 1, which consists of a FGPM substrate with negative gradient coefficients
and periodic dielectric gratings, suitable to serve as a transducer by converting the surface modes into the bulk
modes.

The effect of the gradient coefficient (α >0) of the FGPM substrate on band structures of SHwaves is shown
in Fig. 8. The band structures obtained by the theoretical calculation agree well with that obtained by FEM
simulation. It is seen from Fig. 8 that the cutoff frequency (start point of each mode) of SH waves increases as
the gradient coefficient increases. An interesting physical phenomenon is found that the flat bands are obtained
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Fig. 5 Mode shapes of displacements at ka/π � 1 marked by the red balls in Fig. 4 A1, A2, A3 in Fig. 4a; A4 and B4 in Fig. 4b
(Color figure online)

Fig. 6 The effect of the gradient coefficient α (α <0) on band structures of SH waves in the structure shown in Fig. 1 with the
material of the gratings is SiO2 at h � 4a obtained by the theoretical calculation (black circles, blue circles, olive circles) and
FEM (dark yellow balls) (Color figure online)

Table 2 Values of rm at ka/π � 1 under different gradient coefficients (α ≤0, h � 4a)

Modes m � − 2 m � − 1 m � 0 m � 1 m � 2

First band α � 0 − 940.6856 − 308.7411 − 308.7411 − 940.6856 − 1569.7
α � − 1000 − 565.5083 − 87.99620 − 87.99620 − 565.5083 − 1147.6
α � − 3000 − 270.8479 − 31.77480 − 31.77480 − 270.8479 − 671.41

Second band α � 0 − 930.1734 − 275.0530 − 275.0530 − 930.1734 − 1563.4
α � − 1000 − 557.8148 − 73.93710 − 73.93710 − 557.8148 − 1142.6
α � − 3000 − 267.0192 − 27.34680 − 27.34680 − 267.0192 − 668.29

Third band α � 0 − 909.7078 − 194.9356 − 194.9356 − 909.7078 − 1551.4
α � − 1000 − 542.5598 − 45.30960 − 45.30960 − 542.5598 − 1132.8
α � − 3000 − 258.0693 − 16.98370 − 3010.200 − 258.0693 − 661.01
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Fig. 7 Mode shapes of displacements at ka/π � 1 marked by the red balls in Fig. 6, A0, B0, and C0 for α � − 3000; A1, B1, and
C1 for α � − 1000 (Color Figure online)

Fig. 8 The effect of the gradient coefficient α (α >0) on band structures of SH waves in the structure shown in Fig. 1 with the
material of the gratings is SiO2 at h � 4a obtained by the theoretical calculation (black circles, blue circles, olive circles) and
FEM (dark yellow balls) (Color figure online)

as the gradient coefficient increases to 3000. The possible reason is that the attenuation per unit length along
the thickness direction rm (shown in Table 3) increases as the gradient coefficient increases. More and more
mechanical energy is trapped in the gratings with the decrease of the penetration depth of SH waves, which
increases the waves’ phase velocity at the substrate’s surface. As can be seen, the flat bands are generated due
to the propagating modes are transformed into the resonant modes induced by the positive gradient coefficient
and a new low-frequency band gap is opened under the first frequency band as the gradient coefficient increases
to 100.

The mode shapes of displacements at ka/π � 1 marked by the red balls shown in Fig. 8 are displayed in
Fig. 9. Compares the mode shapes of A2 mode, B2 mode, and C2 mode shown in Fig. 3 with Fig. 9, it is found
that the penetration depth of the same modes (A2, A3, A4; B2, B3, B4; C2, C3, C4) decrease as the gradient
coefficient α increases because the attenuation coefficient rm increases as the gradient coefficient α increases
shown in Table 3. In the above analysis (Figs. 2–5), the high quality of the energy trapping of SHwaves with the
low frequency can be realized due to the flat bands, which represents the localization of SH waves. However,
the quality of the energy trapping of SH waves with the high frequency is improved effectively by tuning the
positive gradient coefficient shown in Fig. 9. The mechanical energy of SH waves with high frequencies could
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Table 3 Values of rm at ka/π � 1 under different gradient coefficients (α ≥0, h � 4a)

Modes m � − 2 m � − 1 m � 0 m � 1 m � 2

First band α � 0 − 940.6856 − 308.7411 − 308.7411 − 940.6856 − 1569.7
α � 100 − 991.9973 − 362.7149 − 362.7149 − 991.9973 − 1620.5
α � 3000 − 3270.500 − 3031.400 − 3031.400 − 3270.500 − 3671.1

Second band α � 0 − 930.1734 − 275.0530 − 275.0530 − 930.1734 − 1563.4
α � 100 − 981.3435 − 328.9844 − 328.9844 − 981.3435 − 1614.1
α � 3000 − 3264.400 − 3024.400 − 3024.400 − 3264.400 − 3666.2

Third band α � 0 − 909.7078 − 194.9356 − 194.9356 − 909.7078 − 1551.4
α � 100 − 960.3396 − 247.8634 − 247.8634 − 960.3396 − 1601.7
α � 3000 − 3252.200 − 3010.200 − 3010.200 − 3252.200 − 3656.3

Fig. 9 Mode shapes of displacements at ka/π � 1 marked by the red balls in Fig. 8, A3, B3, C3 for α � 100; A4, B4, and C4 for
α � 3000 (Color figure online)

be stored into the gratings completely by tuning the positive gradient coefficient, which could not be realized in
the same structure with the homogeneous substrate. This makes the proposed structure shown in Fig. 1, which
consists of an FGPM substrate with positive gradient coefficients and periodic dielectric gratings, suitable to
serve as resonators and filters by transforming the propagating modes into the resonant modes.

5 Conclusions

The propagation characteristics of SH waves in an FGPM substrate with periodic dielectric gratings have
been investigated in the article. An effective numerical root finding method is adopted to solve the dispersion
equation of SH waves in the complex-value domain and the theoretical results are verified by FEM simulation.
Effects of the material properties and height of the gratings as well as the gradient coefficient of the FGPM
substrate on band structures of SH waves and mode shapes of displacements are investigated in detail. The
numerical results show that more SH modes are trapped in the gratings when the shear wave velocity in the
gratings decreases or the gratings’ height increases. The surface modes are converted into the bulk modes by
tuning the negative gradient coefficient. The propagating modes are transformed into the resonant modes and
a new low-frequency band gap is opened by tuning the positive gradient coefficient. The mechanical energy
of SH waves with high frequencies could be trapped in the gratings completely by tuning the positive gradient
coefficient, which could not be realized in the same structure with the homogeneous substrate. The results
obtained in the article provide a theoretical basis for designing high performance SAW transducers, resonators,
and filters.
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