
Acta Mech 234, 2745–2761 (2023)
https://doi.org/10.1007/s00707-023-03519-0

ORIGINAL PAPER

Chenlin Li · Yaning Lu · Huili Guo · Tianhu He ·
Xiaogeng Tian

Non-Fick diffusion–elasticity based on a new nonlocal
dual-phase-lag diffusion model and its application
in structural transient dynamic responses

Received: 16 July 2022 / Revised: 21 December 2022 / Accepted: 10 February 2023 / Published online: 2 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract Mechanical-diffusion coupling analysis at micro/nanotemporal and spatial scale has aroused great
research interests with flourishing development of nanobattery system and fast rising of rapid charging tech-
nology, where the spatial nonlocal effects of mass transfer and elastic deformation as well as the influences
of temporal nonlocal effects of mass transport (i.e., the phase laggings of diffusion flux vector and molar con-
centration gradient) will remarkably increase. In such cases, however, the accurate prediction of mechanical-
diffusion responses is challenged: Firstly, the existing non-Fick diffusion–elasticity models are established by
merely introducing mass diffusion model associated with the time rate of diffusion flux (i.e., phase laggings
of diffusion flux); secondly, the spatial nonlocal effect of mass transfer is still not considered in the current
on dual-phase-lag diffusion model. This work aims to develop a non-Fick diffusion–elasticity based on a new
nonlocal dual-phase-lag diffusion model, which fully incorporates spatial and temporal nonlocal effects of
mass transport. New constitutive and field equations are strictly derived via nonlocal continuum mechanics.
To illustrate its application values, a one-dimensional isotropic homogeneous thin layer of finite thickness
subjected to transient shock loadings of molar concentration is investigated. Dimensionless results are graphi-
cally presented to illustrate the effects of both nonlocal mass transfer and nonlocal elasticity on diffusive wave
propagation and mechanical-diffusion responses.

1 Introduction

Nowadays, lithium-ion batteries (LIBs) stand as a new class of most promising candidates of energy-storage
materials which have been widely used in sophisticated electronics and energy-storage devices since the
excellent electrochemical properties and high-efficient ability of storaging or discharging ions. When nanobat-
tery works in rapid charging/discharging condition, the abrupt changes of ionic concentration will give rise
to ions diffusion and local diffusion-induced stresses [1]. In such a case, the classical linear [1] and non-
linear [2] mechanical-diffusion coupling theories fail to characterize inherent diffusion-wave feature at the
micro/nanotemporal scale. To eliminate such paradox, the non-Fick diffusion–elasticity model [3] was put
forward by introducing diffusive wave mass transfer model. Following this theory, the transient mechanical-
diffusion responses of elastic solids subjected to shock loadings of molar concentration have been investigated
[4–7]. With flourishing development of electrode nanomaterials [8–10] and ultrafast charging/discharging
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technology [11], the mechanical-diffusion coupling analysis at micro/nanotemporal and spatial scale appears
to be particularly important [12–14]. However, the above-mentioned models and predictions merely consider
temporal nonlocal effect of mass transport, whereas the spatial nonlocal effects of elastic deformation and
mass transport are neglected.

Firstly, the classical Fick’s mass diffusion (CFMD) model will be not applicable if fast mass transfer
occurs at very small time and length scales, and spatial and temporal nonlocal effects of mass transport [15]
remarkably increase. In such cases, mass transport is an inherently nonlocal phenomenon; that is, the diffusion
flux at reference point depends on carriers of diffusion from other points and the history of mass carriers
reaching at the point. The spatial nonlocal effect of mass transport should be seriously considered if the
mean free path of diffusing particle approaches to (or longer than) the characteristic length of the system.
This effect is ruled by the ratio of the mean free path to the characteristic length of the system (i.e., the
Knudsen number.). Additionally, the temporal nonlocal effect is often referred to the phase lagging of local
diffusion flux if diffusion relaxation time approaches to characteristic time of mass transport process under
consideration. To shed light on the mass transport mechanism at micro/nanotemporal and spatial scale, the
nonlocal mass transfer models [15] have been developed by introducing additional material characteristic
length parameters, such as two-concentration model, discrete model, Jeffreys-type model, and diffusion-stress
coupling model. Sobolev [15] concluded that existing nonlocal mass transfer models are mainly developed by
extended irreversible thermodynamics, phenomenological approach, discrete approach, and fluctuation theory.
As discussed by Sobolev, it is clearly that these models are only capable of characterizing spatial nonlocal
effect of mass transport and phase lagging of diffusion flux. However, these models fail to characterize inherent
phase lagging of molar concentration gradient [16–18]. Chen and his colleagues [16–18] emphasized that both
phase laggings of diffusion flux and molar concentration gradient should be considered for transient process of
mass transport, and a dual-phase-lag diffusion model was developed. Nevertheless, this model cannot depict
the spatial nonlocal effect ofmass transport. As a consequence, a new dual-phase-lag diffusionmodel involving
nonlocality of mass transfer is imperatively to be established.

Secondly, the spatial nonlocal effect of elastic deformation is also an important factor that cannot be
ignored in mechanical-diffusion coupling analysis at micro/nanotemporal and spatial scale. In such a case,
the additional material characteristic parameter must be introduced into the classical elasticity theory. So far,
the nonlocal elasticity theories have been put forward to characterize mechanical response of nanostructures
by incorporating information about material microstructure (e.g., lattice spacing between individual atoms,
etc.), such as stress gradient elasticity [19, 20], strain gradient elasticity [21], couple stress elasticity [22],
and nonlocal strain gradient elasticity [23, 24]. Recently, it was also found that Eringen’s nonlocal differential
elasticitymodelmay be ill-posed in some specific conditions and some new nonlocal elasticitymodels [25–27].
Surely it cannot be denied that this model is still widely applied in size-dependent mechanical behavior of
bending, vibration, and buckling of nanobeams [28, 29].

As the above literature survey and further examination of other available works reveal, the current gener-
alizations for non-Fick diffusion–elasticity are mainly made by considering phase lagging behavior of mass
transport [3]. However, the existing theoretical models and transient shock responses on this topic will be
questionable at micro/nanotemporal and spatial scale. Firstly, the spatial nonlocal effects of mass transfer
and elastic deformation as well as the influences of phase lagging of molar concentration gradient are still
not fully considered in non-Fick diffusion–elasticity problems. Secondly, the spatial nonlocal effect of mass
transport is also not involved in current dual-phase-lag diffusion model. To address these problems, the present
work aims to develop a non-Fick diffusion–elasticity theory based on a new nonlocal dual-phase-lag diffusion
model, considering spatial nonlocal effects of mass transfer and elastic deformation as well as the influences of
temporal nonlocal effects of mass transport (i.e., the phase laggings of diffusion flux vector and molar concen-
tration gradient). Based on nonlocal continuummechanics, the new constitutive and field equations are strictly
derived. The proposed model is then applied to investigate structural dynamic mechanical-diffusion responses
of a one-dimensional layered structure subjected to transient shock loadings of molar concentration by Laplace
transformation method. The influences of temporal and spatial nonlocal parameters the dimensionless results
of structural dynamic responses are also analyzed and discussed in detail.
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2 Thermodynamic-based constitutive model

This subsection is mainly contributed to develop the theoretical framework of the thermodynamic-based
constitutive model of nonlocal mechanical-diffusion coupling at micro/nanotemporal and spatial scale. In the
context of linear theory of elasticity, the motion equation is:

σi j , j + fi � ρ
∂2ui
∂t2

. (1)

The relation of strain and displacement is:

εi j � 1

2

(
ui , j + u j ,i

)
, (2)

whereσi j are the components of stress tensor, fi are the components of body force vector, εi j are the components
of strain tensor, ui are the components of displacement vector, and ρ is the mass density. The strain energy
function ψ will be introduced as:

2ψ � ci jklεi j (x)εi j
(
x′) + βC(x)C

(
x′) + αi j

[
εi j (x)C

(
x′) + εi j

(
x′)C(x)

]
, (3)

where the elastic modulus tensor ci jkl , mechanical-diffusion coefficients αi j , and chemical potential constant
β are prescribed functions of x and x′. The constitutive coefficients satisfy the following symmetry conditions:

ci jkl
(
x, x′) � ckli j

(
x, x′) � c jikl

(
x, x′), αi j

(
x, x′) � α j i

(
x, x′). (4)

Following Eringen’s nonlocal theory [19], the constitutive relations are given by:

	 �
∫

υ

[
∂ψ

∂�
+

(
∂ψ

∂�′

)Sym
]

dυ
(
x′), (5)

where the superscript indicating symmetrization. The nonlocal medium is initially assumed to be traction free.
The strain tensor and molar concentration at two neighboring points x and x′ are:

� � {
εi j (x), C(x)

}
, �′ � {

εi j
(
x′),C

(
x′)}. (6)

which are assumed to be the ordered set of 	 � {
σi j , μ

}
. In view of Eqs. (3) and (5), the constitutive

equations of σi j and μ are derived as below:

σi j �
∫

υ

[
ci jkl

(
x, x′)εi j

(
x′) − αi j

(
x, x′)C

(
x′)]dυ

(
x′), (7)

μ �
∫

υ

[
αi j

(
x, x′)εi j

(
x′) + β

(
x, x′)C

(
x′)]dυ

(
x′), (8)

where μ is the chemical potential. The constitutive coefficients of ci jkl
(
x, x′), αi j

(
x, x′) and β

(
x, x′) are the

attenuation functions with distance
∣
∣x − x′∣∣, that is:

lim
(|x−x′|→∞)

ci jkl
(∣∣x − x′∣∣) � lim

(|x−x′|→∞)
αi j

(∣∣x − x′∣∣) � lim
(|x−x′|→∞)

β
(∣∣x − x′∣∣) → 0. (9)

In the context of Ref. [19], the local and nonlocal constitutive coefficients satisfy the following relations:

ci jkl
(∣∣x − x′∣∣)

ci jkl
� αi j

(∣∣x − x′∣∣)

αi j
� β

(∣∣x − x′∣∣)

β
� �

(∣∣x − x′∣∣), (10)

where the attenuating function�
(∣∣x − x′∣∣) is a nonlocal kernel representing the influence of distant interactions

of material points between x and x′, and it can be viewed as a Dirac delta function over the domain of influence.
This function attains peak value at

∣
∣x − x′∣∣ and decays with increasing

∣
∣x − x′∣∣. Eringen [19] also pointed out

that the nonlocal kernel function �
(∣∣x − x′∣∣) satisfies following relations:

∫

υ

�
(∣∣x − x′∣∣)dυ

(
x′) � 1,

[
1 − (ea)2∇2]�

(∣∣x − x′∣∣) � δ
(∣∣x − x′∣∣), (11)
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where the elastic nonlocal parameter ea has been widely used to predict spatial nonlocal effect of elastic
deformation for mechanical behavior of nanobeam [28]. Applying the operator

[
1 − (ea)2∇2

]
and formula∫

f (x)δ(x − a)dx � f (a) on the constitutive Eqs. (7) and (8), the following equations are derived:

[
1 − (ea)2∇2]σi j � σLocal

i j � ci jklεi j − αi jC , (12)

[
1 − (ea)2∇2]μ � μLocal � αi jεi j + βC , (13)

by using Eqs. (10) and (11), where σLocal
i j andμLocal are the local stress tensor and local chemical potential.

The dual-phase-lag diffusion model proposed by Chen and his colleagues [16–18] is extended as:

J
(
x + χD, t + τD

) � −D0∇C(x, t + τC ) (14)

by considering spatial nonlocal effect of mass transport, where J is the diffusion flux vector, C is the molar
concentration of diffusing substance, and D0 is the diffusion coefficient. In Eq. (14), the diffusive nonlocal
vector χD represents the spatial nonlocal effect of mass transport, the diffusion relaxation time τD represents
the phase lagging of diffusion flux, and the molar concentration lag τC represents phase lagging of molar
concentration gradient. The relation (14) is similar to that in the studies of [30, 31], and it provides a simple
and user-friendly macroscopic formulation of nonlocal dual-phase-lag diffusion at microscopic levels, which
enables engineering analyses with sufficient accuracy. By applying first-order Taylor’s series expansion of χD ,
τD and τC , the extension of Eq. (14) is given as below:

(
1 + χD · ∇)[

J(x, t) + τD J̇(x, t)
] � −D0

[∇C(x, t) + τC∇Ċ(x, t)
]

(15)

which is defined as a refined nonlocal dual-phase-lag mass transfer (R-NDPL-MT) model. Additionally,
if the mixed-derivative term of τD

(
χD · ∇)

J̇(x, t) is neglected, the following nonlocal dual-phase-lag mass
transfer (NDPL-MT) model is obtained:

J(x, t) +
(
χD · ∇)

J(x, t) + τD J̇(x, t) � −D0
[∇C(x, t) + τC∇Ċ(x, t)

]
(16)

which will degenerate into dual-phase-lag mass transfer (DPL-MT) model:

J(x, t) + τD J̇(x, t) � −D0
[∇C(x, t) + τC∇Ċ(x, t)

]
(17)

if the spatial nonlocal effect of mass transport is ignored. Furthermore, if the phase lagging of molar
concentration gradient is neglected, the damped wave mass transfer DW-MTmodel will be derived. Following
Bachher et al. [32] and Challamel et al. [33], Sharma and his colleagues [34] proposed an Eringen-type
differential nonlocal model of Cattaneo–Maxwell heat conduction equation. Enlightened by this, a refined
Eringen-type nonlocal dual-phase-lag mass transfer (RE-NDPL-MT) model is further extended as:

[
1 − (ea)2∇2](1 + χD · ∇)[

J(x, t) + τD J̇(x, t)
] � −D0

[∇C(x, t) + τC∇Ċ(x, t)
]
. (18)

As shown in Table 1, a comparison of RE-NDPL-MT model adopted in this work and DW-MT model,
DPL-MT model, NDPL-MT model, R-NDPL-MT model is made. Additionally, the Fick diffusion equation
has the form:

μ̇ � I

C0
− β∇ Ji , (19)

where I and C0 are the diffusion source and initial reference molar concentration.
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Table 1 Comparison of nonlocal mass transfer models

Formulation Evolution equation of diffusion flux

DW-MT model J + τD J̇ � −D0∇C

DPL-MT model J + τD J̇ � −D0
[∇C + τC∇Ċ

]

NDPL-MT model J + τD J̇ +
(
χD · ∇)

J � −D0
[∇C + τC∇Ċ

]

R-NDPL-MT model
(
1 + χD · ∇)[

J + τD J̇
] � −D0

[∇C + τC∇Ċ
]

RE-NDPL-MT model
[
1 − (ea)2∇2

](
1 + χD · ∇)[

J + τD J̇
] � −D0

[∇C + τC∇Ċ
]

3 Structural transient mechanical-diffusion responses analysis

In this section, the newly developed model in Sect. 2 is adopted to investigate structural transient mechanical-
diffusion responses of an isotropic homogeneous thin layer of finite thickness L . The coordinate system is so
chosen that the z-axis is taken perpendicularly to the thin layer, and the x- and y-axis is parallel to the layer. The
structure is initially unstrained and unstressed, and its traction-free bounding surface (z � 0) is subjected to
transient shock loadings of molar concentration. Additionally, a thin layer by definition has its thickness small
compared to the other lengths in other directions. During the analysis, it is also assumed that neither elastic nor
diffusive wave reaches the lower bounding surface of the thin layer (i.e., z � L), and dynamic responses along
z-axis will be analyzed. The problem can be simplified as one-dimensional case, and all physical variables
depend only on z and t . Consequently, the components of displacement and molar concentration are given by:

ux � 0, uy � 0, uz � w(z, t), C � C(z, t). (20)

Initial conditions are:

w(z, 0) � ∂(z, 0)

∂t
� 0, σzz(z, 0) � ∂σzz(z, 0)

∂t
� 0, C(z, 0) � ∂C(z, 0)

∂t
� 0. (21)

The boundary conditions are:

C(0, t) � C0H(t), C(L , t) � 0, (22)

w(L , t) � 0, σzz(0, t) � 0. (23)

Similar to Ref. [35], the influence of strain field on chemical potential is ignored for simplicity. Neglecting
body force and diffusion source, the fundamental equations of one-dimensional nonlocal mechanical-diffusion
coupling problem for an isotropic homogeneous layer by adopting the developed model in Sect. 2 are given
as below:

(i) Motion and diffusion equations:

∂σzz

∂z
� ρ

∂2w

∂t2
,

∂μ

∂t
� −β

∂ Jz
∂z

. (24)

(ii) Strain components:

εxx � 0, εyy � 0, εzz � ∂w

∂z
, εxy � 0, εxz � 0, εyz � 0. (25)

(iii) Constitutive equations of stress and chemical potential:

[
1 − (ea)2∇2]σzz � (λ + 2ν)

∂w

∂z
− αC , (26)

[
1 − (ea)2∇2]σxx � [

1 − (ea)2∇2]σyy � λ
∂w

∂z
− αC , (27)

[
1 − (ea)2∇2]μ � βC. (28)

where λ and ν are Lame’s constants.
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(iv) Evolution equation of RE-NDPL-MT model:
[
1 − (ea)2

∂2

∂z2

](
1 + χD

∂

∂z

)(
1 + τD

∂

∂t

)
Jz � −D0

(
∂C

∂z
+ τC

∂2C

∂z∂t

)
. (29)

Substitution of Eqs. (25) and (26) into Eq. (24)1 yields the governing equation of displacement field:

(λ + 2ν)
∂2w

∂z2
− α

∂C

∂z
� ρ

[
1 − (ea)2

∂2

∂z2

]
∂2w

∂t2
. (30)

Substitution of Eqs. (28) and (29) into Eq. (24)2 yields the governing equation of molar concentration:
(
1 + χD

∂

∂z

)(
1 + τD

∂

∂t

)
∂C

∂t
� D0

(
1 + τC

∂

∂t

)
∂2C

∂z2
. (31)

For convenience, the dimensionless quantities are introduced as:

[
z,w, (ea),χD

] �
√

λ + 2ν

ρ

1

D0
[z,w, (ea),χD], μ � μ

βC0
,

(
t , τC , τ D

) � λ + 2ν

ρ

1

D0
(t , τC , τD), C � C

C0
, J z �

√
λ + 2ν

ρ

1

C0
Jz , σ i j � σi j

ν
.

(32)

which are introduced into (26)–(31), and it is obtained that:

γ
∂2w

∂z2
− ϕ

∂C

∂z
� γ

[
1 − (ea)2∇2]∂2w

∂t2
, (33)

(
1 + χD

∂

∂z

)(
1 + τ D

∂

∂t

)
∂C

∂t
�

(
1 + τC

∂

∂t

)
∂2C

∂z2
, (34)

[
1 − (ea)2∇2] σ zz � γ

∂w

∂z
− ϕC , (35)

[
1 − (ea)2∇2] σ xx � [

1 − (ea)2∇2] σ yy � (γ − 2)
∂w

∂z
− ϕC , (36)

[
1 − (ea)2∇2] μ � C , (37)

[
1 − (ea)2∇2]

(
1 + χD

∂

∂z

)(
1 + τ D

∂

∂t

)
J z � −

(
1 + τC

∂

∂t

)
∂C

∂z
. (38)

where γ � λ+2ν
ν

, ϕ � αC0
ν

Applying Laplace transformation:

f ′(s) � L[ f (t)] �
∫ ∞

0
f (t)e−stdt , Re(s) > 0, (39)

to Eqs. (33)–(36) with Eq. (23) yields:

γ D2w′ − ϕDC
′ � γ

[
1 − (ea)2D2] s2w′, (40)

s
(
1 + χDD

)
(1 + τ Ds)C

′ � (1 + τCs)D
2C

′
, (41)

[
1 − (ea)2D2] σ ′

zz � γ Dw′ − ϕC
′
, (42)

[
1 − (ea)2D2] σ ′

xx � [
1 − (ea)2D2] σ ′

yy � (γ − 2)Dw′ − ϕC
′
, (43)

[
1 − (ea)2D2] μ′ � C

′
, (44)

[
1 − (ea)2D2](1 + χDD

)
(1 + τ Ds)J

′
z � −(1 + τCs)DC

′
, (45)
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where D � d
dz . In view of Eq. (39), Eqs. (22) and (23) are:

C
′
(0, s) � 1

s
, C

′
(L , s) � 0, w′(L , s) � 0, σ ′

zz(0, s) � 0. (46)

The solution of Eq. (41) is given by:

C
′
(s) �

2∑

i�1

Cie
ki z , (47)

where

k1,2 � χDs(1 + τ Ds) ±
√[

χDs(1 + τ Ds)
]2 + 4s(1 + τ Ds)(1 + τCs)

2(1 + τCs)
, (48)

C1 � 1

s
− 1

s

ek1L

ek1L − ek2L
, C2 � 1

s

ek1L

ek1L − ek2L
. (49)

Substituting Eq. (47) into Eq. (40) yields the solution of displacement field:

w′(s) �
4∑

i�1

wi e
ki z , (50)

where k3, 4 � ± s√
1+s2(ea)2

, and wi (i � 1, 2) is given as below:

w1 � ϕC1k1
γ
[
1 + s2(ea)2

]
(k1)2 − γ s2

, w2 � ϕC2k2
γ
[
1 + s2(ea)2

]
(k2)2 − γ s2

. (51)

The unknown parameters of w3 and w4 will be determined by associating with boundary conditions.
Substituting Eqs. (47) and (50) into Eq. (42) yields:

[
1 − (ea)2D2] σ zz � γ

4∑

i�1

wi ki e
ki z − ϕ

2∑

i�1

Cie
ki z , (52)

The solution of Eq. (52) is:

σ ′
zz(s) �

4∑

i�1

σzzi e
ki z , (53)

where σzzi � γwi ki−ϕCi

1−(ea)2(ki )2
. The following algebraic equations will be obtained:

w1e
k1L + w2e

k2L + w3e
k3L + w4e

k4L � 0, σzz1 + σzz2 + σzz3 + σzz4 � 0. (54)

by boundary conditions w(L , s) � 0 and σ zz(0, s) � 0. Then, the unknown parameters will be obtained
by solving Eq. (54). In addition, the expressions of σ ′

xx (s), σ yy(s), μ′(s), and J
′
zz(s) are:

σ ′
xx (s) � σ yy(s) �

4∑

i�1

σi e
ki z , μ′(s) �

2∑

i�1

μi e
ki z , J

′
z(s) �

2∑

i�1

Jzi e
ki z . (55)

where

σi � (γ − 2)w1ki − ϕCi

1 − (ea)2(ki )2
, μi � Ci

1 − (ea)2(ki )2
,

Jzi � − (1 + τCs)kiCi

(1 + τ Ds)
(
1 + χDki

)[
1 − (ea)2(ki )2

] .

Thus far, the analytical solutions are obtained in the Laplace domain. To capture time-domain solutions, a
numerical inversion Laplace-transform (NILT) algorithm [36] will be adopted.
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Table 2 Material constants [5]

α ϕ ν E

1.870828693 0.0001978260870 0.3 2.3 × 109 pa

Fig. 1 Dimensionless response of concentration by present model and Ref. [7]

4 Results and discussion

In this section, the parametric investigations are conducted to analyze and discuss the effects of both nonlocal
mass transfer and nonlocal elasticity on diffusive wave propagation and mechanical-diffusion responses. The
material parameters [5] listed in Table 2 will be adopted for numerical evaluations. The evaluation of the
derivation in Sect. 3 and NILT algorithm is conducted to examine the validity. Clearly, if the nonlocal param-
eters of χD , ea, τC are valued as 10−10, the newly developed model in Sect. 2 degenerates into non-Fick
diffusion–elasticity model [4]. Figure 1 shows that the dimensionless responses of concentration by NILT
algorithm agree well with those from Ref. [7], implying that the numerical algorithm adopted in this work is
reliable. In the following, the dimensionless results of dynamic mechanical-diffusion responses for t � 0.05
are graphically presented.

4.1 Comparison study

This subsection mainly contributes to a comparison of RE-NDPL-MT model and the models of DW-MT,
DPL-MT, NDPL-MT, and R-NDPL-MT for τ D � 0.04. Figure 2 shows dimensionless responses of molar
concentration, displacement, compressive stress, chemical potential, and diffusion flux for different nonlocal
mass transfer models. It is clearly observed that there exists an abrupt jump of molar concentration around
diffusive wave front for DW-MTmodel, while the displacement will also suddenly jump from a higher value to
a lower one around elastic wave front. In such a case, σ zz or σ xx (σ yy) suddenly jumps to lower (higher) value
at elastic (diffusive) wave front. Additionally, the chemical potential and diffusion flux also sharply jump from
higher values to lower ones around diffusive front. Additionally, if τC is valued as 0.02, all the sharp jumps of
mechanical-diffusion responses around diffusive wave front will vanish for DPL-MT model. Furthermore, the
deformation of thin layer becomes smaller around elastic wave front, and the absolute value of diffusion flux is
reduced at z � 0. A common feature of NDPL-MT and R-NDPL-MTmodels is that the spatial nonlocal effect
of mass transport is considered, whereas the R-NDPL-MTmodel involves additional mixed-derivative term of
τD

(
χD · ∇)

J̇(x, t). If χD is valued as 0.05, the distribution of molar concentration predicted by R-NDPL-MT
model is smoother than that from DPL-MT model. This suggests that R-NDPL-MT model predicts faster
diffusive wave. In such a case, the compressive stress, chemical potential, and diffusion flux become smoother
around diffusive wave front. As consequence, the mechanical-diffusion response region is also enlarged. As
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to RE-NDPL-MT model, Fig. 2 also shows that the dimensionless results of molar concentration, chemical
potential, and diffusion flux for ea � 0.05 match well with that for ea � 0.00, implying that the parameter ea
have no effects on them. However, the magnitudes of displacement greatly decrease nearby z � 0, and abrupt
change of deformation around elastic wave front is totally removed. Consequently, the abrupt jumps of σ zz and
σ xx (σ yy) are also eliminated. Figure 3 displays time histories of dimensionless structural dynamic responses
at z � 0.50. From Fig. 3a, e and f, it is shown that the abrupt jumps of molar concentration, chemical potential,
and diffusion flux will vanish for DPL-MT, NDPL-MT, R-NDPL-MT, and RE-NDPL-MTmodels. If χD �� 0,
the diffusive wave will travel faster. Figure 3b and c also displays that the distribution of displacement and
stress will become smoother, while the sharp jump of displacement (or stress) at elastic wave is eliminated.

4.2 Effects of spatial nonlocal parameters of ea and χD

In this subsection, the effects of spatial nonlocal parameters of ea and χD on structural mechanical-diffusion
responses are evaluated and discussed for τ D � 0.04 and τC � 0.02. As shown in Fig. 4 a, if χD increases,
the distribution of molar concentration becomes smoother and its magnitudes are also improved. This suggests
that diffusive wave travels faster for larger χD . However, the dimensionless results of molar concentration for
ea � 0.00 agree well that for ea � 0.04 or ea � 0.08, suggesting that ea has no effect on its profile. Figure 4b
also presents the deformation of thin layer around elastic wave front if χD becomes larger. Additionally, if
ea increases from 0.00 to 0.08, a clear elimination of displacement sharp jump around elastic wave front is
observed, while its peak values around z � 0 are also greatly reduced. Consequently, Fig. 4c and d shows that
the compressive stress σ zz or σ xx (σ yy) suddenly jumps from higher value to lower one, while its distribution
becomes smoother. Furthermore, the distribution of compressive stress becomes smoother if χD increases.
In such a case, Fig. 4e and f indicates that the distribution of chemical potential and diffusion flux is even
smoother. If ea increases, the peak magnitudes of diffusion flux are clearly reduced, while its distribution is
slightly smoothed. Figure 5 illustrates the time histories of dimensionless responses for different parameters of
ea and χD at z � 0.50. If χD increases, the diffusive wave travels faster, while the distribution of displacement
and compressive stress will become smoother beyond elastic wave front. Additionally, it is also found that the
dimensionless responses of molar concentration, chemical potential, and diffusion flux are not changed for
larger ea, but the sudden jumps of displacement and compressive stress will vanish.

4.3 Effects of temporal nonlocal parameters of τ D and τC

This subsection is contributed to analyze and discuss the effects of temporal nonlocal parameters of τ D and
τC for ea � 0.02 and χD � 0.05. As displayed in Fig. 6a, if τ D increases, the absolute values of molar
concentration become smaller. And its distribution for τ D � 0.02 is smoother than that for τ D � 0.04. This
indicates that the diffusive wave travels slower for increasing τ D . In addition, when τC becomes larger, the
magnitudes of molar concentration are clearly improved to higher levels and its distribution becomes smoother.
Figure 6b shows that the deformation of the thin layer increases around elastic wave front if τ D (τC ) becomes
larger. Additionally, the peak value of compressive stress σ zz or σ xx (σ yy) is improved (see Fig. 6c and d).
Figure 6e and f shows that the distribution of chemical potential and diffusion flux will become smoother if τC
(τ D) increases (decreases). Figure 7 presents time histories of dimensionless responses for different parameters
of τ D and τC at z � 0.50. If τ D (τC ) increases, it is shown that the diffusive wave will travel slower and the
displacement is not changed, while the peak values of σ zz or σ xx (σ yy) increase slightly.

5 Concluding remarks

The main contributions of this paper can be summarized as follows. Firstly, the current dual-phase-lag dif-
fusion model is extended into RE-NDPL-MT model, which fully considered the spatial nonlocal effect of
mass transfer as well as the influences of temporal nonlocal effects of mass transport (i.e., the phase laggings
of diffusion flux vector and molar concentration gradient). Secondly, a new theoretical framework of non-
Fick diffusion–elasticity based on RE-NDPL-MTmodel is developed via nonlocal continuummechanics. The
newly proposed model is applied to investigate transient mechanical-diffusion responses of a one-dimensional
isotropic homogeneous thin layer of finite thickness subjected to transient shock loadings of molar concen-
tration. Dimensionless results reveal that the newly developed RE-NDPL-MT model can characterize a faster
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Fig. 2 Comparisons of RE-NDPL-MT model and the models of DW-MT, DPL-MT, NDPL-MT, and R-NDPL-MT
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Fig. 3 Time histories of dimensionless structural dynamic responses at z � 0.50
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Fig. 4 Dimensionless responses for τ D � 0.04 and τC � 0.02
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Fig. 5 Time histories of dimensionless structural dynamic responses at z � 0.50 for τ D � 0.04 and τC � 0.02
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Fig. 6 Dimensionless responses for ea � 0.02 and χD � 0.05
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Fig. 7 Time histories of dimensionless structural dynamic responses at z � 0.50 for ea � 0.02 and χD � 0.05
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propagation speed of diffusive wave, and abrupt sharp jumps of molar concentration, compressive stress,
chemical potential, and diffusion flux around diffusive wave front will be eliminated. Additionally, the defor-
mation of the structure and the higher peak values of diffusion-induced stresses are greatly reduced. The
newly model developed in this work is expected to provide a thorough and comprehensive understanding on
mechanical-diffusion coupling at micro/nanotemporal and spatial scale.
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