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Abstract In thiswork, the periodic homogenizationmethod is applied to a systemof two equations of diffusion
coupled through heterogeneous chemical reactions at the solid–fluid interface. This upscaling is discussed
according to the order of magnitude of the Damköhler number. For large values of Damköhler number, a new
homogenized diffusion reactionmodel coupling chemical reaction and diffusion is obtained. The homogenized
diffusion and co-diffusion tensors are function of the heterogeneous reaction rate coefficients. The relevance
of this homogenized model is analysed with respect to the order of magnitude of the Damköhler number. Some
numerical simulations using this homogenized model are carried out and compared to numerical simulations
at pore scale.

1 Introduction

The study of multi-species transport coupled to chemical reaction is crucial to a variety of domains, among
which are geomechanics, petroleum reservoirs, environmental contaminants, hydro-geology, geochemistry,
nuclear industry and civil engineering [22,23,25,43]. The common point in all these domains is that the
reactive mass transport is in the majority of cases a multi-scale and multi-physics problem. The knowledge of
the transport properties at themacro-scale (the structure scale) is fundamental for engineers to perform accurate
predictions on the global behaviour. The modelling of the reactive mass transport by Pore Scale Simulation
(PSS) requires the detailed knowledge of the pore geometry which is seldom available. To overcome these
limitations, the homogenization techniques are alternative solutions to describe the macroscopic transport
model from the pore scale description. They enable also to determine accurately the transport properties only
from the knowledge of the microstructure of an elementary representative cell (see for instance [4,8,13,14,
20,21,42]).
The reactive mass transport has been the subject of several works based on upscaling techniques, which
include the periodic homogenization method (PHM), the method of moment and the volume averaging method
(VAM). The PHM, whose foundations are due to [8,36], has been applied by numerous authors for diffu-
sion/adsorption/advection problems [6], for ionic transfers in cementitious materials [10,11,27] or in clays
[28], for coupled problems in heterogeneous media [4], for diffusion–reaction [17], dispersion/convection [35]
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or dispersion/convection/reaction [26] in porous media and many others. The VAM, of which the pioneer is
Whitaker [42], consists in averaging the balance equations on the domain considered. This method has been
applied to dispersion and reaction [19] and to diffusion, dispersion and reaction in porous media [38,39], to
reactive and solute transport in porous media [32,33], or to analyse the role of tortuosity [40]. The method
of moment has been also applied to transport problem to obtain homogenized macroscopic models for mass
transport in porous media [18,37].

For the study of the upscaling of the reactive transport with VAM, we refer to a non-exhaustive list of
references. In [31], the authors applied VAM to the diffusion equation coupled to an heterogeneous first-order
chemical reaction at pore scale, highlighting that the diffusivity tensor is decoupled from the chemical reaction
rate coefficient. In [39], the VAM is applied to diffusion problem with homogeneous chemical reaction. It is
found that the diffusivity tensor depends on the reaction rate coefficient through a boundary value problem
at the elementary scale; the effective reaction rate coefficient is nonlinear with respect to microscopic chem-
ical reaction rate one. In [38], the authors extended the study to diffusion and diffusion-advection problems
coupled to heterogeneous chemical reactions. They confirmed that the diffusivity tensor and effective reaction
rate coefficient depend on the microscopic reaction rate one. The authors highlighted that when the Thiele
modulus1 is arbitrarily large, corresponding to high chemical reaction effect, the relevance of the obtained
macroscopic model is hindered. To improve this point, a revisited model of diffusion coupled to heteroge-
neous reaction is proposed in [41]. In this model, corrective terms were considered in the diffusivity tensor
and in the effective reaction rate expressions. The corresponding macroscopic diffusion reaction model was
validated by comparison with PSS under steady and transient conditions. In [24,30], using VAM, the authors
investigated the upscaling of a diffusion problem coupled to nonlinear and nonlinear homogeneous chemical
reactions, respectively. Recently, diffusion of multicomponent with coupled heterogeneous chemical reaction
was investigated using VAM in [34]. Authors pointed out that at the macro-scale, diffusion reaction equations
are obtained with additional co-diffusion terms that appear with a co-diffusivity tensor. The diffusivity, co-
diffusivity tensors and effective reaction rates are function of chemical reaction rates. Authors give the similar
conclusion in [38–41]
Auriault et al. focused on the diffusion coupled with heterogeneous chemical reaction in [5] and with advection
in [6]. They concluded that the homogenized parameters of diffusion and reaction are decoupled. Diffusion-
advection problem coupled with heterogeneous chemical reaction is addressed in [26]. The obtained macro-
scopic homogenizedmodelswere discussed according to order ofmagnitude ofDamköhler andPeclet numbers.
In the case of high values of Damköhler number, the authors highlight the coupling between diffusion tensor
and reaction rate at the micro-scale. In [18,37], the authors upscaled a diffusion-convection problem coupled
to first-order heterogeneous chemical reaction, using the method of moment. They found that for a large
value of Damköhler number the homogenized diffusion tensor depends on the local reaction rate coefficient.
Homogenization by two scale convergence with drift was also applied to upscale diffusion-advection problem
with heterogeneous chemical reaction in case of predominant advection and reaction [1–3]. The homogenized
dispersion tensor obtained in that case is function of the local reaction rate. In [7], authors applied the periodic
homogenization method to upscale diffusive and advective transport coupled to a nonlinear heterogeneous
chemical reaction. With respect to the order of magnitude of Damköhler’s and Peclet’s numbers, several mod-
els have been obtained. For comparable diffusion and reaction order of magnitude, the homogenized diffusion
tensor depends only on the microstructure of the considered porous media. In [9], the periodic homogenization
method is applied to the multi-species diffusion and advection problem coupled with linear and nonlinear
homogeneous and heterogeneous chemical reactions. For a Damköhler number of order of unity, correspond-
ing to the comparable diffusion and reaction order of magnitude, authors obtain a decoupled homogenized
diffusion reactionmodel. In that case, the homogenized diffusion tensors are purely geometric and the effective
chemical reaction rate is a linear function of the local one.
This paper focuses on the upscaling of a system of two equations of diffusion coupled through heterogeneous
chemical reactions at the solid–fluid interface. A similar study has already been addressed in the case of a single
diffusive equation with heterogeneous chemical reaction by PHM [15]. The main difficulty is to manage the
periodic homogenization process for high Damköhler number using a relevant change of variable. The limits
of classical homogenization procedure for coupled diffusion heterogeneous reactions for high Damköhler
numbers have been highlighted in [16]. The same model has been investigated using VAM in [34], relying on
a complex and coupled localization rule which needs to introduce supplementary physical assumptions.
In this work, we propose to generalize the relevant homogenization procedure used in [15] to a system of two
coupled diffusion reaction equations. The problem revealed to bemuchmore complex as in [15] and the numer-

1 Square root of Damköhler number.
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Fig. 1 Schema of the considered porous medium

ical simulations put in a prominent position some unexpected very interesting diffuse/reactive behaviours. The
results obtained are of great interest for the community with numerous applications in the domain of porous
media. In the case of high values of Damköhler number (model III), we rewrite easily the coupled problem on
the form of a single diffusion equation without reaction, coupled with another one with chemical reaction. The
homogenization of these equations is then performed using the approach proposed in [26] and already applied
in [15,29].
It is important to notice that the results obtained here are fundamentally different from those obtained with
VAM in [34]. Indeed, the boundary value problems required to the determination of the homogenized transport
parameters and the expressions of diffusion and co-diffusion tensors are very different.
The second section of this work is devoted to numerical simulations on 2D elementary cells. It is important
to underline that the homogenized diffusion (respectively co-diffusion) tensors obtained in our study are
decreasing (respectively increasing) functions of local heterogeneous reaction rate coefficients and Damköhler
number, unlike in the results obtained in [34]. Finally, we compare the macroscopic models obtained by PHM
and by VAM to the Pore Scale Simulation (PSS) model for porous media whose microstructure is composed
of the periodic repetition of a single 2D elementary cell constituted of circular inclusion. Another comparison
is carried out between PHM and PSS models in the case of more complex microstructure (randomly porous
media).

2 Pore scale diffusion reaction problem

2.1 Governing equations

Let us consider that the macroscopic porous medium occupies a domain Ω∗ whose characteristic length is L
composed of an immobile fluid phase Ω∗

f and of a rigid solid phase Ω∗
s separated by the solid–fluid interface

Γ ∗
s f . The microstructure of Ω∗ is assumed to be constituted of the repetition of a periodic elementary cell Y ∗

of characteristic length l. The macroscopic spatial coordinates in Ω∗ are noted x∗ = (
x∗
1 , x∗

2 , x∗
3

)
and the

microscopic spatial coordinates in Y ∗ are noted y∗ = (
y∗
1 , y∗

2 , y∗
3

)
. The condition of scale separation (l � L)

allows to introduce the small parameter ε = l

L
, ratio of the micro-scale l to the macro-scale L .

The elementary cell of the porousmedia Y ∗ = Y ∗
f ∪Y ∗

s is composed of a fluid phase Y ∗
f and of a solid phase Y

∗
s .

Let ∂Y ∗ = ∂Y ∗
s f ∪ ∂Y ∗

f f represent the boundary of Y ∗, where ∂Y ∗
s f denotes the solid–fluid interface assumed

to be impermeable and where ∂Y ∗
f f denotes the fluid-fluid interface separating fluid phases of two juxtaposed

elementary cells (Fig. 1).
In this study, we consider multicomponent transfer coupled to reversible heterogeneous chemical reaction. The
governing equations and associated boundary conditions at the pore scale can be described by the following
dimensional system of equations:

∂C∗
a

∂t∗
+ ∇∗· (−D∗∇∗C∗

a

) = 0 in Ω∗
f (1)

∂C∗
b

∂t∗
+ ∇∗· (−D∗∇∗C∗

b

) = 0 in Ω∗
f (2)
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(−D∗∇∗C∗
a

) · n = k∗
aC

∗
a − k∗

bC
∗
b on Γ ∗

s f (3)
(−D∗∇∗C∗

b

) · n = k∗
bC

∗
b − k∗

aC
∗
a on Γ ∗

s f (4)

whereC∗
a (respectivelyC

∗
b ) is themolar concentration, k∗

a (respectively k
∗
b ) is the rate of heterogeneous chemical

reaction of chemical component A (respectively B ), D∗ is the molecular diffusion coefficient assumed to be a
same for components A and B, and n represents the outward normal vector to the fluid phase onΓ ∗

s f . Moreover,
initial conditions are given at the macroscopic domain Ω∗ to supplement the system of Eqs. (1)–(4):

C∗
a (t = 0) = C∗

aini t , C∗
b (t = 0) = C∗

bini t

2.2 Dimensionless analysis

The dimensional analysis performed here is similar to that developed in [4,12]. The reference quantities (with
index (re f )) are used to define the dimensionless ones (without ∗) of order O(1):

t = t∗

tref
; Ca = C∗

a

Cref
; Cb = C∗

b

Cref
; D = D∗

Dref
; ka = k∗

a

kref
; kb = k∗

b

kref
(5)

The following characteristic times can be defined:

tdi fl = l2

Dref
; tdi fL = L2

Dref
(6)

treacl = l

kref
; treacL = L

kref
(7)

where tdi fl

(
or tdi fL

)
are characteristic time associated with diffusion and where treacl

(
or treacL

)
are char-

acteristic time associated with reaction at micro-scale and macro-scale, respectively. In what follows, the
characteristic time of diffusion at macro-scale is considered as reference time: tref = tdi fL . In addition, the
macroscopic characteristic length L is assumed to be the reference length used for the normalization of the
spatial variables. Accordingly, the dimensionless diffusion reaction equations are given by:

∂Ca

∂t
+ ∇· (−D∇Ca) = 0 in Ω f (8)

∂Cb

∂t
+ ∇· (−D∇Cb) = 0 in Ω f (9)

(−D∇Ca) · n = DaL (kaCa − kbCb) on Γs f (10)

(−D∇Cb) · n = DaL (kbCb − kaCa) on Γs f (11)

where DaL is the dimensionless Damköhler number for components A and B, which represent the ratio of the
diffusion characteristic time to the reaction characteristic one at the macro-scale:

DaL = Lkref
Dref

= tdi fL

treacL

3 Multi-scale homogenization procedure

The concentration fields Ca (x, y, t) and Cb (x, y, t) are assumed to be functions depending of time t and of
two independent space variables: x = x∗/L and y = y∗/ l. Moreover, the concentrations Ca (x, y, t) and
Cb (x, y, t) are assumed to admit an asymptotic expansion with respect to ε:

Ca (x, y, t) =
∞∑

i=0

εiCai (x, y, t) with (i ∈ N) (12)
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Cb (x, y, t) =
∞∑

i=0

εiCbi (x, y, t) with (i ∈ N) (13)

whereCai andCbi are y-periodic variables. According to the separation of scales, the gradient∇ and divergence
∇· operators may be expressed as:

∇ = ∇x + ε−1∇y (14)

∇· = ∇x · +ε−1∇y· (15)

Let us define the local averages of the quantity f (x, y, t), that will be used in the sequel:

〈 f 〉 = 1

|Y |
∫

Y f

f dy, 〈 f 〉 f = 1

|Y f |
∫

Y f

f dy, 〈 f 〉s f = 1

|∂Ys f |
∫

∂Ys f
f dy (16)

where 〈 f 〉, 〈 f 〉Y f
and 〈 f 〉s f represent the average over the domain Y , over the fluid phase Y f and over the

boundary ∂Ys f , respectively.2 Let us quote that we have obviously 〈 f 〉 = ϕ 〈 f 〉 f where ϕ = |Y f |/|Y | denotes
the porosity of the porous medium.
In the sequel, we assume that the order of magnitude of the Damköhler number is:

DaL = εβ (17)

withβ ∈ Z. Different values ofβ will be considered in the sequel. The homogenization technique then proceeds
as follows. The concentrations Ca and Cb are replaced by their asymptotic expansions (12) in the diffusion
reaction Eqs. (8)–(11). In addition, the derivative operators given by (14)–(15) are also used in (8)–(11). The
collected factors of the same powers of ε are equated to zero. This way, we obtain a cascade of coupled problem
to be solved, leading to the search homogenized model at the leading order.

3.1 Diffusion model

In that case, we consider that diffusion is predominant compared to the chemical reaction, which is equivalent
to DaL = O

(
ε2

)
. In that case, the homogenized diffusion models obtained at the macroscopic scale are given

by the following result:

Case 1 For predominant diffusion at the macroscopic scale, corresponding to the Damköhler number of the
order of DaL = O

(
ε2

)
, at the leading order the associated homogenized models are diffusive ones

ϕ
∂C∗

a

∂t∗
+ ∇∗

x∗ · (−Dhom ∗∇∗
x∗C∗

a

) = 0 in Ω∗ (Model I) (18)

ϕ
∂C∗

b

∂t∗
+ ∇∗

x∗ · (−Dhom ∗∇∗
x∗C∗

b

) = 0 in Ω∗ (Model I) (19)

where C∗
a = C∗

a (x∗, t∗) and C∗
b = C∗

b (x∗, t∗) are the macroscopic concentrations of components A and B,
respectively. Dhom ∗ is the symmetric and definite positive homogenized diffusion tensor defined by

Dhom ∗ = 1

|Y ∗|
∫

Y ∗
f

(
D∗ (

I + (∇∗
y∗χ∗)T

))
dy∗ (20)

where I is the identity tensor and where the superscript T denotes the transposition operator. The vector χ∗ is
y-periodic, of zero average on Y ∗

f and solution of the local problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇∗
y∗ ·

(
−D∗

(
I + (∇∗

y∗χ∗)T
))

= 0 in Y ∗
f

−D∗
(
I + ∇∗

y∗χ∗
)

· n∗ = 0 on ∂Y ∗
s f

χ∗ (y∗) = χ∗ (y∗ + l) on ∂Y ∗
f f〈χ∗〉 = 0 in Y ∗

f

(21)

Proof The proof of case 1 is classical and detailed in [4,6,7]. It is left to the reader. 
�
2 Where |Y | and |Y f | are the volumes of Y and Y f and |∂Ys f | is the surface area of ∂Ys f .
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3.2 Decoupled diffusion reaction model

In this second case, we consider that the characteristic times of diffusion and reaction are of the same order of
magnitude, which is equivalent to DaL = O (ε). The homogenization procedure then leads to the following
result:

Case 2 For diffusion and reaction of the same order at the macroscopic scale, corresponding to DaL = O (ε),
at the leading order the associated homogenized model couples diffusion and reaction effects:

ϕ
∂C∗

a

∂t∗
+ ∇∗

x∗ · (−Dhom ∗∇∗
x∗C∗

a

) + K ∗
a C∗

a − K ∗
b C∗

b = 0 in Ω∗ (Model II) (22)

ϕ
∂C∗

b

∂t∗
+ ∇∗

x∗ · (−Dhom ∗∇∗
x∗C∗

b

) − K ∗
a C∗

a + K ∗
b C∗

b = 0 in Ω∗ (Model II) (23)

whereC∗
a (x∗, t∗) andC∗

b (x∗, t∗) are the macroscopic concentrations andDhom ∗ is the homogenized diffusion
tensor given by Eq. (20), where χ∗ solution of the local problem (21).
Furthermore, reactive terms appear in the transport equations as a homogeneous reaction at the macro-scale,
where K ∗

a and K ∗
b represent the effective reaction rate coefficients given by:

K ∗
a = S ∗k∗

a; K ∗
b = S ∗k∗

b (24)

They are functions of the heterogeneous reaction rate coefficients k∗
a , k

∗
b at micro-scale and of the porous

medium specific area, this is S ∗ = |∂Y ∗
s f |/|Y ∗|.

Proof The proof of case 2 is classical and detailed for one heterogeneous chemical reaction in [4,6,16,20]
and for several chemical reactions in [7]. 
�
In that case 2, the diffusion and the reaction are comparable at the marco-scale. Despite this, the homogenized
diffusion tensor Dhom ∗ and the homogenized reaction rate coefficients K ∗

a and K ∗
b are decoupled at the

macro-scale. It is important to notice, that the homogenized diffusion tensor is purely geometric with the same
expression and associated boundary value problem as in case 1.

3.3 Predominant reaction

The last case addressed of this work is devoted to the homogenization of the diffusion reaction Eqs. (8)–(11)
for predominant reaction effects versus diffusion ones. In that case, the characteristic time of diffusion is larger
than the characteristic time of chemical reaction, that leads to DaL = O (1) and DaL = O

(
ε−1

)
.

Case 3 For predominating chemical reactions at the macro-scale corresponding to DaL = O (1) and DaL =
O

(
ε−1

)
, at the leading order the macroscopic concentrations

〈
C∗
a

〉 f and
〈
C∗
b

〉 f are solution of the coupled
homogenized diffusion reaction equations:

ϕ
∂

〈
C∗
a

〉 f

∂t∗
+ ∇∗

x∗ ·
(
−Dhom ∗

aa ∇∗
x∗

〈
C∗
a

〉 f − Dhom ∗
ab ∇∗

x∗
〈
C∗
b

〉 f )

+K ∗
a

〈
C∗
a

〉 f − K ∗
b

〈
C∗
b

〉 f = 0 in Ω∗ (25)

ϕ
∂

〈
C∗
b

〉 f

∂t∗
+ ∇∗

x∗ ·
(
−Dhom ∗

ba ∇∗
x∗

〈
C∗
a

〉 f − Dhom ∗
bb ∇∗

x∗
〈
C∗
b

〉 f )

+K ∗
b

〈
C∗
b

〉 f − K ∗
a

〈
C∗
a

〉 f = 0 in Ω∗ (26)

The homogenized diffusion and co-diffusion tensors are defined by:

Dhom ∗
aa = Dhom ∗

r k∗
a + Dhom ∗k∗

b

k∗
a + k∗

b
, Dhom ∗

ab = k∗
b

(
Dhom ∗ − Dhom ∗

r
)

k∗
a + k∗

b
(27)

Dhom ∗
ba = k∗

a

(
Dhom ∗ − Dhom ∗

r
)

k∗
a + k∗

b
, Dhom ∗

bb = Dhom ∗
r k∗

b + Dhom ∗k∗
a

k∗
a + k∗

b
(28)
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where Dhom ∗ is the purely geometrical homogenized diffusion tensor given by (20); the periodic vector χ∗ is
solution of the local problem (21). The reactive homogenized diffusion tensor3 Dhom ∗

r reads

Dhom ∗
r = 1

|Y ∗|
∫

Y ∗
f

D∗ψ∗2
η

(
I + (∇∗

y∗χ∗
r )T

)
dy∗ (29)

where the y-periodic vector χ∗
r is of null average over the domain fluid Y ∗

f and solution of the boundary value

problem4 given by:

∇∗
y∗ ·

(
−D∗ψ∗2

η

(
I + (∇∗

y∗χ∗
r )T

))
= 0 in Y ∗

f (30)
(
−D∗ψ∗2

η

(
I + ∇∗

y∗χ∗
r

))
· n∗ = 0 on ∂Y ∗

s f (31)

Moreover, ψ∗
η (y∗) denotes a y-periodic eigenfunction, solution of the following spectral problem:

∇∗
y∗ ·

(
−D∗∇∗

y∗ψ∗
η

)
= λ∗ψ∗

η in Y ∗
f (32)

(
−D∗∇∗

y∗ψ∗
η

)
· n∗ = k∗+ψ∗

η on ∂Y ∗
s f (33)

〈
ψ∗2

η

〉 f = 1 (34)

where k∗+ is the heterogeneous reaction rate coefficient defined as k∗+ = k∗
a + k∗

b . As ψ∗
η is defined to within

one multiplicative constant, the last condition (34) ensures the uniqueness of the solution. Note also that the
problem (32)–(33) is posed in dimensionless form in the unit cell. Finally,K ∗

a andK ∗
b are the homogenized

reaction rates given by:

K ∗
a = ϕ λ̃∗ k∗

a

k∗
a + k∗

b
, K ∗

b = ϕ λ̃∗ k∗
b

k∗
a + k∗

b
(35)

where λ̃∗ is the dimensional first eigenvalue (the smallest one) of the spectral problem (32)–(33).

Proof The proof is identical for DaL = O(1) and DaL = O(ε−1) as soon as the Damköhler number is large
enough for the reaction terms to be important. Indeed, the Damköhler number is only contained implicitly
in the boundary condition of spectral problem (33) but is not involved in the proof of result 3. In order to
simplify the calculations, we consider the auxiliary problem:

∂ρ∗

∂t∗
+ ∇∗ · (−D∗∇∗ρ∗) = 0 in Ω∗

f (36)

∂η∗

∂t∗
+ ∇∗ · (−D∗∇∗η∗) = 0 in Ω∗

f (37)

−D∗∇∗ρ∗ · n∗ = 0 on Γ ∗
s f (38)

−D∗∇∗η∗ · n∗ = k∗+η∗ on Γ ∗
s f (39)

obtained from (1)–(4) by setting ρ∗ = C∗
a +C∗

b , η
∗ = k∗

aC
∗
a − k∗

bC
∗
b . To determine the searched homogenized

models, we will apply the periodic homogenization procedure to problems (36)–(39). Thanks to this change
of variables, we only have to upscale decoupled problems5 a diffusion problem without chemical reaction (36)
and (38) and a diffusion problem with heterogeneous chemical reaction (37) and (39).
After the dimensional analysis, the homogenization procedure of equation6 (36) with corresponding boundary
condition (38) is very classical and leads to the dimensionless homogenized diffusion equation:

ϕ
∂ρ

∂t
+ ∇x .

(−Dhom∇xρ
) = 0

3 The reactive homogenized diffusion tensor is symmetric and definite positive.
4 The local problem (30)–(31) corresponds to the homogenization of a diffusion problem where diffusion coefficient D∗ψ∗2

η

is periodic and spatially varying (see [15]).
5 Even if the variables ρ∗ and η∗ are not independent.
6 Written in dimensionless form with ρ = Ca + Cb.
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where ρ = Ca +Cb is the dimensionless concentration at the leading order and ϕ is the porosity of the porous
medium. This homogenized diffusion equation is written in dimensional form as:

ϕ
∂ρ∗

∂t∗
+ ∇∗

x∗ .
(−Dhom ∗∇∗

x∗ρ∗) = 0 (40)

where Dhom ∗ is the purely geometric homogenized diffusion tensor given by (20).
For the homogenization of Eqs. (37) and (39), we follow the approach developed in [1,15,26,29]. The outlines
required to obtain the homogenized model are summarized in the sequel.
First, we perform the change of variable:

η∗ = exp
(−λ∗t∗

)
ψ∗

η

(
y∗) u∗ (

x∗, y∗, t∗
)

(41)

as in [15,26,29] where ψ∗
η is assumed to be solution of the following eigenvalue problem:

∇∗.
(
−D∗∇∗ψ∗

η

)
= λ∗ψ∗

η in Y ∗
f (42)

−D∗∇∗ψ∗
η .n∗ = k∗+ψ∗

η on ∂Y ∗
s f (43)

Substituted (41) in Eqs. (37) and (39), we obtain:

ψ∗
η

∂u∗

∂t∗
+ ψ∗

η ∇∗.
(−D∗∇∗u∗) − 2D∗∇∗u∗∇∗ψ∗

η + u∗ (
∇∗.

(
−D∗∇∗ψ∗

η

)
− λ∗ψ∗

η

)
= 0 (44)

u∗ (
−D∗∇ψ∗

η · n∗ − k∗+ψ∗
η

)
− D∗ (

ψ∗
η ∇∗u∗) · n∗ = 0 (45)

Multiplying Eqs. (44) and (45) by ψ∗
η , using the eigenvalue problem (42)–(43), we obtain a non-steady

diffusion problem for dimensional variable7 u∗:

ψ∗2
η

∂u∗

∂t∗
= ∇∗ ·

(
D∗ψ∗2

η ∇∗u∗) in Ω∗
f (46)

−
(
D∗ψ∗2

η ∇∗u∗) · n∗ = 0 on Γ ∗
s f (47)

The dimensionless diffusion problem to be homogenized reads:

ψ2
η

∂u

∂t
= ∇ ·

(
Dψ2

η∇u
)

in Ω f (48)

−
(
Dψ2

η∇u
)

· n = 0 on Γs f (49)

where u is assumed to admit an asymptotic expansion as in (12). The homogenization procedure is similar to
those used for the model of 1. It leads to the homogenized diffusion equation for u ≡ u0 (x, t):

ϕ
∂u

∂t
= ∇x · (Dhom

r ∇xu
)

(50)

The homogenized diffusion Eq. (50) is rewritten here after under the dimensional form as:

ϕ
∂u∗

∂t∗
= ∇∗

x∗ · (Dhom ∗
r ∇∗

x∗u∗) (51)

where ϕ represents the porosity of the porous medium and Dhom ∗
r denotes the reactive homogenized diffusion

tensor given by (29). The y-periodic vector χ∗
r of null average on Y ∗

f is solution of the boundary value problem
(30)–(31). It is important to quote that vector χ∗

r depends not only on the geometry of the porous medium but
also on the chemical reaction through the eigenfunctionψ∗

η . The reactive homogenized diffusion tensorDhom ∗
r

is therefore linked to the chemical reaction8 via the eigenfunction ψ∗
η . In the case without chemical reaction,

corresponding to ψ∗
η = 1, problem (30)–(31) becomes identical to the local problem (21) of case 1.

7 u∗ (x∗, y∗, t∗) is homogeneous with a concentration.
8 And so that to heterogeneous reaction rate coefficient k∗

a and k∗
b .
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Let us come back to the dimensional variable η∗, which writes at the leading order:

η∗ = exp
(−λ∗t∗

)
ψ∗

η

(
y∗) u∗ (

x∗, t∗
)

Its intrinsic average over fluid phase Y ∗
f is given by

〈
η∗〉 f = exp

(−λ∗t∗
) 〈

ψ∗
η

〉 f
u∗ (

x∗, t∗
)

(52)

and the temporal derivative of 〈η∗〉 f reads:
∂ 〈η∗〉 f

∂t∗
= exp

(−λ∗t∗
) 〈

ψ∗
η

〉 f ∂u∗

∂t∗
− λ∗ exp

(−λ∗t∗
) 〈

ψ∗
η

〉 f
u∗ (53)

Then, multiplying (51) by
(
exp (−λ∗t∗) ψ∗

η

)
and using (53), we obtain easily the homogenized diffusion

reaction equation for 〈η∗〉 f :

ϕ
∂ 〈η∗〉 f

∂t∗
+ ∇∗

x∗ ·
(
−Dhom ∗

r ∇∗
x∗

〈
η∗〉 f ) + ϕλ∗ 〈

η∗〉 f = 0 (54)

In the last step of this proof, we rewrite the obtained homogenized problems of diffusion (40) and of diffusion
reaction (54) with respect to dimensional concentrations C∗

a and C∗
b . We obtain at the leading order9:

ρ∗ = 〈
C∗
a

〉 f + 〈
C∗
b

〉 f (55)
〈
η∗〉 f = k∗

a

〈
C∗
a

〉 f − k∗
b

〈
C∗
b

〉 f (56)

with obviously C∗
a (x∗, t∗) = 〈

C∗
a

〉 f and C∗
b (x∗, t∗) = 〈

C∗
b

〉 f . It is easy to deduce from (55) and (56) the
expressions of averaged concentrations of components A and B over Y f :

〈
C∗
a

〉 f = 1

k∗
a + k∗

b

(
k∗
bρ

∗ + 〈
η∗〉 f ) (57)

〈
C∗
b

〉 f = 1

k∗
a + k∗

b

(
k∗
aρ

∗ − 〈
η∗〉 f ) (58)

To finish, the sum of Eq. (40) multiplied by
k∗
b

k∗
a+k∗

b
and of Eq. (54) multiplied by 1

k∗
a+k∗

b
leads to the homogenized

equation for
〈
C∗
a0

〉 f :

ϕ
∂

〈
C∗
a

〉 f

∂t∗
+ ∇∗

x∗ ·
(

−
(
Dhom ∗
r k∗

a + Dhom ∗k∗
b

k∗
a + k∗

b

)

∇∗
x∗

〈
C∗
a

〉 f
)

+ ∇∗
x∗ ·

(

−
(
k∗
b

(
Dhom ∗ − Dhom ∗

r
)

k∗
a + k∗

b

)

∇∗
x∗

〈
C∗
b

〉 f
)

+ ϕλ̃∗

k∗
a + k∗

b

(
k∗
a

〈
C∗
a

〉 f − k∗
b

〈
C∗
b

〉 f ) = 0 (59)

Likewise, the sumof Eq. (40)multiplied by k∗
a

k∗
a+k∗

b
and of Eq. (54)multiplied by −1

k∗
a+k∗

b
leads to the homogenized

equation for
〈
C∗
b

〉 f :

ϕ
∂

〈
C∗
b

〉 f

∂t∗
+ ∇∗

x∗ ·
(

−
(
k∗
a

(
Dhom ∗ − Dhom ∗

r
)

k∗
a + k∗

b

)

∇∗
x∗

〈
C∗
a

〉 f
)

+ ∇∗
x∗ ·

(

−
(
Dhom ∗
r k∗

b + Dhom ∗k∗
a

k∗
a + k∗

b

)

∇∗
x∗

〈
C∗
b

〉 f
)

9 We consider that C∗
a0 ≡ C∗

a and C∗
b0

≡ C∗
b .
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+ ϕλ̃∗

k∗
a + k∗

b

(
k∗
b

〈
C∗
b

〉 f − k∗
a

〈
C∗
a

〉 f ) = 0 (60)

From Eqs. (59) and (60), we deduce the expressions of the homogenized diffusion tensors and of the homog-
enized reaction rate coefficients given by (27)–(28) and (35), respectively. Some supplementary macroscopic
reaction terms appear in the transport homogenized Eq. (59) (or (25)) for component A, and in Eq. (60) (or
(26)) for component B, as homogeneous reactions involving

〈
C∗
a

〉 f and
〈
C∗
b

〉 f . Furthermore, supplementary

diffusion terms appear in Eqs. (59) and (60) depending on
〈
C∗
b

〉 f and
〈
C∗
a

〉 f , respectively. These diffusive terms
are new (by comparing to case 2) and reflect the influence of diffusion of component B (respectively A) on
the diffusion of component A (respectively B) at the macro-scale.
The homogenized reaction rate coefficientsK ∗

a andK ∗
b are function of the first eigenvalue λ̃ determined from

the spectral problem (42)–(43). Note that the compatibility equation of Neumann problem leads to

K ∗
a = k∗

aϕλ̃∗

k∗
a + k∗

b
= k∗

aS
∗
〈
ψ∗

η

〉s f

〈
ψ∗

η

〉 f (61)

K ∗
b = k∗

bϕλ̃∗

k∗
a + k∗

b
= k∗

bS
∗
〈
ψ∗

η

〉s f

〈
ψ∗

η

〉 f (62)

where S ∗ is the specific area of the porous medium. 
�
It is important to notice that for low values of Damköhler number DaL , we have ψ∗

η = 1 and the homogenized
reaction rate coefficients are identical to those given by expressions (24) of case 2. In addition, expression (29)
of the reactive homogenized diffusion tensor reduces to the purely geometric one given by (20). Moreover,
the homogenized diffusion tensors Dhom∗

ab and Dhom∗
ba are equal to zero and the homogenized diffusion tensors

Dhom∗
aa and Dhom∗

bb are identical to Dhom∗ given by Eqs. (20). For the sake of simplicity, in the sequel of the
article the superscript ∗ will be omitted.

4 Numerical study

The aim of this part is the determination of the homogenized diffusion tensors given by (27)–(28) by solving
numerically the boundary value problems (21) and (30)–(31). In the case of the reactive diffusion homogenized
model of case 3, we begin with solving the spectral problem (32)–(33) to determine the eigenfunctions ψη

and the first associated eigenvalue λ̃. Thereafter, the local variable χr will be determined by solving problem
(30)–(31). Finally, the reactive homogenized diffusion tensor will be computed from ψη and χr using (29).
The knowledge of Dhom, Dhom

r , ka and kb allows to calculate the homogenized diffusion tensors given by
(27)–(28). The numerical study will carried out by using Comsol Multiphysics 4.4 software. We begin with
solving the eigenvalue problem (32)–(33) and then the boundary value problem (30)–(31) where ψη is known.
To do this, we use the predefined partial derivative equations (PDE interfaces of Comsol software). To obtain
the solution of the eigenvalue problem (32)–(33), Poisson Eq. (63) of Comsol software is solved using the
eigenvalue solver with corresponding parameters given hereafter:

⎧
⎨

⎩

∇ · (−c∇u) = f in Y f
−n · (−c∇u) = g − qu on ∂Ys f
c = D, u = ψη, f = λψη, g = 0, q = k+

(63)

Solving Eq. (63) allows to determine the eigenfunctions and the associated eigenvalues. Thereafter, the general
PDE formulation in Comsol software is used with stationary solver to obtain the vector χr , solution of the
boundary value problem (30)–(31).

⎧
⎪⎪⎨

⎪⎪⎩

ea
∂2v
∂t2

+ da
∂v
∂t

+ ∇ · (ΓΓΓ ) = f in Y f

−n · ΓΓΓ = 0 on ∂Ys f
ea = 0, da = 0, v = (χr1, χr2)

T , Γ =Γ =Γ = Dψ2
η (I + ∇v) , f = 0

(64)
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Fig. 2 Unit cell with circular inclusion

Once ψη and χr determined numerically, the reactive homogenized diffusion tensor Dhom
r is calculated

from (29). However, the determination of the homogenized diffusion and co-diffusion tensors given by (27)–
(28) requires also to calculate previously the homogenized diffusion tensorDhom. For that, the boundary value
problem (21) is solved using the general PDE formulation predefined in Comsol software which corresponds
to Eq. (64) without the eigenfunction ψη.

The numerical procedure was validated in the case of two parallel plans by comparing the numerical results
to the analytical solution (see [15] for more details).

4.1 Circular inclusion

Let us consider a 2D elementary cell of size l with a circular inclusion of radius R localized at the centre
(see Fig. 2). The eigenvalue problem (32)–(34) and boundary value problem (21) are solved numerically for
different value of the Damköhler number10 Da ∈ [10−6, 102]. It is important to notice that Da = k+l/Dref
and k+ = ka + kb with kb/ka = α. In this case, the porosity of the elementary cell is ϕ = 0.8 with l = 1. It
is important to emphasize that the solutions of the eigenvalue problem (32)–(34) and boundary value problem
(30)–(31) are sensitive to the mesh size h. A numerical parametric study11 according to the mesh size is carried
out for the elementary cell of Fig. 2 in order to fix themesh size for the numerical calculations. Linear triangular
elements were chosen for the simulations. The obtained results show that the mean size of elements should be
less than l/100 to give constant eigenvalues and homogenized diffusion coefficients with respect to the mesh
size. According to the symmetry of the unit cell, the geometric and reactive homogenized diffusion tensors are
isotropic Dhom = DhomI and Dhom

r = Dhom
r I. Therefore the homogenized diffusion and co-diffusion tensors

are isotropic also. In the sequel, we compare only the coefficients.
Figure 3a shows the variation of relative homogenized diffusion tensors as functions of Damköhler number

Da for several values of the ratio α. We observe that the ratios Dhom
aa /Dhom and Dhom

bb /Dhom are equal to 1
for Da < 10−1. In this range, the effects of chemical reactions on the homogenized diffusion tensors can be
neglected, that corresponds to model I and II presented above. For Da > 10−1, Dhom

aa /Dhom and Dhom
bb /Dhom

decrease with the increase in Da. This is due to chemical reactions which slow down the diffusive transfer of
components A and B.
We remark that Dhom

aa /Dhom (respectively Dhom
bb /Dhom) is an increasing (respectively decreasing) function of

the ratio α. Indeed, for a fixed value of Da, the reactive homogenized diffusion coefficient Dhom
r is constant,12

whereas the heterogeneous reaction rate coefficients kb and ka are increasing and decreasing functions of α,
respectively,13 which explain the variation of Dhom

aa and Dhom
bb according to their definition given by (27)–

(28). In other words, the increase in the heterogeneous reaction rate coefficients induces the decrease in the
homogenized diffusion tensor for the same component.
The variation of the relative homogenized co-diffusion coefficients Dhom

ab and Dhom
ba with respect to Da is

represented in Fig. 3b. We observe that Dhom
ab and Dhom

ba are equal to zero for Da < 10−1 as in that case the
reactive and geometric homogenized diffusion coefficient Dhom

r and Dhom are very close.When theDamköhler

10 Da is determined according to the microscopic characteristic length l where Da = εDaL .
11 The detail of this study is not presented in this article.
12 The boundary value problem (32)–(34) depends only on k+ = ka + kb and k+l/Dref .
13 For a fixed Da, the reactive rate is constant k+ = c and leading to ka = c/(1+α) and kb = αc/(1+α)which are decreasing

and increasing functions of α, respectively.
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Fig. 3 Variation of relative homogenized diffusion coefficients versus Da, for a unit cell with a circular inclusion of porosity of
0.8

number is in the range Da > 10−1, Dhom
ab and Dhom

ba increase with Da. This is due, on the one hand to the
decrease in Dhom

r with Da and on the other, to the increase in ka and kb with Da.
We remark also that Dhom

ab /Dhom and Dhom
ba /Dhom are increasing and decreasing functions of α, respectively. It

is important to underline that the increase in the homogenized co-diffusion coefficient Dhom
ab and Dhom

ba implies
that a diffusive coupling appears at macro-scale (see Eqs. (25)–(26)).
Let us focus now, on the variation of the homogenized reaction rate coefficientsK I I andK I I I given by Eqs.
(24) and (35) for model II and III versus Damköhler number Da for different value of ratio α (see Fig. 4). In
that case, we remark that for Da < 1 the homogenized reaction rate coefficients K I I andK I I I are identical;
that can be explained from Eqs. (61)–(62) for an eigenfunction ψη equal to 1. Model III can reproduce model
II for Da < 1 and also model I for Da = O

(
ε2

)
. For Da > 1, we observe that the variation ofK I I I becomes

nonlinear with Da and K I I > K I I I (in that case, the eigenfunction ψη < 1). In addition, we remark that
Ka and Kb are decreasing and increasing function of α, respectively.
Thus, it can be concluded that the increase in the Damköhler number Da induces the increase in the homoge-
nized reaction rate coefficientKa andKb, the decrease in homogenized diffusion coefficients Dhom

aa and Dhom
bb

and the increase in the homogenized co-diffusion coefficients Dhom
ab and Dhom

ba at macro-scale.

4.1.1 Analysis at the elementary cell scale

In this section, we will focus on the comparison of homogenized parameters obtained here by Periodic Homog-
enization Method (PHM) to those obtained by Volume Averaging Method14 (VAM) in [34]. Figure5 presents
the homogenized parameters obtained fromPHMandVAM in the case of circular inclusion of porosityϕ = 0.8
and for a ratio of heterogeneous reaction rate coefficients of α = kb/ka = 2. First, for Da < 0.1 (correspond-
ing to model II in our analysis), the homogenized diffusion coefficients Dhom

aa and Dhom
bb are equal to the

geometric one in the case of VAM and of PHM (see Fig. 5a). In the same range of Da, we remark also that
the homogenized co-diffusion coefficients Dab and Dba are equal to zero, which corresponds to the absence
of diffusive coupling in model II for the PHM and for the VAM (see Fig. 5b). An important point to quote is
that for Da > 0.1, we observe that the relative homogenized diffusion coefficients obtained from VAM are
increasing functions of Da, whereas those obtained from PHM are decreasing functions of Da (Fig. 5a).

14 The simulations with VAM have been made using the formulae (27)–(30), (35)–(36) and closure problem of appendix A and
in [34].
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Fig. 4 Variation ofKa andKb versus Da for different value of α and for ϕ = 0.8

Moreover, we obtain that the ratios Dhom
ab /Dhom and Dhom

ba /Dhom obtained from PHM are positive and increas-
ing functions of Da in the range Da > 0.1 whereas they are negative and decreasing functions of Da for
VAM (Fig. 5b). In that case, the homogenized co-diffusion coefficients reflect the deviation of the reactive
homogenized diffusion coefficient Dhom

r from the geometric one Dhom weighted by reaction coefficients kb
for Dhom

ab and ka for Dhom
ba . This deviation is positive and increases with Da for PHM, whereas it is negative

and decreases with Da for VAM. In Fig. 5c, for Da > 0.1, we observe that the relative homogenized reaction
rate coefficients obtained by VAM and PHM follow the similar trends but with a gap between the VAM and
PHM homogenized reaction rate coefficients.
It can be concluded that the homogenized parameters obtained by PHM and VAM are very different and
generally with opposite tendencies when the Damköhler number Da varies. It seems interesting to quantify
the impact of this difference on the associated macroscopic concentrations profiles and fluxes. This is the aim
of the next section.

4.1.2 Comparison of the PSS and the PHM model

The aim of this section is to compare the homogenized coupled diffusion reaction model obtained by
PHM (Model III) given by (25)–(26) to the Pore Scale Simulation (PSS) given by (1)–(2) at the pore scale.
The homogenized Eqs. (25)–(26) are solved on a continuous homogeneous macroscopic domain of length
L = Nl, where N is the number of unit cells of size l constituting the macroscopic domain15 (Fig. 6). The unit
cell is those of Fig. 2, constituted of a circular solid inclusion. The variations of the associated homogenized
diffusion coefficients are represented in Figs. 3 and 4. On the inlet and outlet, Dirichlet boundary conditions
are applied and periodic boundary conditions are considered on the lateral boundary. In addition, boundary
conditions (3)–(4) are applied on the solid–fluid interface Γs f . The homogenized coupled diffusion reaction
Eqs. (25)–(26) are solved on the whole fluid domain Ω f of the N juxtaposed unit cells.
In this numerical study, we consider for the numerical simulations PSS and PHM a value of D = 1 and
Ca(x1 = 0) = Cb(x1 = 0) = 1 at inlet,Ca(x1 = L) = Cb(x1 = L) = 0 at outlet as boundary conditions. The
Damköhler number Da is considered as the parameter of the simulation with values Da = 0.01, 0.1, 1, 10
and two values of the ratio α = 0.1, 0.5.

Figures 7 and 8 show, for different values of Da, the variation of the average concentrations 〈Ca〉 f and
〈Cb〉 f obtained from homogenized Eqs. (25)–(26) and the variation of the concentrations Ca and Cb obtained
by solving the local problem (1)–(2) by PSS. The concentrations of component A and B obtained from the
PHM model and PSS are in very good agreement for different values of the Damköhler number.

15 In fact, the macroscopic domain is of size L × L of N × N unit cells in directions x1 and x2. Accounting for the symmetry
of the unit cell and the periodic condition on the top and the bottom boundaries, it is judicious to extract one row of cells.
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Fig. 5 Comparison between homogenized parameters obtained by volume average method (VAM) and by periodic homogeniza-
tion method (PHM), for a unit cell with a circular inclusion of porosity ϕ = 0.8. a Dhom

aa /Dhom and Dhom
bb /Dhom versus Da. b

Dhom
ab /Dhom and Dhom

ba /Dhom versus Da. c K I I I
a /K I I

a andK I I I
b /K I I

b versus Da

4.1.3 Comparison of the PHM and the VAM model

In order to analyse in greater depth these results, Fig. 9 compares the variation of the average concentrations
〈Ca〉 f and 〈Cb〉 f obtained from PHM and VAM [34] to average concentrations 〈Ca〉y2 and 〈Cb〉y2

〈Ca〉y2 = 1

l

∫ l

0
Cady2; 〈Cb〉y2 = 1

l

∫ l

0
Cbdy2 (65)

computed by PSS.
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Fig. 6 Porous media of porosity ϕ = 0.8 at the macro-scale [15]

PSS

PHM

Fig. 7 Concentration of component A for different values of Da obtained by PSS and PHM

PSS

PHM

Fig. 8 Concentration of component B for different values of Da obtained by PSS and PHM

We remark from Fig. 9 that the concentration of component A (reactant species) decreases with x1/L . This
tendency increases significantly for high values of Da. We observe also that PHM and VAM concentration
profiles are in good agreement with PSS for different value of Da and ratio α. It is important to notice that the
relative error for concentrations, when PSS solution is considered as the reference one, is less than 2% for both
solutions VAM and PHM. For component B (product species), the concentration profile increases and then
decreases. This is due to the chemical reaction allowing to the production of component B. From a physical
point of view, the chemical reactions at the solid–fluid interface must slow down the diffusive transfer, leading
to a decreasing of the homogenized diffusion tensors. This is observed with PHM but not with VAM.
Let us compare now the diffusive flux of the component A obtained from PHM and VAM with PSS one. The
diffusive flux of PHM and VAM is defined as:

Jax1 = − (
Dhom
aa + Dhom

ba

)∇x1〈Ca〉 f (66)

For the PSS model, the diffusive flux is determined by:

Jax1 = 〈−D∇y1Ca〉y2 (67)

The diffusive fluxes are plotted with respect to x1/L for different values of Da in Fig. 10. The fluxes decrease
with respect to x1/L . Indeed, the component A (reactant) is consummated by chemical reaction on the solid–
fluid interface. The decrease in the diffusive flux Jax1 is more significant when Da increases. Afterwards, it
reaches a constant value (for Da > 0.1). The PHM and VAM diffusive fluxes are in good agreement with
PSS ones. The diffusion and co-diffusion homogenized tensors obtained by PHM and VAM are different and
of opposite tendency with respect to Da (see Fig. 5). However, it is important to notice that the values of(
Dhom
aa + Dhom

ba

)
given by PHM and VAM models are very close, which explains the similar results for fluxes

and concentrations (see Fig. 9).
Nevertheless, the PHM results seem to be more coherent from a physical point of view. Indeed, the chemical
reactions at the solid–fluid interface must slow down the diffusive transfer, leading to a decreasing of the
homogenized diffusion tensors.



2308 M. K. Bourbatache et al.

Fig. 9 Average concentration versus x1/L for different values of α and Da

4.2 Random porous media

4.2.1 Analysis at the elementary cell scale

Let us consider a 2D elementary cell containing several circular inclusions whose radii and positions are
distributed randomly. On this random elementary cell, we resolve numerically problems (21), (30)–(31) and
(32)–(34) for different value of Da to compute Dhom and Dhom

r from (20) and (29). Let us notice that in
the expression of Da only the local heterogeneous reaction rate coefficients ka or kb vary, the microscopic
diffusion coefficient D and the size of unit cell l are assumed to be constant. Figure12a, b shows the variation in
directions y1 and y2 (versus Damköhler number Da) of the relative reactive homogenized diffusion coefficients
given by (27)–(28) normalized by the purely geometric homogenized ones. We observe that for Da < 0.1,
the relative coefficients Dhom

aa11/D
hom
11 and Dhom

bb11
/Dhom

11 are equal to one, whereas Dhom
ab11

/Dhom
11 and Dhom

ba11
/Dhom

11
are equal to zero. As already observed in the previous example, in this range of Da, the chemical reaction
effects are negligible and therefore the reactive homogenized diffusion tensor Dhom

r given by (29) is equal to
geometric homogenized one Dhom given by (20).
For 0.1 < Da < 3, we observe as in the previous case of a circular inclusion, that the relative homogenized
diffusion coefficients Dhom

aa11/D
hom
11 and Dhom

bb11
/Dhom

11 (respectively the homogenized co-diffusion coefficients

Dhom
ab11

/Dhom
11 and Dhom

ba11
/Dhom

11 ) are decreasing (respectively increasing) functions of Da. This is due to the

decrease in the reactive homogenized diffusionDhom
r when Da increases (see Fig. 12c, for more details on the

dependency of Dhom
r with respect to Da see [15]).
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Fig. 10 Diffusion flux of component A versus x1/L for different values of Da and for α = 0.1

Fig. 11 Random elementary cell with porosity φ = 0.28

For Da > 3, we observe that all relative homogenized diffusion coefficients are constant. In that case, the
reactive homogenized diffusion coefficient Dhom

r11 tends to zero. Indeed, as we have considered that kb
ka

= α,

substituting in (27)–(28) with Dhom
r11 ≈ 0 (see Fig. 12c), we obtain that:

Dhom
aa11 = Dhom

ab11
= Dhom

11
(1+α)

; Dhom
bb11

= Dhom
ab11

= αDhom
11

(1+α)
, that is observed in Fig. 12.

The same observations can be noticed in direction y2. In addition, we observe also that the relative homogenized
diffusion coefficients Dhom

nm11/D
hom
11 and Dhom

nm22/D
hom
22 (with n and m equal to a or b) are very close. In what

follow we focus our analysis only in direction y1. Figure12d shows the variation of the relative homogenized
reaction rate coefficients K I I I

a /ka and K I I I
b /kb, for component A and B, with respect to the Damköhler

number Da. We notice that the ratiosK I I I
a /ka andK I I I

b /kb are increasing functions of Da. For Da < 0.1,
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Fig. 12 a, b Variation of relative homogenized diffusion coefficients in direction y1 and y2 versus Da. c Variation of relative
homogenized diffusion of Eq. (29) in direction y1 and y2 versus Da. d Variation of the relative homogenized reaction rate
coefficients for components A and B versus Da for α = 0.1

K I I I
a /ka andK I I I

b /kb present a linear variation. In this range, the homogenized reaction rate coefficients of
model II and model III are identical and the diffusion and reaction are decoupled. For Da > 0.1, the variation
of K I I I

a /ka and K I I I
b /kb with Da becomes slightly nonlinear. In that range, the diffusion and reaction are

coupled through the homogenized diffusion coefficients, which are function of the chemical reactions rates
according to Eqs. (27)–(28).

4.2.2 Comparison of the PSS and the PHM model

To finish, in this section, we are interested in comparing the homogenized diffusion reaction model III
(PHM) given by Eqs. (25)–(26) to the Pore Scale Simulation (PSS) of coupled diffusion reaction equations
at microscopic scale (1)–(4). The macroscopic domain of size L is constituted of the juxtaposition of N
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PHM model

Pore Scale Simulation

Inlet OutletPeriodic

Fig. 13 Random porous media of porosity ϕ = 0.28 at macro-scale

Table 1 Numerical parameters used in the simulations of Fig. 14

Numerical parameters
l 0.01 Size of elementary cell
N 20 Number of elementary cells
D 1 Microscopic diffusion coefficient
α 0.1, 0.5 Ratio of heterogeneous reaction rate coefficients
Boundary conditions
Ca(x1 = 0) 1 Inlet boundary condition for component A at x1 = 0
Cb(x1 = 0) 1 Inlet boundary condition for component B at x1 = 0
Ca(x1 = L) 0 Outlet boundary condition for component A at x1 = L
Cb(x1 = L) 0 Outlet boundary condition for component B at x1 = L

Fig. 14 Average concentration fields 〈Ca〉 f , 〈Cb〉 f , Ca and Cb according to x1 obtained from PHM and PSS for different values
of Da

elementary cells of size l with L = Nl (Fig. 13). The homogenized transfers parameters are those presented
by Fig. 12. In this study, we only consider transfer in direction x1, the results in direction x2 are nearly identical,
due to the "quasi" isotropy of the elementary cell of Fig. 11. Dirichlet boundary conditions are imposed on the
inlet and the outlet for unknowns 〈Ca〉 f and 〈Cb〉 f , solution of Eqs. (25)–(26). Periodic boundary conditions
are imposed on the lateral boundary. The numerical parameters used in this study are summarized in Table 1.
Fig. 14 compares the average concentration fields obtained from PHM and the local concentration fields given
by PSS for different values of Da and α. We remark that the PHM model is in a good agreement with PSS
with a very reduced computation time.16 We notice that the average concentration fields 〈Ca〉 f and 〈Cb〉 f are
very similar to the local concentration fields Ca and Cb.

16 The ratio of time computation of PSS to PHM is about 48 in the case of the random elementary cell.
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Fig. 15 Concentration fields versus x1/L for different values of Da and α

Finally, we compare in Fig. 15 the variation of average concentrations 〈Ca〉 f , 〈Cb〉 f of PHM to average
concentrations17 〈Ca〉y2 and 〈Cb〉y2 of PSS versus x1/L .
We observe that the average concentrations obtained from PHM and from PSS are very close18 for different
values of Da and α. Moreover, the concentration of component A decreases (reactant) and the concentration
of component B increases (product). This effect becomes all the more important when Da increases and α
decreases, which corresponds to a more important contrast of the heterogeneous reaction rate coefficients.
Indeed, the concentrations at the inlet of the porous media do not satisfy the chemical equilibrium19 in the
case of PSS and PHM model. This chemical equilibrium is reached in the porous medium after the decrease
and the increase in concentrations of components A and B, respectively (nonlinear part of each curve). The
distance from the inlet required to achieve the equilibrium depends on the Damköhler number Da. Indeed,
this distance decreases with the increase in Da.

5 Conclusion

In this work, we applied the periodic homogenization technique to upscale multi-species diffusion equations
coupled with heterogeneous first-order chemical reaction at the solid–fluid interface. Several cases were dis-
cussed, according to the order of magnitude of the Damköhler number Da. For small values of Da, the
upscaling procedure leads to an homogenized diffusion model, where the homogenized diffusion tensor is
purely geometric. For intermediate orders of magnitude of Da, we recovered at the macro-scale a diffusion
reaction model where the coupling between species is carried out through the reactive terms. In that interme-
diate case, the homogenized diffusion tensor is still decoupled from the chemical reactions. For large values
of Da, we obtain a non-classical homogenized diffusion reaction model, where co-diffusion terms appear at

17 The average 〈.〉y2 is given by (65).
18 Except near the inlet x1 = 0 due to a boundary larger that appears.
19 The concentrations reach the chemical equilibrium when kaCa − kbCb = 0 in the PSS and ka〈Ca〉 f − kb〈Cb〉 f = 0 in the

PHM.
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the macro-scale, involving homogenized co-diffusion tensorsDhom
ab andDhom

ba , in addition to the more classical
homogenized diffusion tensors Dhom

aa and Dhom
bb . An important point is that all these homogenized diffusion

tensors are coupled to heterogeneous reaction rate coefficients. The determination of the homogenized trans-
fer parameters, such as diffusion, co-diffusion tensors and homogenized chemical reaction rate coefficients,
requires to solve coupled boundary values problems at unit cell scale.
Numerical studies have then been performed on a simple two-dimensional elementary cell with a circular
inclusion in order to highlight the influence of chemical reaction effects on the homogenized diffusion and
co-diffusion tensors and on the homogenized diffusion reaction rate coefficients. In this case, it has been found
that the homogenized diffusion (respectively co-diffusion) tensors are decreasing (respectively increasing)
functions of the local heterogeneous reaction rate coefficients. The chemical reaction slows down the diffusion
transfer according to the microscopic heterogeneous reaction rate coefficients. These homogenized parameters
were compared to those obtained by VAM.20 It has been underlined that the effective diffusion (respectively
co-diffusion) obtained from VAM is increasing (respectively decreasing with negative values) function of Da.
The homogenized reaction rate coefficients are increasing functions of Da for both PHM and VAM.
Finally, numerical study on a 2D random elementary cell has been conduced in order to highlight the influence
of the chemical reaction effect in the case of amore complex porousmedia. The variation of transfer parameters
(decrease in diffusivity and increase in co-diffusivity) with respect to Da are confirmed in the case of a more
complex random elementary cell. The comparison between homogenized diffusion reaction equations obtained
fromPHMand PSS is in good agreement. Therefore, the homogenizedmodel of case 3 is a good approximation
of the global behaviour at macro-scale, including accurately the physics at the micro-scale.
This study could be extended to the case of different diffusion coefficient at micro-scale where the theoretical
development seems to be difficult. It could be also considered nonlinear chemical reactions at solid–fluid
interface.
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