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Abstract This paper presents a two-surface elastoplastic model for brittle–ductile transition behaviors of
porous rocks subjected to compressive stresses. Two plastic deformation mechanisms are taken into consid-
eration: plastic shearing at low confining pressure and plastic pore collapse at high confining pressure. For
loading in the brittle regime, a unified hardening/softening law is introduced into theDrucker–Prager-type yield
criterion to describe the pre-peak hardening and post-peak softening behaviors. A non-associated flow rule is
adopted to capture the volumetric compressibility–dilatancy phenomenon. For loading in the ductile regime,
a monotonic strain hardening law as a function of hydrostatic stress is proposed and incorporated into the
DiMaggio–Sandler-type yield criterion. A non-associated flow rule is used to realistically describe the plastic
compaction response caused by non-hydrostatic stress. An analytical solution of stress–strain relations for
shear surface is developed in the case of conventional triaxial compression. Based on the bifurcation analysis,
the onset of strain localization along cap surface is predicted. Comparisons between numerical simulations and
experimental data show that the proposed model is able to capture the main mechanical behaviors of the inves-
tigated porous rocks, Adamswiller sandstone and Bentheim sandstone, including strength nonlinearity, strong
pressure sensitivity, strain hardening/softening, volumetric compaction/dilation, and brittle–ductile transition.

1 Introduction

When subjected to an overall compressive loading, porous rocks may fail by brittle failure or by ductile failure.
That is, porous rocks may fault or otherwise deform without loss of compressive strength. Understanding
this phenomenon is important for earth sciences and structural geology [1]. To study this phenomenon, a
number of laboratory experiments, including mechanical behavior investigation and microstructure analysis of
porous rocks, have been carried out under different conditions. Experimental studies have shown that porous
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rocks, such as sandstone, tuff and chalk, undergo a transition in failure mode from localized shear bands to
homogeneously distributed deformation throughout the rock with an increase in confining pressure at room
temperature [2–6], i.e., low-temperature brittle–ductile transition (BDT). Further, the mechanical behavior of
porous rocks is very complex, and characterized by various features: strength nonlinearity, strong pressure
sensitivity, strain hardening and softening, dilatancy and friction, compaction and pore collapse, and so forth.
However, two basic plastic deformation mechanisms are usually identified. The predominant deformation
mechanism associated with macroscopic failure in the brittle regime is microcracking [7–10]. In contrast,
plastic deformation in the ductile regime mainly arises from pore collapse and grain crushing [11–15].

For the modeling of these two plastic deformation mechanisms in porous rock, a number of constitutive
models have been developed in the general framework of plasticity. For the microcracking mechanism, a pres-
sure sensitive, Mohr–Coulomb-type yield surface and a non-associated flow rule, has been widely employed,
for instance, [16–18], among many others. These models can generally describe the pre-peak hardening and
post-peak softening behavior, and dilatancy of porous rock in the brittle regime. For the pore collapse mech-
anism, plastic models with a smooth elliptical yield surface, together with an associated flow rule, have been
proposed [19–21]. In particular, two classes of plasticity models are often invoked: critical state models [22]
and cap models [23]. These two kind of models have been commonly used for soils, clays, and porous rocks.
However, laboratory data and comparison with the critical state models have found it inappropriate to directly
apply these models to porous rock, given the certain fundamental differences between soil and rock [24–26].
In order to reasonably describe the nonlinear mechanical responses of porous rock in the ductile regime, many
scholars have tried to establish cap models for modeling the strain hardening and volume compaction. For
example, Foster et al. [27] formulated a three-invariant, isotropic/kinematic hardening cap plasticity model
for porous geomaterials; Tamagnini and Ciantia [28] proposed an extended theory of plasticity with gener-
alized hardening to describe the response of porous geomaterials under both mechanical and environmental
processes; Bennett and Borja [29] modified a Drucker–Prager/Cap plasticity model and developed a novel
hyper-elastoplastic damage constitutive model for porous rocks; Lv et al. [30] proposed a thermal–mechanical
coupling elastoplastic model of freeze–thaw deformation for porous rocks, which couples thermal mechanism
and elastoplastic mechanical process. Recent studies have shown that an elliptic cap model is sufficient to
describe laboratory data on porous rocks [20,31–33]. For the description of the BDT in porous rocks, various
models have been proposed by combining two yield surfaces (a cap surface for plastic pore collapse and a
friction surface for plastic shearing, and the two surfaces meet at a vertex) that describe, respectively, the
two identified mechanisms of plastic deformation [34–37]. For instance, Lin et al. [38] proposed a Drucker–
Prager/Gurson-type plasticity model to account for the pore collapse and plastic shearing mechanisms that
govern the mechanical behavior of ductile porous materials; Xie and Shao [39] formulated a poroplasticMohr–
Coulomb/Gurson-type plasticity model to simulate undrained triaxial compression tests of saturated porous
geomaterials with variation of interstitial pressure; Jia et al. [40] proposed an elastoplastic model with two yield
surfaces (a quadratic Mohr–Coulomb criterion for plastic shearing mechanism and a Gurson-type criterion for
pore collapse mechanism) to describe the mechanical behavior of porous concrete under different saturation
conditions and high confining pressures. Furthermore, in order to avoid singularity point at the intersection
between two surfaces, plastic models with one single yield surface for twomechanisms have been alternatively
proposed [41–43].

In spite of great efforts made so far, there are still some shortcomings in existing constitutive models to
properly describe the BDT behaviors. For the plastic models with one single yield surface, the stress–strain
transition from brittle to ductile behaviors in the brittle regime with the increase in confining pressure are
usually ignored. As a consequence, post-peak behavior and residual strength of porous rock are not correctly
described. On the other hand, the failuremode transition from dilatant failure in the brittle regime to compactant
failure in the ductile regime are also not properly described. For the plastic models with two independent yield
surfaces, the evolution of inelastic deformation is generally implicitly assumed to follow an associated flow
rule, which is not able to realistically capture the inelastic compaction of porous rock over a broad range of
confining pressures.

The purpose of this paper is to develop a new constitutive model for the description of the brittle–ductile
transition in porous rocks. The organization of this paper is as follows. In Sect. 2, a two-surface constitutive
model is formulated in the frameworkof plasticity theory. Specific yield criteria, strain hardening/softening laws
and plastic potentials are proposed to describe the pre-peak hardening and post-peak softening behaviors in the
brittle regime as well as volumetric compressibility–dilatancy transition, and the shear-enhanced compaction
in the ductile regime. In Sect. 3, some cases of the proposed model under conventional triaxial compression
are presented. In Sect. 4, the predictive capacity of the proposed model is examined by comparing numerical
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simulations and experimental data of two typical porous rocks, Adamswiller sandstone (porosity 22.6%) and
Bentheim sandstone (porosity 22.8%).

2 Presentation of the elastoplastic model for porous rocks

2.1 General formulation

The laboratory results suggest that the mechanical behavior of porous rocks can be modeled in terms of
elastoplasticmodel with two deformationmechanisms: plastic shearingmechanism for low confining pressures
and plastic pore collapse mechanism for high confining pressures. In this section, we aim at modeling the two
evidenced plastic deformation mechanisms by two yield surfaces: a linear surface for the plastic shearing and
a cap surface for the plastic pore collapse. With the assumption of isothermal conditions and small strains, it
is assumed that the total strain increment dε can be decomposed into an elastic and a plastic components, dεe

and dεp, respectively. The plastic component is then divided into plastic shearing and plastic pore collapse
components, dεps and dεpc, respectively:

dε = dεe + dεp, with dεp = dεps + dεpc (1)

The elastic strain component dεe is related to the applied stress increment dσ through Hooke’s law:

dεe = 1 + ν

E
dσ − ν

E
tr (dσ ) δ (2)

where E and ν are the Young’s modulus and the Poisson’s ratio of porous rock, respectively.
According to Eqs. (1) and (2), the general incremental form of stress–strain relation can be written as

follows:

dσ = C : (
dε − dεp

)
(3)

where C is the elastic stiffness tensor of the porous rock and can be expressed as:

C = 2GK + 3KJ (4)

with K and G being the elastic bulk and shear moduli of the porous rock, respectively. Two isotropic and
symmetric fourth order tensors K and J are defined by:

Ji jkl = 1

3
δi jδkl , Ii jkl = 1

2

(
δikδ jl + δilδik

)
, K = I − J (5)

where I is the symmetric fourth order unit tensor. δ denotes the second order unit tensor. In the following, the
specific formulations are presented, respectively, for modeling of plastic shearing mechanism and plastic pore
collapse mechanism.

2.2 Plastic shearing mechanism

For the plastic shearing, plastic deformation is mainly induced by frictional sliding along closed microcracks,
and rock failure occurs by localized shearing [44]. Rock mechanics studies have demonstrated that the peak
strength in the brittle faulting regime for porous rocks is approximately linearly correlated with confining
pressure [4,5,45–47]. For the sake of simplicity, assuming that the shearing yield surface has the same general
shape as the failure surface, the following Drucker–Prager-type criterion is used:

fs (σ , μs) = τ − μs (σm + h) ≤ 0 (6)

with:

σm = 1

3
tr (σ ) , τ =

√
1

2
s : s with s = σ − σmδ (7)
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where h represents the hydrostatic tensile strength which is related to material cohesion. The plastic hardening
law is described by the evolution of the friction coefficient μs as a function of the plastic equivalent shear
strain γ ps. Laboratory studies on porous rocks have shown that brittle faulting is characterized by pre-peak
hardening and post-peak softening behaviors under low confining pressures. The evolution of the function μs
should be able to capture the transition from hardening to softening. Inspired by the previous works [48–50],
a unified hardening/softening function is here proposed:

μs = μ0 + (
μ f − μ0

) Nξ

N − 1 + ξ N
, ξ = γ ps/γ

ps
f (8)

with:

γ ps =
∫ √

2deps : deps, deps = dεps − 1

3
tr

(
dεps

)
δ (9)

where μ0 and μ f , respectively, characterize the initial and maximum plastic yield thresholds. γ
ps
f represents

the value of plastic equivalent shear strain at the peak stress. The parameter N controls the evolution rate of
plastic hardening and softening.

As in most frictional-cohesive geomaterials, there is generally a transition from plastic volumetric com-
pressibility to dilatancy during plastic shearing. Dilatancy is commonly observed as a precursor to brittle
faulting in porous rocks [51], which would ultimately lead to failure by strain localization under relatively low
confining pressures. Therefore, in order to better describe the dilatancy phenomenon, a non-associated flow
rule is needed. To this end, the following plastic potential function is adopted:

gs (σ , βs) = τ − βsσm (10)

where βs is the dilatancy coefficient, which controls the evolution rate of plastic volumetric strain.
Thus, the plastic strain rate for plastic shearing mechanism is given by:

dεps = dλs
∂gs
∂σ

,
∂gs
∂σ

= −1

3
βsδ + s

2τ
(11)

where dλs is the non-negative plastic multiplier, which can be determined by the plastic consistency condition:

d fs = ∂ fs
∂σ

: dσ + ∂ fs
∂μs

dμs = 0 (12)

Accordingly, the plastic multiplier is given as:

dλs =
∂ fs
∂σ

: C : dε
∂ fs
∂σ

: C : ∂gs
∂σ

− ∂ fs
∂μs

∂μs
∂γ ps

∂gs
∂τ

(13)

2.3 Plastic pore collapse mechanism

In contrast to the plastic shearing mechanism in the brittle field, plastic deformation in the ductile field mainly
arise from pore collapse [4,5,11,13,52]. Significant plastic deformation in the form of volume (inelastic
compaction) can occur in response to purely hydrostatic loading, due to increasing confining pressure. Under
relatively high confining pressures, a shear stress loading would enhance the initiation of inelastic compaction,
i.e., the mean stress at the initiation of inelastic compaction is lower than the critical pressure for onset of
pore collapse (corresponding to the occurrence of inelastic compaction) under purely hydrostatic loading. At
the initiation of inelastic compaction, the mean stress values typically decrease with increasing shear stress,
and map out an approximately elliptical cap in the τ versus σm plane [5,6,11,15,52–54]. Therefore, for the
modeling of plastic pore collapsemechanism in porous rocks, we propose to adopt the DiMaggio–Sandler-type
criterion [23] for the formulation of plastic yield function:

fc (σ , c) =
(τ

c

)2 +
(

σm − σ0

sc

)2

− 1 ≤ 0 (14)
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where the parameter s is a constant aspect ratio of the elliptical yield surface, c defines the size of the yield
ellipse, and increases with plastic volumetric strain ε

pc
v . sc0 and c0 will be used to denote the semi-axes of the

initial elliptical cap (for ε
pc
v = 0). At high confining pressures, say when the mean stress is close to the plastic

pore collapse stress under purely hydrostatic loading, no peak strength can be identified until a very large
axial strain is reached. The shear stress–strain curve is continuously increasing with a concave form similar
to that in purely hydrostatic loading test. This means that shear-enhanced compaction induced by the applied
shear stress under high confining pressures allows the rock to work hardening, thus the development of shear
localization is inhibited and compaction localization is formed (which will be discussed in Sect. 3.3). Based
on the previous works [39,55–57], the following hardening law is here adopted:

c = c0
[
1 + a

(
ε
pc
v

)n
exp

(
bεpcv

)]
(15)

where a, b and n are model parameters that control the plastic hardening rate.
To accurately describe the compressive plastic volumetric deformation in pore collapse process, a non-

associated flow rule should be considered. By letting s′ differ from s in Eq. (14), the following function is
proposed as the plastic potential:

gc (σ , c) =
(τ

c

)2 +
(

σm − σ0

s′c

)2

(16)

where s′ is the model parameter of plastic potential, controlling the orientation of the plastic volumetric strain
increment.

Thus, the plastic strain rate for plastic pore collapse mechanism writes:

dεpc = dλc
∂gc
∂σ

,
∂gc
∂σ

= 2

3

(σm − σ0)

(s′c)2
δ + s

c2
(17)

where dλc is the non-negative plastic multiplier, which can be determined by the plastic consistency condition
of fc:

d fc = ∂ fc
∂σ

: dσ + ∂ fc
∂c

dc = 0 (18)

Accordingly, the plastic multiplier dλc is given as:

dλc =
∂ fc
∂σ

: C : dε
∂ fc
∂σ

: C : ∂gc
∂σ

− ∂gc
∂c

∂c
∂ε

pc
v

∂gc
∂σm

(19)

2.4 Interaction between two plastic deformation mechanisms

The existence of two plastic yield surfaces in the proposed model leads to complex law integration. The two
plastic deformation mechanisms can be activated either separately or simultaneously. At the intersection of
two yield surfaces, the apex regime is a combination of two deformation mechanisms. Therefore, four different
possible plastic regimes can be identified.

(1) If fs < 0 and fc < 0, the applied stress state is fully inside the elastic regime, no plastic flow occurs
and one gets: dλs = 0 and dλc = 0.

(2) If fs = 0 but fc < 0, only the plastic shearing mechanism is activated. The plastic multiplier dλs > 0
is determined by Eq. (13).

(3) If fc = 0 but fs < 0, only the plastic pore collapse mechanism is activated. The plastic multiplier
dλc > 0 is determined by Eq. (19).

(4) If fs = 0 and fc = 0, both the two plastic deformationmechanisms are activated. The plasticmultipliers
dλs > 0 and dλc > 0 can be determined by the double consistency conditions:

d fs = 0, and d fc = 0 (20)
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Accordingly, one obtains the system of equations to be solved to determine the plastic multipliers dλs and
dλc

⎧
⎨

⎩

∂ fs
∂σ

: C : dε =
(

∂ fs
∂σ

: C : ∂gs
∂σ

− ∂ fs
∂μs

∂μs
∂γ ps

∂gs
∂τ

)
dλs +

(
∂ fs
∂σ

: C : ∂gc
∂σ

− ∂ fs
∂μs

∂μs
∂γ ps

∂gc
∂τ

)
dλc

∂ fc
∂σ

: C : dε =
(

∂ fc
∂σ

: C : ∂gs
∂σ

− ∂ fc
∂c

∂c
∂ε

pc
v

∂gs
∂σm

)
dλs +

(
∂ fc
∂σ

: C : ∂gc
∂σ

− ∂ fc
∂c

∂c
∂ε

pc
v

∂gc
∂σm

)
dλc

(21)

In general case, when both the two plastic mechanisms are activated simultaneously, there is a hardening
interaction between the two plastic mechanisms. Shearing induced plastic dilation may affect plastic hardening
of pore collapse mechanism. Inversely, pore collapse induced plastic compaction will affect plastic hardening
of shearing mechanism. However, in the present work, it seems that Eqs. (8) and (15) can be assumed to be
independent of each other. In such a particular case, we can take ∂ fs

∂μs

∂μs
∂γ ps

∂gc
∂τ

= ∂ fc
∂c

∂c
∂ε

pc
v

∂gs
∂σm

= 0, and get a
simplified version of Eq. (21). After some mathematical transformations, one gets:

⎧
⎨

⎩

dλs = 1
H

[(
∂ fs
∂σ

: C : ∂gc
∂σ

) (
∂ fc
∂σ

: C : dε
)

−
(

∂ fc
∂σ

: C : ∂gc
∂σ

− ∂ fc
∂c

∂c
∂ε

pc
v

∂gc
∂σm

) (
∂ fs
∂σ

: C : dε
)]

dλc = 1
H

[(
∂ fc
∂σ

: C : ∂gs
∂σ

) (
∂ fs
∂σ

: C : dε
)

−
(

∂ fs
∂σ

: C : ∂gs
∂σ

− ∂ fs
∂μs

∂μs
∂γ ps

∂gs
∂τ

) (
∂ fc
∂σ

: C : dε
)] (22)

with:

H =
(

∂ fs
∂σ

: C : ∂gc
∂σ

) (
∂ fc
∂σ

: C : ∂gs
∂σ

)
−

(
∂ fs
∂σ

: C : ∂gs
∂σ

− ∂ fs
∂μs

∂μs

∂γ ps

∂gs
∂τ

)(
∂ fc
∂σ

: C : ∂gc
∂σ

− ∂gc
∂c

∂c

∂ε
pc
v

∂gc
∂σm

)

(23)

3 Some cases for conventional triaxial compression

3.1 Analytical stress–strain relations for shear surface

For a conventional triaxial compression test, the stress state is such that σ = [σ1, σ2, σ3] with the algebra
sequence σ1 > σ2 = σ3 � 0. The corresponding deviatoric part s is given by:

s = 1

3
(σ1 − σ3) [2,−1,−1] (24)

According to Eq. (11), the direction of plastic flow rate D = ∂gs
∂σ

in the conventional loading path can be
expressed as follows:

D = −1

3
βs [1, 1, 1] +

[
1√
3
, − 1

2
√
3
, − 1

2
√
3

]
(25)

As the dilatancy coefficient βs is constant, the direction of plastic flow rate D is also constant. In this way,
the current value of plastic strain can be measured by the accumulated value of plastic multiplier such that:

εps = λsD with λs =
∫

dλs (26)

On the other hand, the plastic strain can be decomposed into two parts: the mean part 1
3ε

ps
v δ and the

deviatoric part eps

εps = 1

3
ε
ps
v δ + eps (27)

According to the equivalence between Eqs.(26) and (27), one gets:

ε
ps
v = λs

∂gs
∂σm

= −βsλs, γ ps = λs
∂gs
∂τ

= λs (28)

Thanks to the salient features above, the following procedure is proposed to obtain an analytical solution
for the stress–strain relations:
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(1) Given a plastic equivalent shear strain γ ps, calculate μs by using Eq. (8).
(2) Calculate σ1 with the prescribed confining pressure σ3 and the current value of μs by using Eq. (6)

σ1 =
√
3 + 2μs√
3 − μs

σ3 + 3μsh√
3 − μs

(29)

(3) Determine the strain using the relation

ε = S : (σ − σ3δ) + εps (30)

where S = C
−1 is the elastic compliance tensor of the porous rock.

The strain components are given by:

εs1 = 1

E
σ1 − 2ν

E
σ3 +

(
1√
3

− 1

3
βs

)
γ ps

εs2 = εs3 = 1 − ν

E
σ3 − ν

E
σ1 −

(
1

2
√
3

+ 1

3
βs

)
γ ps

(31)

It is noted that the above analytical solution is derived under the assumption of for rate independent. In this
circumstance, there is no discrepancy between the analytical and numerical solution for the stress state under
shear surface.

3.2 Non-associated flow rule and plastic volumetric strain

For plastic shearing mechanism, the friction coefficient μs = − (∂ fs/∂σm) / (∂ fs/∂τ) is the local slope of
the yield surface in the stress space. Similarly, the dilatancy coefficient βs = − (∂gs/∂σm) / (∂gs/∂τ) is the
local slope of the plastic potential, and it relates the increment of plastic volumetric strain to the increment of
plastic equivalent shear strain by the relation dεpsv = −βsdγ ps. Here βs is positive, representing dilatancy, as
appropriate for porous rocks under low confining pressures.

According to the analytical solution presented above [Eq. (31)], the total volumetric strain εsv generated by
deviatoric stress can be written in the following form:

εsv = εev + ε
ps
v = (σ1 − σ3)

E
(1 − 2ν) − βsγ

ps (32)

The dilatancy coefficient βs has a significant influence on volumetric compressibility to dilatancy transition
(volumetric C/D transition). More precisely, the dilatancy phenomenon is enhanced when the value of βs
increases, as shown in Fig. 1.

Following [4], the dilatancy coefficient βc for plastic pore collapse mechanism can be derived from the
dεpcv /dεpc1 values evaluated from laboratory data, such that:

βc = − dεpcv
dγ pc = −√

3
dεpcv /dεpc1(

3 − dεpcv /dεpc1
) (33)

with

dεpcv /dεpc1 = 3

1 + √
3 (s′)2 [τ/ (σm − σ0)]

(34)

Two important consequences can be noted fromEqs.(33) and (34). First, it implies that the volume contracts
(βc < 0) for mean stress greater than σ0. Second, under purely hydrostatic loading (τ = 0), the ratio of
increment of plastic volumetric strain to plastic increment of axial strain is dεpcv = 3dεpc1 , which of course
applies if the behavior is isotropic.

To test the non-associated condition on plastic volumetric strain, we first carry out a sensitivity study of s′
involved in Eq. (34). The value of s′ varies from 0.70 to 1.70. In Fig. 2, one can see that it mainly influences
the evolution rate of plastic deformation. Generally, the plastic volumetric strain will increase as the value of
s′ decreases.
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Fig. 1 Influence of dilatancy coefficient βs on volumetric C/D transition under a uniaxial compression test

Fig. 2 Sensitivity analysis of the dilatancy parameter s′ (P∗ represents the critical stress state for hydrostatic experiment)

3.3 Failure mode transition along cap surface

When the stress state is on the cap surface, the failure mode will evolve from shear band to compaction band
as the constitutive parameters μc (μc = − ∂ fc/∂σm

∂ fc/∂τ
= −σm−σ0

τ s2
) and βc decrease with increasing mean stress.

Bifurcation analyses [32,58–60] specify the critical conditions for the incipiency of strain localization, thus
providing a theoretical framework for understanding how this transition in failuremode arises from constitutive
behavior.

For stress state with σm > σ0, plastic response is characterized by compactant hardening. By using Eq. (15)
and taking the derivative of Eq. (14), we can obtain the plastic compaction response caused by hydrostatic
loading

dεpcv = dσm
k1

(35)
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where k1 = sac0
(
n + bεpcv

) (
ε
pc
v

)n−1
exp

(
bεpcv

)
is the plastic bulk hardening modulus.

For non-hydrostatic loading, the plastic volumetric strain response is determined by applying Eqs.(15) and
(35) to the derivative of Eq. (14), resulting in

dεpcv = dσm
k2

∣∣
∣∣
τ=const

with k2 = 1

sc

[
(σm − σ0) + τ

|μc|
]
k1 (36)

Equation (36) shows that as the mean stress increases, the plastic volumetric strain response increases from
the cap peak k2 → ∞ to k2 = k1 at the hydrostatic response. Obviously, by applying k1 = 0 in Eq. (36),
we can get the critical value of k2 = 0, and consequently, the slope of the hydrostatic stress versus plastic
volumetric strain curve is flat. In this case, a transition in failure mode is predicted to occur if the trade-off
between the dilatancy and frictional parameters is such that

μc + βc < −√
3 (37)

It should be noted that shear bands are predicted to develop not only for the shear surface, but also for part
of the cap surface.

For a conventional triaxial compression test, increase in the axial stress with fixed confining pressure causes
τ to σm increase in the ratio

√
3. Therefore, the confining pressure that corresponds to the initial cap peak

(σ0, c0) is given by:

PBDT = P∗ − sc0 − c0√
3

(38)

The condition [Eq. (37)] defines the minimum value of confining pressure for which compaction bands are
the only mode of localized deformation that is predicted:

PCB = P∗ − sc0

⎡

⎣1 − 1 − (
1/χ2 + 1

)
/
(
3s2

)

√
1 + (

1/χ2 + 1
)2

/
(
3s2

)

⎤

⎦ (39)

where χ = s′/s is equal to one if normality is satisfied.
The loading paths for conventional triaxial compression under the two critical confining pressures PBDT

and PCB are shown as dashed lines in Fig. 3. At confining pressures lower than PBDT , the porous rock will fail
by shear band accompanied by strain softening, with dilatancy that initiating in the pre-peak stage. At confining
pressures greater than PCB , the porous rock will fail by compaction band with monotonic strain hardening.
In the transitional regime with PBDT � P � PCB , the porous rock first experiences strain hardening, the
yield cap maintains an elliptical shape and progressively shifts to higher σm values with the accumulation of
plastic volumetric strain; after undergoing certain amount of strain hardening, the maximum shear surface is
intersected by the deviatoric loading path, the porous rock then switches from shear-enhanced compaction to
dilatancy; after attaining a peak stress, the porous rock encounters strain softening and ultimately fails by shear
band [4].

Figure4 shows the influence of non-normality χ on the critical confining pressure PCB . One can see that
non-normality χ has a significant influence on the critical confining pressure PCB . Small change in χ can
cause large change in PCB . For example, an increase in χ of 0.4 could lead to an increase in PCB of as much as
24 MPa. Therefore, in order to achieve a more accurate prediction of the inception of compaction localization,
the non-normality condition is needed.

4 Model validation

In this section, the performance of the proposed model is validated against laboratory tests obtained on two
typical porous rocks, namely, Adamswiller sandstone (porosity 22.6%) and Bentheim sandstone (porosity
22.8%).
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Fig. 3 Schematic diagram illustrating the brittle–ductile transition and strain localization in the (σm, τ ) stress space (I - Shear
band with pre-peak dilatancy and post-peak softening; II - Shear band with pre-peak hardening and post-peak dilatancy; III -
Compaction band with monotonic strain hardening)

Fig. 4 Influence of non-normality χ on critical confining pressure PCB

4.1 Identification of model parameters

The proposed elastoplastic constitutive model contains 15 parameters: two elastic parameters for the intact
rock, six parameters for the plastic shearing mechanism, and seven parameters for the plastic pore collapse
mechanism. A minimum of four tests are needed to determine all the parameters. At least two low confining
pressure triaxial compression tests are needed to locate the shear surface and to define the shear evolution. A
hydrostatic compression test is needed to locate the initial elliptical cap surface and to define the cap evolution,
and one additional high confining pressure triaxial compression test is needed to define the elliptical shape of
the cap surface.
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4.1.1 Elastic parameters

The elastic behavior of the rock is characterized by Young’s modulus E and Poisson’s ratio ν. The two elastic
parameters (E and ν) can be directly obtained from the initial linear part of stress–strain curves in uniaxial or
triaxial compression tests.

4.1.2 Parameters of plastic shearing mechanism

• The plot in the (σm, τ ) plane of the initial yield stresses and of the peak stresses provides two straight
lines with respective slopes of μ0 and μ f . The hydrostatic tensile strength h is given by the intersection
of these two straight lines with the mean stress axis.

• For a conventional triaxial compression test, the value of plastic equivalent shear strain at the peak stress
γ
ps
f can be calculated as:

γ
ps
f = 2√

3

∣∣∣
∣
(
εs1 − εs3

)
f − (σ1 − σ3) f

E
(1 − ν)

∣∣∣
∣ (40)

where (σ1 − σ3) f is the peak stress and
(
εs1 − εs3

)
f is the strain difference between axial and lateral

directions, corresponding to the peak stress.
• The plot in the (σm, τ ) plane of the residual stresses provides a straight line with a slope of μr ; following
Eq. (40), the value of plastic equivalent shear strain γ

ps
r at the residual stress is calculated; substituting γ

ps
r

into Eq. (8), the parameter N can be determined.

The two parameters N and γ
ps
f play a role of controlling the evolution rate of strain hardening and softening.

Therefore, a sensitivity study of N and γ
ps
f is here performed under a uniaxial compression test, as shown in

Fig. 5.
In Fig. 5a, one can see that the parameter N has a significant influence on the post-peak stress–strain curve.

More precisely, the residual stress increases with the decrease in N , the post-peak behavior can be gradually
transformed from brittle failure to ductile failure. The influences of γ

ps
f on macroscopic stress–strain curves

are shown in Fig. 5b. One can see that the post-peak behavior exhibits a transition from brittle failure to ductile
failure with the increase in γ

ps
f . However, unlike the parameter N , the axial strain at the peak stress increases

with increasing γ
ps
f , implying that the pre-peak hardening effect increases with the gradual increase in γ

ps
f . It

is worth noting that both the two parameters N and γ
ps
f have no effect on the peak stress, they mainly influence

the shape of macroscopic stress–strain curve.

• The dilatancy coefficientβs can be determined from the transition pointwhere the volumetric strain switches
from compressibility to dilatancy.
It is easily to identify the deviatoric stress and volumetric strain (corresponding to themaximum volumetric
strain εsv,max) at the volumetric C/D transition point. The combination of Eqs.(40) and (32) allows the
determination of the dilatancy coefficient βs.

4.1.3 Parameters of plastic pore collapse mechanism

• Themaximum shear surface and initial cap surface intersect at the cap peak (σ0, c0). Therefore, aminimum
of two tests are needed to determine the aspect ratio s, say s can be fitted from a hydrostatic compression
test with one high confining pressure triaxial compression test by drawing the initial yield stresses, as
shown in Fig. 6.

• The plastic pore collapse pressure P∗ (P∗ = σ0 + sc0) can be directly evaluated from the hydrostatic
compression test, its value corresponds to the mean stress after which inelastic compaction occurs during
this test.

• The parameters a, b and n related to the plastic hardening can be identified from a hydrostatic compression
test. Specifically, according to Eqs. (14) and (15), under purely hydrostatic compression (τ = 0), one gets:

σm = σ0 + sc0
[
1 + a

(
ε
pc
v

)n
exp

(
bεpcv

)]
(41)

Then, a, b, and n can be obtained by drawing total volumetric strain versus mean stress with Eq. (41), as
illustrated in Fig. 7.
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Fig. 5 Sensitivity analyses of the parameters N and γ
ps
f under a uniaxial compression test

Fig. 6 Illustration of determination method of aspect ratio s from the initial cap surface

• The parameter s′ involved in the plastic potential can be identified by plotting the plastic volumetric strain
increment at a given stress state during a high confining pressure triaxial compression test.

4.2 Computational aspects

The numerical computation by using the proposed elastoplastic model is based on the classic step by step
iterative method, which is composed of elastic prediction and plastic correction. Once the elastic prediction is
computed, one can determine the active plastic regime. The general algorithm flowchart for the i-th loading
step can be summarized as follows:

(1) At the end of (i − 1) th step, the following quantities are known: σ (i−1), ε(i−1), εe(i−1), εps(i−1), εpc(i−1),
γ ps(i−1), εpc(i−1)

v .
(2) Given an increment of total strain dε(i) and then ε(i) = ε(i−1) + dε(i).
(3) Set j = 1 and start the iteration loop, let εp(i,0) = εp(i−1), γ ps(i,0) = γ ps(i−1), εpc(i,0)v = ε

pc(i−1)
v .
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Fig. 7 Illustration of determination method of parameters a, b and n from a hydrostatic compression test (data extracted from
[61])

(4) Trial elastic prediction: σ (i, j) = C : (
ε(i) − εp(i, j)

)
, γ ps(i, j) = γ ps(i, j−1), εpc(i, j)v = ε

pc(i, j−1)
v .

(5) Checking two plastic yield criteria: f j
s

(
σ (i, j), γ ps(i, j)

)
and f j

c

(
σ (i, j), ε

pc(i, j)
v

)
.

• If f j
s < 0 and f j

c < 0, go to step (6);
• If f j

s > 0 and f j
c < 0:

– Computation of plastic multiplier dλs using Eq. (13), increment of plastic strain dεps(i, j) from Eq. (11);
– Updating of current value of plastic strain εps(i, j) = εps(i, j−1) + dεps(i, j), shear hardening variable

γ ps(i, j) = γ ps(i, j−1) + dγ ps(i, j) and stress σ (i, j);
– Updating f j

s , check the convergence condition: f j
s > e (with e being the maximum tolerance), then

j = j + 1; else, exit from the iterative loop and go to (6).
• If f j

c > 0 and f j
s < 0:

– Computation of plastic multiplier dλc using Eq. (19), increment of plastic strain dεpc(i, j) from Eq. (17);
– Updating of current value of plastic strain εpc(i, j) = εpc(i, j−1) + dεpc(i, j), pore collapse hardening
variable ε

pc(i, j)
v = ε

pc(i, j−1)
v + dεpc(i, j)v , and stress σ (i, j);

– Updating f j
c , check the convergence condition: f j

c > e (with e being the maximum tolerance), then
j = j + 1; else, exit from the iterative loop and go to (6).

• If f j
s > 0 and f j

c > 0:
– Computation of two plastic multipliers dλs, dλc using Eqs.(22) and (23), increments of plastic strains
dεps(i, j), dεpc(i, j), respectively, for two plastic mechanisms;

– Updating of current values of plastic strains εps(i, j), εpc(i, j) and plastic hardening variables γ ps(i, j),
ε
pc(i, j)
v , and stress σ (i, j);

– Updating f j
s and f j

c , check the convergence condition: min
{
f j
c , f j

s

}
> e (with e being the maximum

tolerance), then j = j + 1; else, exit from the iterative loop and go to (6).

(6) Calculate the updated values of quantities: σ (i), ε(i), εps(i), εpc(i), γ ps(i), εpc(i)v .

4.3 Numerical simulations

The experimental data of Adamswiller sandstone and Bentheim sandstone used here are extracted from [4]
and [6], respectively. By following the parameter determination procedure presented in Sect. 4.1, the values
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Table 1 Parameter values for Adamswiller sandstone and Bentheim sandstone

Parameters Adamswiller Bentheim

Elasticity Young’s modulus E , (MPa) 10000 20000
Poisson’s ratio ν 0.20 0.20

Plastic shearing mechanism Initial friction coefficient μ0 0.20 0.22
Maximum friction coefficient μ f 0.42 0.48
Hydrostatic tensile strength h, (MPa) 70.0 92.0
Plastic hardening/softening parameter N 1.40 1.30
Plastic equivalent shear strain at peak stress γ

ps
f , (%) 0.45 0.55

Dilatancy coefficient βs 0.30 0.30
Plastic pore collapse mechanism Initial plastic yield stress σ0, (MPa) 100.0 220.0

Initial plastic yield stress c0, (MPa) 72.0 145.0
Plastic yield function parameter s 1.54 1.52
Plastic hardening parameter a 2.50 3.50
Plastic hardening parameter b 25.0 15.0
Plastic hardening parameter n 0.85 1.02
Plastic potential function parameter s′ 1.30 1.25

0 100 200 300 400 500
0

70

140

210

280

350

Fig. 8 Comparisons between the two-surface model and experimental data on the peak strength (τ f ) and initial yield stress (C∗)
in conventional triaxial compression

of model’s parameters for Adamswiller sandstone and Bentheim sandstone are determined and presented in
Table 1.

Figure8 shows that the two-surfacemodel can correctly describe themechanical behaviors of the twoporous
rocks for the whole range of confining pressures. More precisely, for the tests with low confining pressures, the
approximate linearity of the peak strength is correctly described; for the tests with high confining pressures,
the elliptical character of the initial yield stress is also correctly described.

The simulations of two hydrostatic compression tests, respectively, performed on Adamswiller sandstone
and Bentheim sandstone are shown in Figs. 9 and 10. One can see that the plastic pore collapse and the plastic
hardening process are well described by the model.

In Figs. 11 and 12, the deviatoric stress-volumetric strain curves of Adamswiller sandstone and Bentheim
sandstone in conventional triaxial compression tests with low and high confining pressures are shown. One can
see a good agreement between model’s predictions and experimental data. The basic features of mechanical
behaviors of the twoporous rocks are reproduced, including inelastic deformation, pressure sensitivity, peak and
yield strength.At lowconfining pressures, a brittle failure occurswith softening and dilatancy.At high confining
pressures, a typical ductile failure occurs with monotonic strain hardening (shear-enhanced compaction). By
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Fig. 9 Simulation of a hydrostatic compression test on Adamswiller sandstone
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Fig. 10 Simulation of a hydrostatic compression test on Bentheim sandstone

comparing the numerical simulations and experimental data, it seems that the proposedmodel is able to describe
the brittle–ductile transition behaviors of porous rocks for the whole range of confining pressures.

Baud et al. (2006) [6] conducted detailed microstructural analysis and macroscopic observations on failed
Bentheim sandstone samples, and observed that the failure mode switched from shear bands to “discrete
compaction bands” at confining pressures between 120 and 350 MPa. According to Eqs. (38) and (39), the
two critical confining pressures PBDT and PCB of the brittle–ductile transition for Bentheim sandstone can
be, respectively, calculated as about 135 and 325 MPa. According to the prediction of localization theory, for
the confining pressures ranging from 135 and 325 MPa, the failure mode should be localized in shear bands
rather than “discrete compaction bands.” The contradiction between theoretical prediction and experimental
observation can be explained as follows. For a conventional triaxial compression test, the ratio of increment
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Fig. 11 Comparisons between numerical simulation results and experimental data on Adamswiller sandstone for conventional
triaxial compression tests under a wide range of confining pressures
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Fig. 12 Comparisons between numerical simulation results and experimental data onBentheim sandstone for conventional triaxial
compression tests under a wide range of confining pressures

of the Mises equivalent stress to increment of the mean stress remains constant, dτ/dσm = √
3 along the

non-hydrostatic stress path. The slope of the failure surface in the (σm, τ ) stress space is μ f = 0.48, which is
clearly lower than

√
3. Therefore, in the transitional regimewith

(
PBDT , PCB

)
, shear localizationmay develop
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while the sample is undergoing inelastic compaction, but this transition from compactancy to dilatancy requires
significantly larger strains and higher stresses.

Unfortunately, no detailed study on the failuremode ofAdamswiller sandstone are available in the literature
[4]. It is then impossible to verify the model’s predictive capability for the two critical confining pressures
PBDT and PCB of the brittle–ductile transition for this rock.

5 Conclusions

In the present study, a two-surface constitutive model based on plasticity theory is proposed for the description
of the brittle–ductile transition behaviors of porous rocks. Twoplastic deformationmechanisms have been taken
into account: plastic shearing for low confining pressures and plastic pore collapse for high confining pressures.
Special functions have been proposed to describe the complexities of mechanical behaviors of porous rocks. In
the case of conventional triaxial compression, an analytical solution of stress–strain relations for shear surface
has been developed. When used in conjunction with bifurcation analysis, the proposed model can provide
predictions of both shear and compaction localization along regions of the cap surface. Numerical simulations
have been compared with experimental data for various loading conditions, including hydrostatic and triaxial
compression tests, on Adamswiller sandstone and Bentheim sandstone. It has been shown that the proposed
model correctly describes the main features of the mechanical behavior and brittle–ductile transition of the two
porous rocks, such as inelastic deformation, peak and yield strength, volumetric compressibility–dilatancy at
low confining pressures and shear-enhanced compaction at high confining pressures.

Laboratory investigations have shown that the macroscopic brittle–ductile transition of porous rocks is
closely related to the microstructure. The operative deformation mechanisms under low and high confining
pressures are, respectively, controlled by microcrack propagation and pore collapse. It is therefore needed in
a future work to develop a micromechanics-based constitutive model to describe the brittle–ductile transition
in porous rocks. And, future work will also investigate the strain localization in porous rocks based on the
micromechanics-based model.
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