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Branislava N. Novaković · Teodor M. Atanacković

Moving point load on a beam with viscoelastic foundation
containing fractional derivatives of complex order

Received: 11 October 2022 / Revised: 21 October 2022 / Accepted: 2 November 2022 / Published online: 6 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract In this paper, the dynamical behavior of the Euler-Bernoulli beam resting on a generalized Kelvin-
Voigt-type viscoelastic foundation, subjected to a moving point load, is analyzed. Generalization is done in
the sense of fractional derivatives of complex-order type. Mixed initial-boundary value problem is formulated,
and the solution is given in the form of Fourier series with respect to space variable, where coefficients satisfy
a certain system of ordinary fractional differential equations of complex fractional order with respect to time
variable. Thermodynamical restrictions on the parameters of the model are also given. It is shown that those
are sufficient for the existence and the uniqueness of the solution. The solution of the problem is expressed
in closed form, by using the inverse Laplace transform method. A numerical example confirming the invoked
theory is presented.

1 Introduction

The dynamic response of an elastic beam of finite length on a viscoelastic foundation subjected to moving
load has begun to draw increasing attention of the researchers in recent years. It has numerous applications
especially in the areas of railway track, bridge and pipeline design, where modelling of viscoelastic foundation
plays a significant role in obtained accuracy of the dynamic response.

One of the pioneering, but very thorough treatments of theWinkler elastic foundationmodel,was introduced
by Hetenyi in [1]. Moving load resting on a beam on a purely, i.e., Winkler elastic foundation was treated
extensively in [2–7], but it suffers from inaccuracy in modelling of response due to the fact that damping,
which is present in all real foundations, has been ignored.

In order to incorporate damping effect and thus model time-dependent behavior more accurately and
features of real foundations, such as creep or stress relaxation, researchers introduced integer-order-based
viscoelastic foundation. In [8–11], authors analyzed dynamical behavior of various models of a beam resting
on a classical viscoelastic foundation subjected to moving load. For example, a semi-analytical solution for a
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uniformly moving mass on a beam resting on a two-parameter viscoelastic foundation with non-homogeneous
initial conditions was given in [8], while the analytical solutions for an Euler-Bernoulli beam on viscoelastic
foundation subjected to moving load are considered in [11]. The stability problem of systems incorporating
multiple moving loads resting on a beam on viscoelastic foundations of various type, including determining
conditions and intervals where vibration of the system becomes unstable, was analyzed in [12–16].

Since fractional operators do not only depend on time alone, but also on the whole previous time interval,
researchers applied fractional derivatives to modelling of viscoelastic properties of materials used in structures
and foundations in order to describe time memory effects in real materials more accurately. It has shown
significant improvement, as it can be seen in [17] and [18]. In [19] various applications of fractional calculus
in mechanics were presented, while in [20] forced vibrations of an axially compressed elastic rod resting
fractionally damped were analyzed. However, application of fractional calculus in moving load problem is, to
the knowledge of the authors, rare. In [21], authors analyzed dynamic behavior of an Euler-Bernoulli beam
resting on the fractionally damped viscoelastic foundation subjected to a moving point load. In [22], dynamic
response of fractionally damped viscoelastic plates subjected to a moving point load has been investigated. In
[23], the dynamic response spectra of fractionally damped viscoelastic beams subjected to concentratedmoving
load have been presented, and the effect of various orders of fractional derivative damping in beams subjected
to concentrated moving loads was demonstrated. Dynamic response of a simply supported viscoelastic beam
of a fractional derivative type to a moving force load has been analyzed in [24]. In [25], nonlinear dynamics of
beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed has been
elaborated.

In [26], the question of determining restrictions for the constitutive equation in the finite elasticity theory
was first raised by C. Truesdell. In [27], by assuming the isothermal conditions in a material undergoing
sinusoidal strain, a simple method for obtaining the thermodynamical restrictions on coefficients of general
linear models of viscoelasticity has been presented by Bagley and Torvik and later determined in many special
cases (see [28–30]). The conclusion was that both loss and storage modula must be positive for all frequencies.
The mathematical analysis connecting approach applied in [27] with the second law of thermodynamics in the
case of constitutive equations with fractional derivatives, has been presented in many papers and books (see
[26,31–34]). Nevertheless, a more general approach that delivers the restrictions on coefficients of constitutive
relation that involves fractional derivatives for the weak form of thermodynamical inequality under isothermal
conditions, given by

D(x) =
∫ T

0
σ(t, x)

∂ε(t, x)

∂t
dt ≥ 0, x ∈ R, T > 0, (1)

is presented in [35]. The term σ(t, x) is the Cauchy stress, while ε(t, x) is strain given by ε = ∂u/∂x , where u
is displacement at an arbitrary point x ∈ R of the rod and time t . We mention that inequality (1) holds for any
cycle of duration T > 0, where cycle denotes ε(0, x) = ε(T, x) and that certain regularity of ε is imposed. We
also note that the strong form of thermodynamical inequality corresponds to (1) (which implies (1)) is given
by σ(t, x) ∂ε(t,x)

∂t ≥ 0, x ∈ R, t ∈ [0, T ], T > 0. The approach presented in [35] is then extended in [36] to the
case of constitutive relations involving distributed order of fractional derivatives, generalized Kelvin-Voight
model involving symmetrized fractional derivatives of complex order, as well as anti-Zener model.

In this paper we analyzed the dynamic behavior of an Euler-Bernoulli finite length beam resting on vis-
coelastic foundation subjected to moving load, where we assume generalized Kelvin-Voight-type foundation,
in a sense that the constitutive relation describing the model contains symmetrized Riemann-Liouville frac-
tional derivatives of complex-order type. Mixed initial value-boundary condition problem is formulated, and
closed form solution is obtained by using method of separation of variables. Namely, it is obtained a form of
Fourier series in respect of space variable, where coefficients satisfy certain ordinary linear fractional differen-
tial equations of complex fractional order, in respect of time variable. The solutions of the mentioned fractional
differential equations are obtained analytically, using the inverse Laplace transform. Moreover we prove that
the thermodynamical restrictions on parameters of generalized Kelvin–Voight-type constitutive relation are
sufficient for the existence and uniqueness of the solution. We present a numerical example that confirms the
applied theory.

The paper is organized as follows: in Sect. 2, the formulation of the problem is given, while in Sect. 3, we
give the solution. Thermodynamical restrictions are derived in Sect. 4, where we also prove the well-posedness
of the solution. Numerical results illustrating the applied theory are given in Sect. 5, and 6 is Conclusion.
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2 Formulation of the problem

Take an elastic simply supported beam of length L positioned on the viscoelastic foundation. The foundation
model is described by combination of generalized Kelvin-Voigt-type model involving symmetrized fractional
derivatives of complex order and spring model in parallel combination. The beam is subjected to moving
concentrated load F0 (see Figure 1) at the constant velocity v0. The beam has constant cross-sectional area; it
is inextensible, uniform homogenous, and isotropic. Equilibrium equations for the beam are [37]:

dH

dS
= 0,

dV

dS
= −qy,

dM

dS
= −V, (2)

where qy denotes distributive force per unit length describing foundation–rod interaction. In the general-
ized Kelvin-Voigt-type model, the relation between qy and vertical displacement y is given by the following
constitutive equation:

qy(x, t) = ky(x, t) + a 0D
α
t y + b

2

(
T̃ iβ

0D
α+iβ
t y + T̃ iβ

0D
α−iβ
t y

)
.

We denote by k the Winkler stiffness coefficient, a and b are viscous damping coefficients. H and V are
components of the contact force (i.e., the resultant force in an arbitrary cross section) along x̄ and ȳ axes,
respectively, M is the bending moment, θ is the angle between the tangent of the column axis and the x̄ axis
of a rectangular Cartesian coordinate system x̄ − B − ȳ, and S is the arc-length of the beam axis measured
from the origin of the coordinate system B. We need the linearized geometrical equations

dx̄

dS
= 1,

d ȳ

dS
= θ, (3)

where we use approximate cos θ ≡ 1, sin θ ≡ θ , for small θ , and the constitutive equation

M = E I
dθ

dS
. (4)

The governing differential equation obtained from (2–4) is given by:

E I
∂4y(x, t)

∂x4
+ m

∂2y(x, t)

∂t2
+ a 0D

α
t y

+b

2

(
T̃ iβ

0D
α+iβ
t y + T̃ iβ

0D
α−iβ
t y

)
+ ky(x, t) = F0δ(x − v0t), t > 0, x ∈ [0, L] (5)

where y is dynamic deflection of the beam at the spatial coordinate x (measured along the length of the
beam) and time t , E I is flexural rigidity, m is beam mass par unit length. Further, δ(·) denotes the Dirac
delta distribution; operator 0D

z
t (·) denotes the Riemann-Liouville fractional derivative of complex order z =

α + iβ ∈ C, given by

0D
z
t y = 1

	(1 − z)

d

dt

∫ t

0

y(τ )

(t − τ)z
dτ, t > 0, (6)

while α ∈ (0, 1), β ∈ R. Constant T̃ which has the physical dimension [s] has its roll in obtaining the
dimensionless form of the equation.

Boundary as well as initial conditions for the beam shown in Fig. 1 are given as

Fig. 1 Simply supported beam resting on the generalized Kelvin-Voigt-type viscoelastic foundation parameterized by α, β
subjected to moving load with constant velocity v0
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y(0, t) = 0, y(L , t) = 0,

∂2y

∂x2
(0, t) = 0,

∂2y

∂x2
(L , t) = 0, t > 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0, x ∈ [0, L] (7)

where in order to simplify we treat the beam without initial imperfections, i.e., with zero initial conditions.
By introducing the following dimensionless quantities:

ȳ = y

L
, x̄ = x

L
, t̄ = t

T
(8)

we set T =
√

mL4

E I , which has been obtained from the normalizing condition mL4

E IT 2 = 1, which we impose. We

also set T̃ = T , so that by using ∂4y
∂x4

= 1
L3

∂4 ȳ
∂ x̄4

, ∂2y
∂t2

= L
T 2

∂2 ȳ
∂ t̄2

as well as 0D
z
t y = LT−z

0 Dz
t̄ ȳ, z ∈ C, we further

obtain the dimensionless quantities

ā = aL4

T αE I
, b̄ = bL4

T αE I
, k̄ = kL4

E I
,

F̄0 = F0L2

E I
, v̄0 = v0

T

L
.

Thus, we obtain the following dimensionless distributional form of the equation:

∂4y(x, t)

∂x4
+ ∂2y(x, t)

∂t2
+ a 0D

α
t y

+b

2
0Dα,β

t y + ky(x, t) = F0δ(x − v0t), t > 0, x ∈ [0, 1], (9)

where 0Dα,β
t y =

(
0D

α+iβ
t y + 0D

α−iβ
t y

)
together with initial and boundary conditions

y(0, t) = 0, y(1, t) = 0,

∂2y

∂x2
(0, t) = 0,

∂2y

∂x2
(1, t) = 0, t > 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0, x ∈ [0, 1] (10)

where for clarity we omit ¯(·) in (9) and (10).

3 Solution of the problem

We denote the space of rapidly decreasing functions with S(R), and its dual, i.e., the space of tempered distri-
butions, with S ′(R). Note that for ϕ ∈ S(R), the Fourier transform is defined as F(ϕ)(ω) = ∫ ∞

−∞ ϕ(t)e−ωt dt ,
ω ∈ R, with F : S(R) → S(R), bijectively. For u ∈ S ′(R), we define 〈F(u), ϕ〉 = 〈u,F(ϕ)〉, where it holds
F : S ′(R) → S ′(R), bijectively. Also note that u ∈ S ′(R) is real valued iff 〈u, ϕ〉 ∈ R, for ϕ ∈ S(R). Also,
u ∈ S ′(R) is even iff ǔ = u and odd iff ǔ = −u, where 〈ǔ, ϕ〉 = 〈u, ϕ̌〉 and ϕ̌(t) = −ϕ(t), t ∈ R, which we
then write u(−ω) = u(ω) and u(−ω) = −u(ω), respectively.

Note, that for u ∈ L1(R), with u(t) = 0 for t < 0, as well as |u(t)| ≤ Aeat , a ∈ R, A > 0, the
Laplace transform of u is defined as L(u)(t) = ũ(s) = ∫ ∞

0 u(t)e−st dt , Re s > 0. For u ∈ S ′(R), the Laplace
transform is defined as L(u)(t) = ũ(s) = F (

e−ξ t u(t)
)
, s = ξ + iη, which is holomorphic on C+. Also, for

U (s) holomorphic on C+, there exist unique u ∈ S ′(R), such that U (s) = L(u)(s), Re s > 0. It also holds
u(t) = 1

2π i

∫ σ0+i∞
σ0−i∞ U (s)estds, t > 0, for any fixed σ0 > 0, if it converges, where u is continuous in that

particular t .
We are making further progress toward solving the problem. Let us assume that using the method of

separation of variables the solution of problem (9), (10), due to the boundary condition y(0, t) = 0, can be
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expressed in the following form:

y(x, t) =
∞∑
n=0

Tn(t) sin nπx , t > 0, x ∈ [0, 1], (11)

implying that all other boundary conditions in (10) aremet.By further calculating the required partial derivatives
of the assumed solution (11) and plugging it into (9), we get the following:

∞∑
n=0

(nπ)4Tn(t) sin nπx + &
∞∑
n=0

T̈n(t) sin nπx

+a
∞∑
n=0

0D
α
t Tn(t) sin nπx& + b

2

∞∑
n=0

0Dα,β
t Tn(t) sin nπx

+k
∞∑
n=0

Tn(t) sin nπx = F0δ(x − v0t), t > 0, x ∈ R, (12)

where the equality in (12) holds in the distributional sense. In (12), we assume that the left-hand side is
equal to zero outside [0, 1]. Thus, both left-hand side f and right-hand side g of (12) belong to the space
of distributions with compact support E ′(R) for all fixed t > 0, so that the dual paring 〈·, ϕ〉 is defined for
all continuous ϕ. Also, it then holds that 〈 f, ϕ〉 = ∫ 1

0 f (x)ϕ(x)dx . Now as sin lπx is continuous on R, the
equality 〈 f (x), sin lπx〉 = 〈g(x), sin lπx〉, for l ∈ N0 is equivalent to the following:

(lπ)4Tl(t) + T̈l(t) + a 0D
α
t Tl(t) + b

2
Dα,β
t Tl(t) + kTl(t) = 2F0 sin lπv0t, l ∈ N, (13)

where we use
∫ 1
0 sin nπx sin lπxdx =

{
0, n �= l
1
2 , n = l

, n, l ∈ Z, as well as 〈δ(x − x0), ϕ(x)〉 = ϕ(x0), x0 ∈ R.

Also, from the initial conditions y(x, 0) = 0 and ∂y
∂t (x, 0) = 0,weobtain Tl(0) = 0 and T̈l(0) = 0, respectively,

l ∈ N. Finally, from (13), we get

T̈l(t) + a 0D
α
t Tl(t) + b

2
Dα,β
t Tl(t) + ((lπ)4 + k)Tl(t) = 2F0 sin lπv0t, l ∈ N. (14)

Further, we apply the Laplace transform on (14) and obtain[
s2 + asα + b

2

(
sα+iβ + sα−iβ

)
+ Kl

]
T̃l(s) = 2F0lv0π

s2 + (lv0π)2
, (15)

where Kl = (lπ)4 + k, and thus, for l = 1,

T̃ (s) = 1

s2 + asα + b
2

(
sα+iβ + sα−iβ

) + K

2F0v0π

s2 + (v0π)2
. (16)

By inverting (15) with the inverse Laplace transform and using L−1
[

v0π

s2+(v0π)2

]
= H(t) sin v0π t (H is for

Heaviside function), we formally obtain

T (t) = G(t) ∗t 2F0H(t) sin v0π t, t > 0 (17)

where

G(t) = L−1

[
1

s2 + asα + b
2

(
sα+iβ + sα−iβ

) + K

]
(t), t > 0 (18)

assuming that the inverse exists. Thus, for the first mode of the final solution of the problem, we obtain

y(x, t) = T (t) sin πx, x ∈ [0, 1], t > 0, (19)

with T (t) given by (17) and G(t) given by (18). We have a similar approach for other modes.
In the next Sectionwe show that restrictions on the parameters of themodel, sufficient for thermodynamical

inequality (1) to hold, are also sufficient for the existence of inversion (18) and thus for the existence and the
uniqueness of the solution to (9).
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4 Thermodynamical restrictions and the well-posedness of the solution

In this part, we give the sufficient conditions in the form of restrictions on the parameters of constitutive
equation (2), so that the thermodynamical inequality

∫ T

0
q(x, t)

∂y(x, t)

∂t
dt ≥ 0, x ∈ [0, L] (20)

holds, where we utilize the non-dimensional form of the constitutive equation (2), i.e.,

q(x, t) = qy(x, t) = ky(x, t) + a 0D
α
t y + b

2

(
0D

α+iβ
t y + 0D

α−iβ
t y

)
. (21)

By formally applying the Fourier transform defined by F(u)(ω) = ∫ ∞
−∞ u(t)e−iωt dt (for suitable u) to

(21), we get the following:

q̂(ω) =
[
k + a(iω)α + b

2

(
(iω)α+iβ + (iω)α−iβ

)]
ˆy(ω), (22)

where variable x is omitted for clarity, thus obtaining q(t) = (� ∗t y)(t), with

�(t) = F−1
(
k + a(iω)α + b

2

(
(iω)α+iβ + (iω)α−iβ

))
(t). (23)

Using the theory presented in [35], Proposition 2.4, we identify

E(ω) = E1(ω) + i E2(ω) = k + a(iω)α + b

2

(
(iω)α+iβ + (iω)α−iβ

)
, (24)

and by using the Proposition 2.4, [35], we conclude that the following conditions are sufficient for thermody-
namical inequality (20) to hold:

F1(−ω) = F1(ω), ω ∈ R, (25.1)

F2(−ω) = −F2(ω), ω ∈ R, (25.2)

F1(ω) ≥ 0, ω > 0, (25.3)∫ ∞

0

F1(ω)

(1 + ω2)
m
2
dω < ∞, for some m > 0 (25.4)

where F(ω) = F1(ω) + i F2(ω) = 1
iω E(ω) and thus F1(ω) = E2(ω)

ω
, F2(ω) = − E1(ω)

ω
. Note that F1, F2, and

F are considered to be from S(R) in general.
Next, we prove that � defined by (23) is real-valued and that (25.1), (25.2) and (25.4) are satisfied for

E(ω) given by (24). By direct calculation, from (24) we get

F1(ω) = |ω|α−1
[
a sin α

π

2
+ b

2

(
e−β π

2

(
cosα

π

2
sin(β ln |ω|)

+ sin α
π

2
cos(β ln |ω|)

)
+ eβ π

2

(
− cosα

π

2
sin(β ln |ω|) + sin α

π

2
cos(β ln |ω|)

)]
, (26)

for ω �= 0, as well as

F2(ω) = − sign(ω)
1

|ω|
[
k + a|ω|α cosα

π

2
+ 2b

(
|ω|αe−β π

2

(
cosα

π

2
cos(β ln |ω|) + sin α

π

2
sin(β ln |ω|)

)

+ |ω|αeβ π
2

(
cosα

π

2
cos(β ln |ω|) − sin α

π

2
sin(β ln |ω|)

)]

(27)

for ω �= 0, implying that both (25.1) and (25.2) are satisfied. Also, as it holds |F1(ω)| ∼ |ω|1−α , as ω → 0,
as well as |F1(ω)| ∼ |ω|1−α , as ω → ∞, we have that F1 is polynomially bounded, so that (25.4) is satisfied.
Also, by applying the Proposition 1.1, [35], (25.1) and (25.2) imply that � defined by (23) is real-valued.



Moving point load on a beam with viscoelastic foundation 1217

Further we give sufficient conditions for (25.4) to be satisfied. Then, we check condition (25.3). From (26),
we get

F1(ω) = |ω|α−1
[
a sin α

π

2
+ b

(
−2 sh β

π

2
cosα

π

2
sin x + 2 ch β

π

2
sin α

π

2
cos x

)]
, (28)

for ω �= 0, where we set x = β ln |ω| ∈ R. We denote g(x) = −2 sh β π
2 cosα π

2 sin x +2 ch β π
2 sin α π

2 cos x .
It holds

F1(ω) ≥ |ω|α−1
[
a sin α

π

2
+ bmin

x
g(x)

]
. ω �= 0, (29)

By solving g′(x) = 0, we get tg x∗ = − tgh β π
2 ctgα π

2 , and thus, by using sin x∗ = tg x∗

±
√

1+tg2 x∗ ,

sin x∗ = 1
±
√

1+tg2 x∗ , using sh β π
2 , cosα π

2 , ch β π
2 , sin α π

2 ≥ 0, for α ∈ (0, 1), β > 0 we obtain

g(x∗) = −
√
sh2 β π

2 cos2 α π
2 + ch2 β π

2 sin2 α π
2 , thus getting

F1(ω) ≥ |ω|α−1
[
a − b ch β

π

2

√
1 + ctg2 α

π

2
tgh2 β

π

2

]
(30)

for ω �= 0. Providing the right-hand side of inequality (30) larger or equal to zero so that we ensure satisfaction
of (25.3), we prove the following:

Proposition 1 Let a, b ≥ 0, as well as α ∈ (0, 1), β > 0. Then the following are the sufficient conditions for
inequality (20) to hold:

a − b ch β
π

2

√
1 + ctg2 α

π

2
tgh2 β

π

2
≥ 0. (31)

In the sequel, we find the connection between the constraints ensuring that thermodynamical inequality
(20) is satisfied, and the existence and the uniqueness of the solution to problem (9), (10), i.e., the existence
of inversion (18) in S ′(R). We prove that F(s) = s2 + aSα + b

2

(
sα+iβ + sα−iβ

) + K does not have zeros in
the right half-plane of complex plane, i.e., in C+. We use the argument principle and prove that when s ∈ C

goes along the closed contour L given by (32) below, F(s) does not encircle the origin 0 ∈ C. We define is
closed contour L as following, for some small ε > 0 and big R > 0:

L1 : s = Reiθ , θ ↑
π
2
0 ,

L2 : s = iy, y ↓R
ε ,

L3 : s = εeiθ , θ ↓
π
2
− π

2
,

L4 : s = iy, y ↓−ε
−R,

L5 : s = Reiθ , θ ↑0
− π

2
. (32)

For L1, as F(s) ∼ s2 = R2ei2θ , θ ∈ (
0, π

2

)
, when s → ∞, we have Im F(s) ∼ R2 sin(2θ), θ ∈ (−π

2 , π
2

)
,

so that we have Im F(s) ≥ 0 for s ∈ L1, when R → ∞. For L2, it holds

Im F(s) = Im F(iy) = yα sin α
π

2

[
a − b ch β

π

2

√
1 + ctg2 α

π

2
tgh2 β

π

2

]
, y ∈ (ε, R), (33)

so that (31) implies Im F(s) ≥ 0 for s ∈ L2. For L3, we have F(s) ∼ K > 0, when s → 0, so that
Re F(s) ∼ K > 0, when ε → 0, implying that Re F(s) > 0 on L3, when ε → 0. As it holds F(s̄) = F(s),
we obtain Im F(s) ≤ 0 for s ∈ L4 ∪ L5, when R → ∞. Thus, we obtain that F(s) does not encircle the origin
0 ∈ C, when s ∈ C goes along the closed contour L given by (32), which proves the following:

Proposition 2 Restrictions on coefficients of the constitutive equation (21) given by (31) are sufficient for the
existence of unique inversion (18) belonging to S ′(R).

This proves that restrictions on the coefficients of constitutive equation (21) imply that there exists the
unique solution to problem (9), (10), which belongs to S ′(R), for all x ∈ [0, 1], as well as belonging to
C([0, 1]), for all t > 0.
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5 Numerical results

In this Section we present results of simulations of the dimensionless problem (9), (10), i.e., the wave
propagation in the form of solution (11) for different set of parameters of the constitutive equation. In all
experiments fixed parameters of the dimensionless model are set to the following: v0 = 2.0, F0 = 1,
K = 10000, a = 500. Also, for the calculation of inverse transform (18), as we integrate along the line
γ = {s ∈ C|s = σ0 + i p, p ∈ (−∞,∞)} (see beginning of the Section), we set σ0 = 0.1 and approximate
the integral, by imposing p ∈ [−P, P], where we set P = 100.0. Also, we set N = 20 in (11). In all exper-
iments, we display the time diagram of the solution for fixed x = 0.5 on the dimensionless time in interval
[0, t0], with t0 = 1/v0 = 0.5.

In Fig. 2, for fixed b = 10.0 and β = 1.0, the solution is displayed for different values ofα = 0.99, 0.5, 0.3.
Increased damping of the peak of the solution can be seen with the increase of α. Thermodynamical restrictions
(31) are met in all those cases. In Fig. 3, for fixed b = 10.0 and α = 0.7, the solution is displayed for different
values of β = 0.1, 2.0, 2.8. It can be seen an increased oscillatory behavior of the solution, with the increase
of β. Thermodynamical restrictions (31) are also satisfied in all those cases. Figure 4 shows that with fixed

Fig. 2 Approximation yN (x = 0.5, t) of solution (11) in x = 0.5, for N=20, where we fix v0 = 2.0, F0 = 1, K = 10000, a =
500, b = 10.0, β = 1.0 and vary α = 0.99 (full line), α = 0.5 (’– –’ line) and α = 0.3 (‘–’ line)

Fig. 3 Approximation yN (x = 0.5, t) of solution (11) in x = 0.5, for N=20, where we fix v0 = 2.0, F0 = 1, K = 10000, a =
500, b = 10.0α = 0.7 and vary β = 0.1 (full line), β = 2.0 (’– –’ line) and β = 2.8 (’–’ line)



Moving point load on a beam with viscoelastic foundation 1219

Fig. 4 yN (x = 0.5, t) of solution (11) in x = 0.5, for N=20, where we fix v0 = 2.0, F0 = 1, K = 10, 000, a = 500, b =
10.0, α = 0.7 and vary β = 0.1 (full line), β = 3.5 (‘– –’ line) and β = 4.5 (‘–’ line)

α = 0.7 and b = 10.0, we vary β = 0.1, 3.5, 4.5 in order to analyze satisfaction of the thermodynamical
restrictions (31). Based on sufficient conditions (31) those are satisfied for sure, only for β = 0.1.

6 Conclusions

In this paper we analyzed the dynamics of an Euler-Bernoulli beam on viscoelastic foundation. Assuming that
the beam is loaded by a moving point load, the main novelties of our paper may be stated as:

– We used a novel constitutive equation for the foundation; it is Kelvin-Voigt type of constitutive equation
with derivatives of complex order. We derived restrictions on the parameters of the model that guarantee
that dissipativity relation is satisfied.

– By using the separation of variables method and the Laplace transform procedure, we obtained the solu-
tion of the corresponding equation of motion. We showed that the dissipativity constraints guarantee the
existence and uniqueness of the solution.

– We presented numerical results for several values of parameters and examined the influence of parameters
in the constitutive equation of the foundation.
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