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Abstract In this paper, the propagationof aRayleigh-typewave is explored in a half-space of an incompressible
nematic elastomer with a uniform director aligned orthogonal to the surface. The nematic elastomer is idealized
so as to fit within the framework of linear viscoelasticity theory. The governing equations of nematic elastomers
are subjected to the Tiersten-type impedance boundary conditions. An explicit secular equation of the Rayleigh
wave is obtained which depends upon the non-dimensional anisotropy parameter, impedance parameters,
frequency, rubber relaxation time, director rotation times, and the dynamic soft elasticity of nematic elastomers.
The numerical computations of theRayleighwave speed are restricted for the case of ideal nematic rubbers. The
Rayleigh wave speed is illustrated graphically to observe the effects of non-dimensional anisotropy parameter,
frequency, impedance parameters, rubber relaxation time, and director rotation times.

1 Introduction

Liquid crystalline elastomers have been an object of growing interest in recent years due to their potential
applications in the fields of optics, coatings of materials, artificial muscles, light scattering electro-optical
switches, and display materials [1–4]. Nematic elastomers are unusual materials that simultaneously combine
the elastic properties of rubbers with the anisotropy of liquid crystals. They consist of networks of elastic solid
chains formed by the cross-linking of nematic crystallinemolecules as the elements of their main chains and /or
pendant side groups. Due to this structure, any stress on the polymer network influences the nematic order of the
nematic, and, conversely, any change in the orientational orderwill affect themechanical shape of the elastomer.
This interplay between elastic and orientational changes is responsible for many fascinating properties of such
materials that are different from the classical elastic solids and liquid crystals. The unusual static and dynamical
mechanical properties of liquid crystal elastomers have been discussed by various researchers includingWarner
and Terentjev [5], Kupfer and Finkelmann [6,7], Brand et al. [8], Finkelmann et al. [9], Bladon et al. [10,11],
Martinoty et al. [12], and Anderson et al. [13].

Soft elasticity is a remarkable ability of nematic elastomers to exhibit large deformations under small applied
forces. Golubovic and Lubensky [14] investigated the soft elasticity on phenomenological grounds within
continuum theory. The theory on soft elasticity of nematic elastomers was developed by many researchers;
notably among them are Teixeira and Warner [15], Uchida [16], Carlson et. al. [17], Stenull and Lubensky
[18,19], and Fried and Sellers [20]. Oscillating dynamic-mechanical properties of liquid crystalline elastomers
were studied by Gallani et al. [21]. Terentjev and Warner [22] investigated the basic properties of nematic
rubbers and developed a theory of linear viscoelasticity of nematic elastomers in hydrodynamic (low frequency)
limit.

B. Singh (B)
Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh 160 011, India
E-mail: bsinghgc11@gmail.com

http://orcid.org/0000-0001-8706-6309
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-022-03423-z&domain=pdf


1034 B. Singh

The wave propagation phenomenon in nematic elastomers has potential applications in the fields of acous-
tics. It is also used in frequency-dependent anddirection-dependent smartmaterials.Basedon linear viscoelastic
theory of nematic elastomers in the low-frequency limit, Terentjev et al. [23] showed an unusual dispersion
and anomalous anisotropy of shear acoustic waves due to soft elasticity combined with the Leslie–Ericksen
version of dissipation function. Fradkin et al. [24] studied the spectral and polarization properties of acoustic
waves propagating in nematic liquid-crystalline rubber materials. Thereafter, the linear viscoelastic theory of
nematic elastomers was applied in various other studies. For example, Singh [25] illustrated the dependence
of reflection coefficients on incident angle, frequency, elastic constants, relaxation times, and director angle.
Zakharov and Kaptsov [26,27] and Zakharov [28,29] studied the wave propagation in elastic bodies with
nematic coatings. Yang et al. [30] obtained characteristic equations for Rayleigh waves in nematic elastomers
and numerically analyzed the dispersion and attenuation properties of the Rayleigh waves. Yang et al. [31]
explored the potential application of nematic elastomers in the band tuning and investigated the band struc-
tures in two kinds of nematic elastomer phononic crystals. Recently, Zhao et al. [32] and Zhao and Liu [33,34]
applied the linear viscoelastic theory of nematic elastomers for beams and plates.

In the context of Rayleigh waves, it is assumed that the traction vanishes on the surface. A traction-
free surface is described by Neumann boundary conditions. Impedance boundary conditions mean a linear
combination of the unknown function, and their derivatives are prescribed on the boundary. These types
of boundary conditions are used in the fields of acoustics and electromagnetism and are not common in
seismology or geophysics. In the context of the theory of elasticity, Tiersten [35] derived impedance-like
boundary conditions to simulate the effect of a thin layer of a different material over an elastic half-space. These
boundary conditions specify tractions in terms of displacement and its derivatives. Malischewsky [36] applied
Tiersten’s boundary conditions and obtained a secular equation for Rayleighwaves. Thereafter, Rayleighwaves
with impedance boundary conditions have been investigated in different materials by Godoy et al. [37], Vinh
and Hue [38,39], Singh [40], and Vinh and Xuan [41].

Being a type of generic surface wave, the Rayleigh waves are extensively used for estimation of material
properties. Yang et al. [30] have studied the propagation characteristics of Rayleigh waves in a compressible
half-space of nematic elastomers in the context of viscoelastic theory in low frequency limit. The propagation
of the Rayleigh wave in nematic elastomers may find many applications in various fields including acoustics,
mechanical damping, and materials science. The main objective of this paper is to study the propagation of
Rayleigh-type wave in a half-space of nematic elastomer which is assumed as incompressible. The assumption
of incompressibility in the present problem seems realistic as most rubbers and liquid crystal elastomers
are found nearly volume conserving (for example, Saccomandi and Ogden [42]). In Sect. 2, the governing
equations of linear viscoelasticity of nematic elastomers are expressed in terms of a scalar potential function
for an incompressible case, where the effects of Frank elasticity on the director gradient are not considered. In
Sect. 3, the specialized governing equation is solved by a traditional approach as given in Ogden and Vinh [43].
With the use of relevant impedance boundary conditions at the surface of nematic elastomer half-space, an
irrational secular equation for Rayleigh wave is obtained. The secular equation is also reduced for the isotropic
limit in Sect. 4. In Sect. 5, the effects of impedance parameters, frequency, chain anisotropy parameter, non-
dimensional anisotropy parameter, rubber relaxation time, and director rotation times on wave speed are
illustrated graphically for the specific forms of elastic moduli and coupling constants in the theory of ideal
nematic rubbers. A conclusion of the results is given in Sect. 6.

2 Governing field equations

Following de Gennes [1], Warner and Terentjev [44] and neglecting the effects of Frank elasticity on the
director gradient, the equations of motion for a viscous nematic solid are obtained as

∇ . σ = ρ∂t tu, (1)

n × [(d1 + γ1∂t )n × � + (d2 + γ2∂t )n.ε] = 0, (2)

where σ is the symmetric part of the stress tensor, ε is the symmetric part of the strain tensor, ∂t and ∂t t denote
partial time derivatives, ρ is the mass density, u is the displacement vector, � = � − [n × δn] is relative
rotation vector, n is an undistorted nematic director, � = 1

2curl u is the antisymmetric part of strain, and
γ j = d jτ j , (j = 1, 2) and d1, d2 are coupling constants.

For a given coordinate system Ox1x2x3, the half-space (x3 ≥ 0) is assumed to be occupied by an incom-
pressible viscous nematic solid. The coordinate axis x3 is chosen along undistorted director n. Then, the
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components of the viscoelastic symmetric stress tensor are

σ11 + p = (1 + τR∂t )(c11ε11 + c12ε22 + c13ε33), (3)

σ22 + p = (1 + τR∂t )(c12ε11 + c11ε22 + c13ε33), (4)

σ33 + p = (1 + τR∂t )(c13ε11 + c13ε22 + c33ε33), (5)

σ12 = σ21 = 2(1 + τR∂t )c66ε12, (6)

σ13 = 2(1 + τR∂t )c44ε13 − (1/2)d2(1 + τ2∂t )�2, (7)

σ23 = 2(1 + τR∂t )c44ε23 + (1/2)d2(1 + τ2∂t )�1, (8)

where p = p(x1, x2, x3, t) is the hydrostatic pressure associated with the incompressibility constraints,
eik = (1/2)[ui,k + uk,i ] is linear symmetric strain, εik = eik − (1/3)tr [e]δik is the traceless part of linear
symmetric strain, ci j , (i, j = 1, 2, 3) are elastic constants , τR is characteristic time of rubber relaxation, and
τ1, τ2 are director rotation times. Following Fradkin et al. [24], the entropy production density function will
remain positive if

τ2
2 ≤ 8C5d1

d22
τRτ1, (9)

where C5 is the shear modulus.
Now, we specialize the governing equations in x1 − x3 plane for an incompressible nematic elastomer

half-space occupying the region x3 ≥ 0. We assume a two-dimensional motion in the (x1, x3) plane such that
the displacement components are taken as

ui = ui (x1, x3, t), (i = 1, 3), u2 = 0, (10)

where t is time. For an incompressible material, we have

u1,1 + u3,3 = 0, (11)

where the commas in subscript indicate the differentiation with respect to spatial variables xk .
Following Ogden and Vinh [43], a scalar function ψ(x1, x3, t) exists such that

u1 = ψ,3, u3 = −ψ,1. (12)

Making use of Eqs. (3), (5), (7), and (12) in Eqs. (1) and (2) and eliminating p, the following equation in
ψ is obtained:

γψ,1111 + 2βψ,1133 + γψ,3333 = ρ(∂t tψ,11 + ∂t tψ,33), (13)

where the differential operators γ and β are given by

γ = (1 + τR∂t )c44 − (1/4)d1d2(1 + τ1∂t )(1 + τ2∂t ), (14)

β = (1/2)(1 + τR∂t )(c11 + c33 − 2c13 − 2c44)

+(1/4)d1d2(1 + τ1∂t )(1 + τ2∂t ). (15)

For the strain energy of the material to be positive semi-definite, all elastic constants are positive, and

c11 + c33 − 2c13 > 0. (16)
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3 Rayleigh waves

We consider the propagation of a Rayleigh wave along x1-axis and decaying in the x3-direction as follows:

ui → 0 (i = 1, 3) as x3 → +∞. (17)

From Eqs. (12) and (17), the decay condition becomes

ψ(x1, x3, t) → 0 as x3 → +∞. (18)

According toOgden andVinh [42], the scalar functionψ(x1, x3, t) representing theRayleighwave propagation
is assumed as

ψ(x1, x3, t) = φ(z)eik(x1−vt) (19)

where z = kx3, and k is the complex wavenumber such that Re(k) ≥ 0 to ensure the propagation of the wave
in positive x1 direction. v is a complex parameter such that Re(v) = ω/Re(k) where ω is circular frequency.
The value of Im(k) will determine the attenuation of the Rayleigh wave.

Using Eq. (19), Eq. (13) becomes

γ ∗φ ′′′′
(z) − (2β∗ − ρv2)φ

′′
(z) + (γ ∗ − ρv2)φ(z) = 0, (20)

where a prime indicates differentiation with respect to z, and

γ ∗ = (1 − ιωτR)c44 − (1/4)d1d2(1 − ιωτ1)(1 − ιωτ2), (21)

β∗ = (1/2)(1 − ιωτR)(c11 + c33 − 2c13 − 2c44)

+(1/4)d1d2(1 − ιωτ1)(1 − ιωτ2). (22)

From Eqs. (18) and (19), it follows that

φ(z) → 0 as z → +∞. (23)

Then, the general solution φ(z) of Eq. (20) satisfying the radiation condition (23) is obtained as

φ(z) = Ae−m1z + Be−m2z (24)

where the constants A and B are to be determined. Here, m1 and m2 are the roots of the following equation:

m4 − (η2 + ξ − 1)m2 + η2 = 0, (25)

such that Re(m1) > 0, Re(m2) > 0, and where

η2 = 1 − (ρv2/γ ∗), ξ = 2β∗/γ ∗. (26)

It follows from Eq. (25) that

m2
1 + m2

2 = η2 + ξ − 1, m2
1m

2
2 = η2. (27)

For the existence of Rayleigh wave, the real parts of the complex roots m1 and m2 of Eq. (25) used in solution
(24) must be positive. Then, the expressions for m1 + m2 and m1m2 are obtained from Eq. (27) as

m1 + m2 =
√

η2 + 2η + ξ − 1, m1m2 = η. (28)

Tiersten [35] introduced special boundary conditions on the surface in order to simulate the elastic behavior
of a thin layer over a half-space. Malischewsky [36] expressed these conditions in terms of stresses and
displacements. In the two-dimensional case, these types of boundary conditions on surface x3 = 0 of nematic
elastomer half-space may be written in the following form:

σ13 + ωU (1 + τR∂t )u1 = 0, σ33 + ωW (1 + τR∂t )u3 = 0, (29)

where U and W are shear and normal impedance parameters. The impedance parameters U and W are of
dimensions of stress/velocity. In the context of Tiersten’s theory, these parameters have specific values as
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functions of the thickness of the thin layer, the elastic parameters, and the frequency. For U = 0 and W = 0,
the boundary conditions (29) reduce to the well-known traction-free boundary conditions. IfU and W tend to
infinity, then fixed faced boundary is obtained.

Using Eqs. (5), (7), (12) and eliminating p, the boundary conditions (29) at x3 = 0 are expressed in terms
of ψ as

[
(1 + τR∂t )(1 + τ1∂t )c44

− 1

4

d22

d1
(1 + τ2∂t )

2](ψ,33 − ψ,11) + (1 + τR∂t )(1 + τ1∂t )ωUψ,3

]
= 0, (30)

γψ,333 + (2β + γ )ψ,113 + ωW (1 + τR∂t )ψ,11 − ρ∂t tψ,3 = 0. (31)

With the help of Eq. (19), the boundary conditions (30) and (31) are written in terms of φ as

(1 − ιωτR){cR44(ω)[φ ′′
(0) + φ(0)] + vUφ

′
(0)} = 0, (32)

γφ
′′′
(0) − (2β∗ + γ ∗ − ρv2)φ

′
(0) − vW (1 − ιωτR)φ(0) = 0, (33)

where

cR44(ω) = c44 − 1

4

d22

d1

(1 − ιωτ2)
2

(1 − ιωτ1)(1 − ιωτR)
. (34)

The solution (24) satisfies the boundary conditions (32) and (33) to obtain the following homogeneous system
of equations:

(1 − ιωτR)[cR44(ω)(1 + m2
1) + vUm1]A

+(1 − ιωτR)[cR44(ω)(1 + m2
2) + vUm2]B = 0, (35)

[γm3
1 − (2β∗ + γ ∗ − ρv2)m1 − vW (1 − ιωτR)]A

+[γm3
2 − (2β∗ + γ ∗ − ρv2)m2 − vW (1 − ιωτR)]B = 0. (36)

For a non-trivial solution of the homogeneous system of Eqs. (35) and (36), the determinant of the coefficients
of A and B vanishes. After removing the factor (m2 − m1) and using Eqs. (27) and (28), we obtain

η3 + η2 + (ξ + 1)η − 1 +
√

η2 + 2η + ξ − 1(a∗e∗η + b∗d∗) + a∗b∗d∗e∗ = 0, (37)

where

a∗ =
√

ρv2

cR44(ω)
, b∗ =

√
ρv2

γ ∗ , d∗ = W (1 − ιωτR)√
ργ ∗ , e∗ = U√

ργ ∗ . (38)

Equation (37) gives a dimensionless secular equation of Rayleigh waves along the surface of an incompressible
viscous nematic elastomer half-space with impedance boundary conditions.

For d∗ = 0, e∗ = 0, Eq. (37) reduces to

η3 + η2 + (ξ + 1)η − 1 = 0, (39)

which is a dimensionless secular equation of Rayleigh wave along the surface of an incompressible nematic
elastomer half-space whose surface is subjected to traction-free boundary conditions. Equation (39) is in
agreement with the secular equation as obtained by Ogden and Vinh [43].
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4 Isotropic viscoelastic limit

In the isotropic viscoelastic limit, d1 → 0, d2 → 0, c11 = c33 → λ + 2μ, c13 → λ, c44 → μ, (λ and μ

are Lamé’s coefficients), and hence β∗ = γ ∗ = cR44 → μ(1− ιωτR), η →
√
1 − ρv2

μ(1−ιωτR)
and ξ → 2, and

then, the frequency equation (37) reduces to

η3 + η2 + 3η − 1 +
√

η2 + 2η + 1(a∗e∗η + b∗d∗) + a∗b∗d∗e∗ = 0, (40)

where

a∗ =
√

ρv2

μ∗ , b∗ =
√

ρv2

μ∗ , d∗ = W (1 − ιωτR)√
ρμ∗ , e∗ = U√

ρμ∗ , μ∗ = μ(1 − ιωτR). (41)

Equation (40) is a dimensionless secular equation of Rayleighwaves in an incompressible isotropic viscoelastic
half-space with impedance boundary conditions.

5 Numerical results and discussion

For the purpose of numerical computations, the following specific forms of elastic moduli and coupling
constants are taken in the theory of ideal nematic rubbers as [24]

c44 = 2C5, c11 = B + (4/3)μ − (4/3)C2, (42)

c13 = B − (2/3)μ + (2/3)C2, c33 = B + (4/3)μ + (8/3)C2. (43)

C5 = 1

8
μ

(r + 1)2

r
, d1 = μ

(r − 1)2

r
, d2 = (1 − r2)

r
, c44

R(0) = 0. (44)

where B is bulk modulus, C2 is an elastic constant, and r is the chain anisotropy parameter. The principal
constants ρ = 1000 kgm−3, B = 1010 Pa, μ = 105 Pa, and C2 = μ/2 given by Fradkin et al. [24]
are considered for numerical computations of the Rayleigh wave speed. Nematic elastomers are reduced to
isotropic viscoelastic materials for anisotropy chain parameter r = 1. Terentjev and Warner [23] investigated
the director rotation time, τ1, and it was experimentally measured by Schonstein et al. [45] and Schmidtke et
al. [46] as τ1 ∼ 10−1 − 10−2s. The characteristic time of rubber relaxation τR is of the order of Rouse time
of the corresponding polymer chains, which is taken as τR ∼ 10−5 − 10−6s.

The secular Eq. (37) of Rayleigh wave is a relationship between the complex wave speed v, circular
frequency ω, non-dimensional anisotropy parameter ξ , impedance parameters U and W , rubber relaxation
time τR , and director rotation times τ1 and τ2. Equation (37) in revised version is an irrational equation due to
the presence of the radical in it. It is not easy to solve this equation algebraically. Therefore, the equation is
rationalized into an implicit equation. The six complex roots of the implicit equation contain few extraneous
roots due to rationalization. These roots are resolved to satisfy the decay condition for Rayleigh surface waves.
Four extraneous roots are identified which do not satisfy Eq. (37) and are filtered out. Two roots with positive
real parts are identified which satisfy Eq. (37) and which define the existence and propagation of Rayleigh
waves. One of the roots with positive real part satisfying the secular Eq. (37) is considered for numerical
simulations.

If we write v−1 = c−1 + iωQ such that k = P + i Q, then c = ω/P is the speed of propagation, and Q is
the attenuation coefficient. The speed of propagation c = Re(v) of the Rayleigh wave is illustrated graphically
against the non-dimensional anisotropy parameter ξ , impedance parameter U , chain anisotropy parameter r ,
rubber relaxation time τR , and director rotation time τ1 in Figs. 1, 2, 3, 4, and 5.

The wave speed c against the non-dimensional anisotropy parameter ξ is illustrated graphically in Fig. 1a
for three different values of shear impedance parameter U . In the absence of impedance parameters (i.e., for
traction-free boundary case), the speed is 2.6361×103 m.s−1 at ξ = 0, and it increases very sharply to a value
3.209 × 103 m.s−1 at ξ = 2 (isotropic limit) and then increases slowly to 3.2688 × 103 m.s−1 at ξ = 10.
These values of speeds at each ξ decrease on increasing the shear impedance parameterU . The effect of shear
impedance parameter U is found significant in the range 0 ≤ ξ ≤ 2, and it becomes relatively low beyond
ξ = 2. Again, the variations in Fig. 1b show that the wave speed decreases with the increase in the value of
shear impedance parameter U , and the rate of decrease becomes relatively low as we increase the value of
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Fig. 1 a The variation of Rayleigh wave speed with respect to the non-dimensional anisotropy parameter ξ for different values
of shear impedance parameter U when W = 0, ω = 100 s−1, r = 3, τ1 = 10−2s, and τR = 10−6s. b The variation of Rayleigh
wave speed with respect to the shear impedance parameter U for different values of anisotropy parameter ξ when W = 0,
ω = 100 s−1, r = 3, τ1 = 10−2s, and τR = 10−6s. c The variation of Rayleigh wave speed with respect to the non-dimensional
anisotropy parameter ξ for different values of chain anisotropy parameter r whenU = 0,W = 0, ω = 100 s−1, τ1 = 10−2s, and
τR = 10−6s

Fig. 2 a The variation of Rayleigh wave speed with respect to the shear impedance parameterU for different values of frequency
ω when W = 0, r = 3, τ1 = 10−2s, and τR = 10−6s. b The variation of Rayleigh wave speed with respect to the frequency ω

for different values of shear impedance parameter U when W = 0, r = 3, τ1 = 10−2s, and τR = 10−6s
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Fig. 3 a The variation of Rayleigh wave speed with respect to the chain anisotropy parameter r for different values of frequency
ω when U = 100, W = 100, τ1 = 10−2s, and τR = 10−6 s. b The variation of Rayleigh wave speed with respect to the chain
anisotropy parameter r for different values of shear impedance parameter U when ω = 100s−1, W = 0, τ1 = 10−2s, and
τR = 10−6s

Fig. 4 a The variation of Rayleighwave speedwith respect to the rubber relaxation time τR for different values of shear impedance
parameter U when ω = 100s−1, W = 100, r = 3, and τ1 = 10−2s. b The variation of Rayleigh wave speed with respect to the
rubber relaxation time τR for different values of frequency ω when U = 100, W = 100, r = 3, and τ1 = 10−2s

Fig. 5 a The variation of Rayleigh wave speed with respect to the director rotation time τ1 for different values of shear impedance
parameter U when ω = 100s−1, W = 100, r = 3, and τR = 10−6s. b The variation of Rayleigh wave speed with respect to the
director rotation time τ1 for different values of frequency ω when U = 100, W = 100, r = 3, and τR = 10−6s
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Fig. 6 a The variation of attenuation coefficient Q against the non-dimensional anisotropy parameter ξ . b The variation of
attenuation coefficient Q against the circular frequency ω

ξ . The variation of the speed against the non-dimensional anisotropy parameter ξ is also shown in Fig. 1c for
three different values of the chain anisotropy parameter r . The speed in the range 0 ≤ ξ ≤ 2 increases at each
value of ξ as the chain anisotropy parameter r increases.

The speed c is also illustrated graphically against the shear impedance parameter U for three different
values of the circular frequency ω. As shown in Fig. 2a, the speed decreases slowly with increasing value ofU
for a givenω. The variations in Fig. 2b show that the speed increases very sharply against the circular frequency
ω for a given value of shear impedance parameter U .

The speed variations with respect to the chain anisotropy parameter r for three different values of frequency
ω are illustrated in Fig. 3a. For r = 1, the Rayleigh wave speed corresponds to pure isotropic viscoelastic
material with no director relaxation. For ω = 100, 200, and 300, it has value 9.7958m.s−1 at r = 1.001, and
it increases sharply with increasing value of r . The rate of increase in speed is observed more for higher values
of frequency. The speed variations against chain anisotropy parameter r in Fig. 3b for three different values of
shear impedance parameter U show a decrease in wave speed as the value of shear impedance parameter U
increases.
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The speed variations against the rubber relaxation time τR in Fig. 4a, b show that the wave speed decreases
by increasing the rubber relaxation time τR for given values of shear impedance parameter U and circular
frequency ω. However, the rate of decrease in speed is observed faster for higher values of U or ω.

The speed variations against the director rotation time τ1 are given in Fig. 5a, b for three different values of
shear impedance parameter U and circular frequency ω. For given U or ω, the wave speed increases sharply
as τ1 increases. The rate of increase in speed becomes relatively slow as U increases but the rate of increase
in speed becomes relatively faster on increasing the value of ω.

The attenuation of the Rayleigh wave is also examined against the non-dimensional anisotropy parameter ξ
and circular frequency in Fig. 6a, b, respectively. The attenuation coefficient Q decreases exponentially against
ξ and ω

6 Conclusions

The secular equation of Rayleigh wave is derived in an incompressible nematic elastomer half-space with
impedance boundary conditions. This secular equation provides a relation between the wave speed, frequency,
rubber relaxation time, director rotation times, non-dimensional anisotropy parameter, chain anisotropy param-
eters, shear and normal impedance parameters. A specific material in the theory of ideal nematic rubbers is
taken to compute the Rayleigh wave speed. The numerical results are illustrated graphically. Some important
theoretical predictions from the numerical results are observed as follows:

(i) The speed of Rayleigh wave increases sharply with anisotropy parameter ξ . The presence of shear
impedance parameterU affects the rate of increase relatively at low values of ξ . The wave speed decreases
along with an increase in shear impedance parameter U . The rate of decrease in wave speed becomes
relatively slow with increasing values of anisotropy parameter ξ .

(ii) The speed increases sharply with the increase in the value of frequency ω for a given value of shear
impedance parameter U .

(iii) The speed increases sharply with increasing value of chain anisotropy parameter r . The rate of increase
in speed becomes relatively faster as we increase the value of frequency ω. The speed variation for r = 1
corresponds to pure isotropic viscoelastic material with no director relaxation.

(iv) The speed decreases by increasing the value of rubber relaxation time τR . The rate of decrease in speed
becomes relatively faster as we increase the value of frequency ω or shear impedance parameter U .

(v) The speed increases sharply with an increase in the value of director rotation time τ1. This rate of increase
becomes relatively faster for higher values of frequency ω.

(vi) The speed is also computed with respect to normal impedance parameter W . It is observed that the wave
speed is independent of W .

(vii) The present results for the incompressible case are different from the compressible case studied by
Yang et al. [30]. In the present study, the main focus is on the dependence of Rayleigh wave speed on
non-dimensional anisotropy parameter ξ and shear impedance parameters U . On comparing the speed
variations in Fig. 2b and Fig. 2 [30], the dependence of wave speed on the circular frequencyω is observed
similar in both compressible and incompressible cases. The effect of incompressibility is also observed
in the comparison of variations in these Figures.
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