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Abstract To explore themethod of adjusting electro-elastic coupling properties in flexoelectric semiconductor
nanofibers, the theoretical model is established, and the non-uniform fibers which can adjust the electro-elastic
properties are designed. In order to solve the differential equations with variable coefficients in the established
model, the differential quadrature method is adopted to approximate the real solutions. Before analysis, the
convergence and correctness of the adopted method are investigated systematically. Considering a fiber with
linear profile, it is found that the distributions of all field quantities can be adjusted by manipulating the shape
of the cross section. The maximum values of all field quantities appear at the narrow end where the stiffness
is the minimum in the entire fiber. By investigating the effects of the cross section parameter, flexoelectric
coefficient and initial carrier density on the electro-elastic field quantities, it can be observed that the field
quantities are sensitive to the variation of these parameters. Besides, studying the charge production indicates
that the total charge in the flexoelectric semiconductor is dominated by the polarization charge. In symmetric
non-uniform fibers, the potential barriers and wells which are produced by axial tensile load or piecewise loads
are studied, respectively. It is revealed that the height of the potential barrier and the depth of the potential
well can be adjusted by designing the non-uniform cross section. Furthermore, it is found that the perturbation
carrier in a PN junction tends to concentrate in the zone near the narrow position. The studies in this paper
could be the guidance for the applications of flexoelectric semiconductor fibers.

1 Introduction

The piezoelectric semiconductor (PS) has attracted much attention in recent years. In PS, the charge carrier is
driven by piezoelectric potential, and the electric potential is produced by external load. This kind of coupled
characteristic between piezoelectricity and semiconduction in PSbelongs to the field of piezotronics [1, 2].With
the development of manufacture technology, various PS structures have been synthesized, such as nanowires,
nanobelts or nanodiskettes. [3]. Based on these structures, PS has been successfully used to fabricate many
kinds of electric devices, such as nanogenerators [4, 5], sensors [6–8], transistors [9, 10], logic devices [11,
12] and so on.

To reveal the underlying mechanisms of electro-elastic coupling properties, many research works on PS
are carried out. Zhang et al. [13, 14] demonstrated the carrier redistribution in ZnO nanofiber systematically
and concluded how external load adjusts the electro-elastic fields thoroughly. Based on the mechanism of the
interaction between stress and the electrical field quantities in PS, Fan et al. [15] proposed the potential barrier
and well in semiconductor can be realized by applying piecewise stresses. Dai [16] and Zhang [17] et al.
studied the carrier redistribution when the PS fiber undergoes bending deformation. By applying harmonic
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loads, Li [18] and Wang [19] et al. studied the forced vibration and revealed the charge carriers tend to reduce
the efficiency of energy conversion in PS.When the acoustic waves propagate in PS, Yang [20, 21] and Gu [22]
et al. found that the acoustic waves are amplified. Besides, Yang [23], Hu [24], Sladek [25] and Zhao [26] et al.
analyzed the cracks in PS. As the element of integrated circuit, PN junction between p-type semiconductor and
n-type semiconductor is also studied. Luo [27] and Guo [28] et al. studied the potential barrier and the carrier
redistribution, as well as concluded the mechanism of interaction between load and electrical properties in a
PS fiber with PN junction. Considering the thermoelasticity and pyroelectricity of ZnO, Cheng et al. [29, 30]
studied the thermal induced carrier redistribution in single PS fiber and revealed the electrical and mechanical
properties in a fiber with PN junction.

Notably, the functions in PS can also be realized in composite piezoelectric semiconductor structures, such
as acoustoelectric effect [31] or acoustoelectric amplification [32]. Significantly, some new conclusions are
obtained in composite piezoelectric semiconductor structures. By manipulating the thickness ratio between
piezoelectric and semiconductor materials, the carrier distribution is sensitively altered [33, 34]. These studies
explored a new approach to adjust the transportation of carriers. Besides, the composite structure which is
composed bymultiferroicmagneto-electricmaterials and semiconductor is also studied [35, 36].Withmagneto-
electric coupling effect, the carrier in semiconductor can be driven by external magnetic field. This discovery
enriches the method adjusting the carrier transportation. All of the discussions above show that the composite
structure has great potential in semiconductor-based devices.

Apart from piezoelectric potential, flexoelectric potential could also be an alternative internal field driving
the charge carrier. Zhao [37, 38] et al. analyzed the effects of flexoelectricity and strain gradient on the electrical
ormechanical characteristics in PS nanowires. Sun [39] et al. studied the effect of flexoelectricity on piezotronic
responses in PS bilayer structure. However, these studies treated the flexoelectricity as a kind of higher-order
effect. Recently, the study on silicon [40] proved the existence of flexoelectric coupling in centrosymmetric
semiconductors experimentally. And the concept of flexotronics, which concerns the flexoelectric potential-
driven carrier transportation [41–44] mainly, is proposed.

However, the small flexoelectric coefficient limits the development of flexoelectric semiconductor (FS).
To obtain considerable flexoelectric coupling, a beam with non-uniform cross section can be designed [45,
46]. Ren et al. [47] illustrated the variation of cross section can provide strain gradient. Inspired by this, the
electro-elastic coupling properties in a FS fiber with non-uniform cross section are studied in this paper. And
the mechanism of the interaction among load, electric potential and carrier will be explored.

Beginning with the basic theory of FS in Sect. 2.1, the theoretical model for a FS fiber with arbitrary cross
section is established in Sect. 2.2. To solve the differential equations with variable coefficients, differential
quadrature method is adopted to approximate the exact solutons in Sect. 3. In Sect. 4, the influences of cross
section parameter, flexoelectric coefficient and initial carrier density on the field quantities are investigated. At
the same time, the charge production is discussed. In Sect. 5, the potential barrier and well, which are induced
by axial load or piecewise loads in symmetric non-uniform fiber, are studied. Furthermore, the distribution of
perturbation carrier density in PN junction is also focused in Sect. 6. As a summary, some conclusions are
drawn in Sect. 7.

2 Fundamental equations for flexoelectric semiconductor nanofiber

2.1 Basic theory of flexoelectric semiconductor

In this subsection, the basic theory for FS is reviewed briefly. To depict the electro-elastic coupling behaviors,
the coupled field theory was developed. It consists of the equation of motion (Newton’s law), the charge
equation of electro-static (Gauss’s law), and the conservations of charge for holes and electrons (continuity
equations). Mathematically, the governing equations are expressed as [41–43]

Tij, j − τijk, jk � ρüi , Di ,i � q(p − n + N+
D − N−

A ),

J p
i ,i � −q ṗ, Jni ,i � qṅ,

(1)

where Ti j is the stress tensor, τi jk represents the higher-order stress tensor, and ρ is mass density. ui and
Di , respectively, stand for the mechanical displacement tensor and electric displacement tensor, and q is
the electronic charge. p and n are concentrations of holes and electrons, N+

D and N−
A denote the impurity

concentrations of donors and accepters. J p
i and Jni are hole and electron current densities, respectively. The
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Fig. 1 Sketch of a FS fiber with non-uniform cross section

superscript of dot means a time derivative, and repeated subscripts indicate summation operation. Besides, the
corresponding constitutive relations describing material behaviors are given as

Tij � cijklSkl, τijk � gijklmnηlmn − flijkEl, Di � εijEj + fijklηjkl,

J p
i � qpμp

ij E j − qd p
ij p, j , Jni � qnμn

ijE j + qdnijn, j ,
(2)

where cijkl, gijklmn, flijk and εij are the elastic constants, higher material constants, flexoelectric constants and
dielectric constants, respectively. Referencing to MarkusLazar [48], in order to simplify the higher gradient
elasticity and to connect it with the nonlocal isotropic elasticity, the higher-order stress tensors are just simple
gradients of the Cauchy-like stress tensor multiplied by two gradient coefficients. Thereby, higher material
constants can be approximated by l20cijlmδkn based on strain gradient theory. Here, l0 is scale coefficient and

δkn is Kronecker delta. μ
p
ij

(
μn
ij

)
and d p

ij

(
dnij

)
represent the carrier mobility and carrier diffusion constants

of holes (electrons). And the strain Sij, electric field Ek and strain gradient ηjkl can be expressed by the
mechanical displacement ui and electric potential ϕ via

Sij � 1

2
(ui , j + u j ,i ), ηjkl � Sjk,l , Ek � −ϕ,k . (3)

It should be noted that the nonlinear terms are contained in current densities, which cause the difficulty in
deriving analytical solutions. For the purpose of simplifying derivation, linearization approach is introduced
here, i.e.,

p � p0 + �p, n � n0 + �n, p0 � N−
A , n0 � N+

D , (4)

where N−
A and N+

D are constants for the uniform impurities, and�p and�n are assumed as small perturbation
for carrier concentration. With the help of linearization process, (1)2–4 and (2)4–5 can be rewritten as

Di ,i � q(�p − �n), J p
i ,i � −q� ṗ, Jni ,i � q�ṅ, (5)

J p
i

∼� qp0μ
p
i j E j − qd p

i j�p, j , J
n
i

∼� qn0μ
n
i j E j + qdni j�n, j . (6)

The linear and homogeneous equations above can be utilized conveniently to analyze the electro-elastic
coupling behaviors in FS within the small deformation assumption. After the geometric model and boundary
conditions are given, the multi-field coupling problem can be solved mathematically.

2.2 One-dimensional model for flexoelectric semiconductor nanofiber

A fiber with arbitrary cross section is considered, and the sketch is given in Fig. 1. The fiber has fixed length L
along x3 direction and height 2h along x1 direction.Herein, thewidth of the fiber is changed symmetrically in the
form of b(x3), where certain function describes corresponding profile. Besides, the material of semiconductor
belongs to the class of crystal that is a centrosymmetric cubic (m3m) without the piezoelectric coupling.

Referencing to Fang [49], when a non-uniform fiber is stretched by external load along x3 direction,
the variation of electrical properties in cross section is small and then its influences on the axial results are
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tiny. Therefore, the mechanical displacement, electric potential, and carrier concentration perturbation can be
approximated by

u3(x1, x2, x3, t) ∼� u3(x3, t), ϕ(x1, x2, x3, t) ∼� ϕ(x3, t), �p(x1, x2, x3, t) ∼� �p(x3, t),

�n(x1, x3, t) ∼� �n(x3, t).
(7)

Correspondingly, the relevant strain S33, strain gradient η333 and electric field E3 can be expressed by

S33 � u3,3, η333 � u3,33, E3 � −ϕ,3. (8)

And the relevant stress T33, higher-order stress τ333, electric displacement D3, and current densities J p
3 and

Jn3 are given by

T33 � c33u3,3, τ333 � l20c33u3,33 + f3333ϕ,3, D3 � −ε33ϕ,3 + f3333u3,33,

J p
3 � −qp0μ

p
33ϕ,3 − qd p

33�p,3, J
n
3 � −qn0μ

n
33ϕ,3 + qdn33�n,3.

(9)

Considering static problem, where the external load is constant, the time derivatives should be vanished.
And the one-dimensional governing equations for axial deformation can be obtained, i.e.,

[c33A(x3)u3,3 − c33l
2
0 A(x3)u3,333 − f3333A(x3)ϕ,33],3 � 0,

[−ε33A(x3)ϕ,3 + f3333A(x3)u3,33],3 � q A(x3)(�p − �n),[−p0μ
p
33A(x3)ϕ,3 − d p

33A(x3)�p,3
]
,3 � 0,

[−n0μ
n
33A(x3)ϕ,3 + dn33A(x3)�n,3

]
,3 � 0,

(10)

where A(x3) � 4b(x3)h is the area of cross section. The governing equations can be used to explain the
electro-elastic behaviors in FS fiber along axial direction. It can be found that Eq. (10) will degenerate to the
governing equation investigating the pure flexoelectric fiber when semiconduction terms are dropped. In this
paper, the FS fiber with extension deformation is one-dimensional problem, according to the research works
on strain gradient [50], electric field gradient [51] and semiconductor [37], the general boundary conditions
can be simplified and described as

u3 � u3 or N � T33 + τ333, 3 � F , u3, 3 � u3, 3 or τ333 � τ , ϕ � ϕ or D3 � D,

�p � �p or J p
3 � J

p
3 , �n � �n or Jn3 � J

n
3,

where u3, F , u3, 3, τ , ϕ, D, �p(�n) and J
p
3 (J

n
3) are the certain displacement, axial force, displacement

gradient, higher-order stress, electric potential, electric displacement, perturbation carrier density and electric
current, respectively. For a specific problem, these quantities will be determined to make the solutions of
governing equations unique.

3 Extension of a flexoelectric semiconductor nanofiber

3.1 Description of the problem

In this paper, a non-uniform fiber which is stretched by constant load F at two free ends is taken into account,
as shown in Fig. 2. Here, considering the boundaries are electrically isolated, i.e., there are no concentrated
charges at both ends and no currents flow in or out at the ends. Therefore, the relevant boundary conditions
are [37]

N3(0) � N3(L) � F , τ333(0) � τ333(L) � 0, D3(0) � D3(L) � 0,

J p
3 (0) � J p

3 (L) � 0, Jn3 (0) � Jn3 (L) � 0.
(11)

It can be found that the electrically isolated conditions at both ends indicate J p
3 � Jn3 � 0. In this situation,

the subtraction between Eq. (10)3 and Eq. (10)4 yields

−
(
p0

μ
p
33

d p
33

+ n0
μn
33

d p
33

)
ϕ,3 � (�p − �n),3 (12)
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Fig. 2 Sketch for a stretched non-uniform fiber

Significantly, according to theEinstein relation, carriermobilityμ
p
33(μ

n
33) and the carrier diffusion constants

d p
33(d

n
33) satisfy

μ
p
33

d p
33

� μn
33

dn33
� q

kBT
, (13)

where kB is the Boltzmann constant and T is the absolute temperature. Substituting Eq. (13) into Eq. (12) and
integrating the resultant equation leads to

�p − �n � −(p0 + n0)
q

kBT
ϕ + C , (14)

whereC can be treated as reference value for any point in entire fiber, which does not influence the distribution
of electric potential. Here, C � 0 is acceptable.

Besides, according to the discussions in Cheng’s studies [30], a reference value for displacement should
be given for unique solution. Generally, the reference value is assumed as the displacement at the middle point
in a symmetric fiber. Referencing to Zhang [52], the reference value can also be predetermined at one of the
ends in the fiber, which does not influence the distributions of displacement, electric potential or the other field
quantities. In this paper, we select the left end (i.e., x3 � 0) as reference point. In this condition, u3(0) � 0
replaces N3(0) � F as a new boundary condition.

Eliminating �p − �n, the governing equations are simplified to
[
c33A(x3)u3,3 − c33l

2
0 A(x3)u3,333 − f3333A(x3)ϕ,33

]
,3 � 0,

[−ε33A(x3)ϕ,3 + f3333A(x3)u3,33],3 + A(x3)
q2(p0 + n0)

kBT
ϕ � 0.

(15)

Solving Eq. (15), the electro-elastic fields in FS can be analyzed under the boundary conditions. Further-
more, the influences of all parameters on the electro-elastic coupling properties can be revealed.

3.2 Solutions

Obviously, the governing equations are the differential equations with variable coefficients, which are hard
to look for analytical solutions. To study the problem that is described in Sect. 3.1, differential quadrature
method (DQM) is adopted in this paper [53]. In DQM, a continuous function can be approximated by a linear
sum of weighted coefficients and function values at all discrete points. According to the discrete rule of DQM,
the unknown displacement u3, electric potential ϕ and the values at j-th point for their k-th derivatives can be
expressed by

{u3(ξ ),ϕ(ξ )} �
N∑
j�1

L j (ξ )
{
Uj ,
 j

}
,
{
u(k)3 (ξi ),ϕ

(k)(ξi )
}

�
N∑
j�1

C (k)
i j

{
Uj ,
 j

}
, (16)

where Uj and 
 j are the values of u3 and ϕ at jth discrete point, ξ � x3/L is non-dimensional coordinate,

L j (ξ ) is Lagrange interpolation polynomials, C (k)
i j is k-th weighting coefficient, which is calculated by using

recurrence relationship, the subscriptions i and j index the number of discrete points. Notably, the discrete
points are selected in the pattern of

ξ j � 1

2

[
1 − cos

( j − 1)π

N − 1

]
, j � 1, 2, 3, ..., N . (17)
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Applying the DQM to Eq. (15) yields algebraic equations respecting u jand ϕ j ,i.e.,

c33
L

A,3(ξi )
N∑
j�1

C (1)
i j U j − c33

L3 l
2
0 A,3(ξi )

N∑
j�1

C (3)
i j U j − f3333

L2 A,3(ξi )
N∑
j�1

C (2)
i j 
 j

+
c33
L2 A(ξi )

N∑
j�1

C (2)
i j U j − c33

L4 l
2
0 A(ξi )

N∑
j�1

C (4)
i j U j − f3333

L3 A(ξi )
N∑
j�1

C (3)
i j 
 j � 0,

i � 3, 4, ..., N − 2; j � 1, 2, ..., N ,

− ε33

L
A,3(ξi )

N∑
j�1

C (1)
i j 
 j +

f3333
L2 A,3(ξi )

N∑
j�1

C (2)
i j U j − ε33

L2 A(ξi )
N∑
j�1

C (2)
i j 
 j+

f3333
L3 A(ξi )

N∑
j�1

C (3)
i j U j + A(ξi )

q2(p0 + n0)

kBT

i � 0,

i � 2, 3, ..., N − 1; j � 1, 2, ..., N . (18)

In the derivations before, the boundary conditions J p
3 (0) � J p

3 (L) � Jn3 (0) � Jn3 (L) � 0 have been con-
sidered, which are not discussed later. It should be emphasized that the fiber is treated as electrically neutral
for the reference state, the perturbation carrier density must satisfy the global charge neutrality conditions∫ L
0 A�pdx3 � 0 and

∫ L
0 A�ndx3 � 0. Only one of them is independent. For pure p-type or n-type semicon-

ductor, the global charge neutrality condition is satisfied automatically by integrating the Eq. (10)2 along the
length under the electrically isolated boundary conditions. Now, the unsatisfied boundary conditions can be
rewritten as

u3(0) � 0, U1 � 0,

N3(L) � F ,
c33
L

A(ξN )
N∑
j�1

C (1)
N jU j − c33

L3 l
2
0 A(ξN )

N∑
j�1

C (3)
N jU j − f3333

L2 A(ξN )
N∑
j�1

C (2)
N j
 j � F ,

τ333(0) � 0,
c33
L2 l

2
0

N∑
j�1

C (2)
1 j U j +

f3333
L

N∑
j�1

C (1)
1 j 
 j � 0,

τ333(L ) � 0,
c33
L2 l

2
0

N∑
j�1

C (2)
N jU j +

f3333
L

N∑
j�1

C (1)
N j
 j � 0,

D3(0) � 0, − ε33

L

N∑
j�1

C (1)
1 j 
 j +

f3333
L2

N∑
j�1

C (2)
1 j U j � 0,

D3(L) � 0, − ε33

L

N∑
j�1

C (1)
N j
 j +

f3333
L2

N∑
j�1

C (2)
N jU j � 0,

j � 1, 2, ..., N .

(19)

Equation (18) and Eq. (19) give a linear algebraic equation system, which can be used to solve the unknown
values for displacement and electric potential at discrete points. With the help of derivations above, the differ-
ential equations with variable coefficients can be solved conveniently.

4 Electro-elastic fields in non-uniform FS nanofiber

In this section, we consider a p-type semiconductor for numerical analysis. Correspondingly, the initial carrier
concentration n0 and perturbation carrier density �n are eliminated from the derivations in Sect. 3. Here, a
common used FS material Si is selected for numerical calculation. The relevant parameters are [42]
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Fig. 3 The comparisons between FEM and DQM. a Displacement u3; b Electric potential ϕ

c33 � 165.7 GPa, ε33 � 0.1035 × 10−9F/m, f3333 � 1 × 10−9C/m, l0 � 1 × 10−9m,

p0 � 1 × 1020/m3, kBT/q � 0.026V, L � 1200 nm, h � 100 nm, F � 1 nN.

In this paper, the variation of the cross section is focused, correspondingly, the variation pattern of the
fiber should be given firstly. Reviewing the studies of Ren [47] and Fang [49], the linear profile and quadratic
profile could lead to similar results. Consequently, only linear profile is selected as example, i.e., the width of
the fiber varies in the form of

b(x3) � B
(
1 − λ

x3
L

)
, (20)

where B � 100 nm is the width at left end (x3 � 0) and the parameter λ varies in the range (0,1), which
manipulates the shape of the fiber.

4.1 Convergence and validation

Before analysis, a proper number of grid point should be determined, which needs to satisfy the convergence
requirement and ensure enough accuracy.After investigating different numbers of grid point,N � 150 forDQM
provides enough convergence. Besides, to prove the correctness of the results from DQM in this paper, finite
element method (FEM) is performed based on COMSOLMultiphysics software. The comparisons between the
results fromDQMand FEMare given in Fig. 3, where λ � 0.1, 0.2, 0.3, 0.4, 0.5 are investigated, respectively.
It can be observed that the DQM’s results coincide well with FEM’s results, as a result, the correctness of DQM
is proved. In Fig. 4. the comparisons for the displacement and electric potential between linear and nonlinear
theories [54] are carried, in which, the description on nonlinear theory can be found in Appendix 1. From the
calculated results, it can be found the results from this paper are very close to the nonlinear results. It indicates
the derivations in this paper are suitable to explain the underlying mechanisms of flexoelectric semiconductor
accurately.

4.2 Effects of λ on the electro-elastic field quantities

To illustrate how the variation of cross section changes the electro-elastic field quantities, Fig. 5 gives the strain
gradient η333, electric field E3, polarization P3 and perturbation carrier density �p. The polarization vector
can be calculated through P3 � D3 − ε0E3. The perturbation carrier can be obtained based on Eq. (14) by
ignoring n0 and �n.

In Fig. 5a, it can be seen that the increment of λ increases the strain gradient for entire fiber. At the same
time, the strain gradient increases along the axial direction for each given λ. This phenomenon comes from
the variation of stiffness. When λ is set in the range (0,1), the stiffness of entire fiber is cut down along axial
direction continuously. Especially for right end, the stiffness reaches the minimum value. Therefore, it can be
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Fig. 4 The comparisons between linear and nonlinear results. a Displacement u3; b Electric potential ϕ

Fig. 5 The effects of λ on the electro-elastic field quantities. a Strain gradient; b electric field; c Polarization; d Perturbation
carrier density

concluded that a large λ induces large strain gradient. Because of the increased strain gradient, the electric
potential difference between two ends in the fiber is also increasing as shown in Fig. 3b. In Fig.5b and c, electric
field and polarization are given, where the absolute values of these two quantities have similar tendency with
strain gradient. It indicates the electric field and polarization are closely related to the strain gradient in FS.
Driven by internal electric potential, more perturbation carriers are produced and reach the maximum values at
the right end. From the calculated results, it can be concluded that the rapid variation of cross section produces
large fields and the maximum values of field quantities appear in the zone whose stiffness is minimum in entire
fiber. Furthermore, comparing the results for different λ, it can also be concluded that the flexoelectric effect
is enhanced by the variation of the cross section.
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Fig. 6 The effects of f3333 on the electro-elastic fields. a Electric potential; b Electric field; c Polarization; d Perturbation carrier
density

4.3 Effects of f3333 on the electrical field quantities

The flexoelectric coefficient f3333 is an electrical parameter, which mainly influences the electrical properties.
In this section, the effects of f3333 on the electric potential, electric field, polarization and perturbation carrier
density are focused, as shown in Fig. 6. Cooperating with the non-uniform cross section, all electrical field
quantities exhibit the tendency of increment when the flexoelectric coefficient is set from 0.5 × 10−9C/m to
2.5 × 10−9C/m. Especially, at the narrow end, the increments of field quantities are much faster than them
at the broad end. Although a distinct flexoelectric effect can be observed with the help of non-uniform cross
section, the values of all field quantities are still relative small in Si. For the purpose of obtaining considerable
values of field quantities, another way to further enhance the flexoelectric effect should be explored on the
basis of this paper. Or, a new FS material with large flexoelectric coefficient should be found to replace Si. For
the purpose of this paper, we can conclude the general tendencies of flexoelectric effect from the calculated
results, which provide useful reference data to study similar FS material in the future. In view of this, the study
in this paper is still meaningful.

4.4 Effects of p0 on the electrical field quantities

As a parameter which can be adjusted artificially in experiment or engineering application, the effect of initial
carrier density p0 on the electrical field quantity is not negligible. Figure 7 gives the electrical field quantities
for different given initial carrier densities. Because the carrier screening effect, the electric potential and electric
field are decreasing, however, the polarization and perturbation carrier density are increasing. It can also be
found that the variation is relatively small when the initial carrier density is smaller than 1 × 1019/m3. On
the contrary, the variations in all results become much faster once the initial carrier density is larger than
1 × 1019/m3. The reason for this phenomenon is because the low concentration doping cannot produce more
carriers, while there are not enough free carrier screening the electric potential. For high concentration doping,
more carriers are produced and the screening effect becomes stronger.
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Fig. 7 The effects of p0 on the electrical field quantities. a Electric potential; b Electric field; c Polarization; d Perturbation
carrier density

Fig. 8 The charge at the narrow end. a Carrier charge; b Total charge

4.5 Charges in the non-uniform FS fiber

As a material which can realize the conversion between mechanical load and electrical properties, we prefer
to concern the charge production in the fiber. Based on the results above, the expression of carrier charges is
q�p and total charge can be calculated through ρt � q�p + ρP . Here, ρP � −P3, 3 is polarization charge.
Figure 8 gives the carrier charges and total charges at narrow end for different initial carrier densities when
parameter λ varies in the range from 0.1 to 0.9. No matter for carrier charge or for total charge, the values are
increasing in the form of approximate exponential rule. It illustrated that the adjustment method manipulating
the cross section is feasible. It can be observed that the influence of initial carrier density on carrier charge is
distinct. However, there are few influence of initial carrier density on total charge. Besides, the magnitude of
total charge is much larger than carrier charge. It indicates that the total charge is dominated by polarization
charge.
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Fig. 9 The sketch of the fiber with axial load

5 Potential barriers and wells in non-uniform FS nanofiber

5.1 The non-uniform fiber under axial load

To further illustrate how non-uniform cross section adjusts electrical properties in FS fiber, two symmetric
non-uniform FS fibers are considered in this subsection, as shown in Fig. 9. These two fibers are stretched by
a pair of external load at the two ends. Differently, the profile is concave in Fig. 9a and is convex in Fig. 9b.
Dividing each fiber into two parts, and setting the local coordinates beginning from the left of each part. The
local coordinates are denoted as x ′

3 and x ′′
3 , respectively. The length for each part is L1. In the given local

coordinates, the widths vary in the form of

b �
⎧⎨
⎩

B
(
1 − λ

x ′
3

L1

)
0 ≤ x ′

3 < L1

B
[
1 − λ

(
1 − x ′′

3
L1

)]
0 ≤ x ′′

3 ≤ L1

(21)

for the fiber with concave profile and

b �
⎧⎨
⎩

B
[
1 − λ

(
1 − x ′

3
L1

)]
0 ≤ x ′

3 < L1

B
(
1 − λ

x ′′
3
L1

)
0 ≤ x ′′

3 ≤ L1

(22)

for the fiber with convex profile.
To describe the electrical properties in the given fibers, the governing equation (i.e., Equation (15)) is

still valid for each part. However, the boundary conditions should be reconsidered. For part I, the boundary
conditions at left end are

N ′
3(x

′
3 � 0) � F , τ ′

333(x
′
3 � 0) � 0, D′

3(x
′
3 � 0) � 0. (23)

For part II, the boundary conditions at right end are

N ′′
3 (x

′′
3 � L1) � F , τ ′′

333(x
′′
3 � L1) � 0, D′′

3 (x
′′
3 � L1) � 0. (24)

At the interface between two parts, the continue conditions should be set, i.e.,

u′
3(x

′
3 � L1) � u′′

3(x
′′
3 � 0), N ′

3(x
′
3 � L1) � N ′′

3 (x
′′
3 � 0),

u′
3,3(x

′
3 � L1) � u′′

3,3(x
′′
3 � 0), τ ′

333(x
′
3 � L1) � τ ′′

333(x
′′
3 � 0),

ϕ′(x ′
3 � L1) � ϕ′′(x ′′

3 � 0), D′
3(x

′
3 � L1) � D′′

3 (x
′′
3 � 0).

(25)

Here, in order to fix the reference point for displacement, N ′
3(x

′
3 � 0) � F is replaced by u′

3(x
′
3 � 0) � 0

again. Applying the DQM to solve the governing equations under the given boundary conditions and continuity
conditions for two parts, the solutions can be obtained. In the following studies, L1 � 600 nm is assumed. In
this subsection, we prefer to concern the distribution of electric potential. Figure 10a and b give the electric
potentials for the fiber with concave profile and convex profile in global coordinate, respectively. It can be
observed that the electric potential is symmetric respects to x3 � 0.6μm, which is quite different from the
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Fig. 10 The distributions of electric potential in non-uniform fiber. a In the fiber with concave profile; b In the fiber with convex
profile

Fig. 11 The sketch of a fiber with piecewise loads

pattern in piezoelectric semiconductor [49]. There are potential barriers and potential wells in the non-uniform
fibers. They prevent the mobile charge, whose initial velocity or kinetic energy is not large enough, traveling
through the fiber. This phenomenon can be explained from the view of mathematics. The different distributions
between FS fiber and PS fiber in symmetric structure are because the derivative of electric potential for FS is
one order higher than it for PS fiber in the established model. It can also be explained that the electric potential
is induced by the strain gradient, therefore, a symmetric strain gradient produces symmetric electric potential.
In addition, it can be found that the potential barrier and well can be adjusted by manipulating the shape of
cross section. With the increasing of parameter λ, the higher potential barrier and deeper potential well can be
set as shown in Fig. 10.

5.2 The non-uniform fiber with piecewise loads

Referencing to Fan et al. [15], the potential barrier or well can be induced by piecewise stresses. Inspired by
this, we consider two fibers with piecewise loads, as shown in Fig. 11, where the part I is compressed and
the part II is stretched. Comparing to Fig. 10, the electric potential exhibits quite different distribution rule
along the axial direction, as shown in Fig. 12. In the same fiber, the potential barrier and well appear at the
two sides of middle point because of the asymmetric strain gradient. With the increasing of parameter λ, the
electric potential difference is getting larger at the middle position in the fiber with concave profile. However,
for the fiber with convex profile, the electric potential difference is changed distinctly at both ends. These
phenomena confirm the conclusion that the maximum values of field quantities appear at the zone whose
stiffness is minimum in entire fiber again.
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Fig. 12 The distributions of electric potential under piecewise loads. a In the fiber with concave profile; b In the fiber with convex
profile

Fig. 13 The sketch of PN junction between two non-uniform FS fibers

6 Carrier redistribution in non-uniform PN junction

In the studies above, only p-type semiconductor is investigated. In this section, a PN junction which subjects
to axial load is considered, as shown in Fig. 13. For part I, the initial carrier density for hole (electron)
is denoted as p′

0 (n′
0). In part II, the initial carrier density for hole (electron) is denoted as p′′

0 (n′′
0). Here,

p′
0 � n′′

0 � 0.8 × 1020/m3 and n′
0 � p′′

0 � 0.2 × 1020/m3 are assumed. When Eq. (15) is adopted, it can be
found the distribution of electric potential in this section is same to it in Fig. 10, therefore, only the distribution
of perturbation carrier density is focused here. Figure 14 gives the distributions of perturbation carrier density
for the fibers with concave profile and convex profile, respectively. Because of the different initial carrier
densities in two parts, no matter for holes or electrons, there are jumps at the interface for perturbation carrier
density.

For the same fiber, the distribution pattern for �p is opposite to �n. For holes, the majority perturbation
carriers exist in the part I. On the contrary, the majority perturbation carriers exist in the part II for electrons.
Comparing two kinds of fibers, the majority perturbation carriers appear in the zone near the middle position
for a fiber with concave profile. Differently, in the fiber with convex profile, the majority perturbation carriers
appear in the zone near the narrow sides. The calculated results indicate that the perturbation carrier density
near the interface can be conveniently adjusted by manipulating the shape of cross section to satisfy the
requirements in experiment or engineering application.

7 Conclusions

Based on the flexoelectric semiconductor theory, the theoretical model for non-uniformfiber is established. The
DQM is introduced to solve the governing equations with variable coefficients and reveal the mechanism how
non-uniform cross section adjusts the electro-elastic properties in the FS fibers. Before analysis, the 150 grid
points are determined for DQM to ensure enough accuracy. Comparing with the results which are calculated
by FEM, the correctness of DQM is proved.
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Fig. 14 The distributions of perturbation carrier densities. a �p in the fiber with concave profile; b �n in the fiber with concave
profile; c �p in the fiber with convex profile; d �n in the fiber with convex profile

In p-type non-uniformFS fiber, the large electro-elastic field quantities can be produced by a quick variation
of cross section along the axial direction. Especially, near the narrow ends, all quantities reach the maximum
values. To reveal the underlyingmechanisms of FS fiber, the influences of cross section parameter, flexoelectric
coefficient and initial carrier density on the electrical properties are investigated. It is found that the electrical
properties are sensitive to these parameters. Besides, the investigation about charge production indicates the
total charge in the narrow end is dominated by polarization charge. To further illustrate the generality of the
theoretical model andDQM, two kinds of fibers with concave and convex profiles are investigated, respectively.
Stretched by axial load, there are potential barrier and potential well in the fibers with concave profile and
convex profiles, respectively. From the view of mathematics and physics, the reason for this phenomenon is
explained in detail. In addition, when the fibers subject to piecewise loads, it is found that the distributions
of electric potential are asymmetric. In the end, we investigated the carrier redistribution in non-uniform
fibers with PN junction. The calculated results indicate that the distribution of perturbation carrier density
can be conveniently adjusted by manipulating the shape of cross section according to the requirements of
applications.

In this paper, only the approach manipulating the cross section is adopted to adjust the electro-elastic
properties. In the future, the functionally graded fiber or non-uniform composite fiber can also be the objects
to study. In these studies, the DQM is still valid to deal with the relevant mathematical models. After surveying
the performances which are adjusted by different approaches, the mechanisms of the interaction between
mechanical and electrical properties in FS can be revealed thoroughly. These studies might be the guidance
for the applications of FS material or the manufacture of smart devices.
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Appendix 1

In this appendix, the exact solution based on nonlinear theory is introduced briefly. According to the relevant
literature works [54], the nonlinear equations for p-type semiconductor are expressed by

[c33A(x3)u3,3 − c33l
2
0 A(x3)u3,333 − f3333A(x3)ϕ,33],3 � 0,

[−ε33A(x3)ϕ,3 + f3333A(x3)u3,33],3 � q A(x3)(p − N−
A ), (26)

where p � p0 exp(− q
kBT

ϕ) can be obtained when the boundaries are electrically isolated, i.e., J p
3 (0) �

J p
3 (L) � 0. Besides, p0 � N−

A is assumed. Solving the governing equations under the given boundary
conditions (Eq. (11)) by using COMSOL Multiphysics software, the nonlinear results will be obtained.
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