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Abstract This paper looks into the issue of noise attenuation in sandwich panels using a viscoelastic core
and piezoelectric patches with an associated resistive (R) circuit. The laminated sandwich panel is modeled
using an in-house finite element code from which the frequency response of the panel is calculated that is
then used to calculate the radiated sound power by the Rayleigh integral method. The optimal location for the
patches, as well as the values for the associated resistors, is obtained by a 7-objective optimization problem
using the Direct MultiSearch algorithm, minimizing the added weight, number of equipotential zones, and the
noise radiated for the first five modes. A Pareto optimal front is obtained with optimal patch distribution and
resistance (R) values for each equipotential zone,.

1 Introduction

The use of composite materials is growing in the aerospace and automotive industries due to their good
mechanical properties while being much lighter than the metals they are currently replacing. This weight
reduction leads to less energy required which in turn leads not only to a decrease in fuel usage, but also to an
increase in the performance of the structures/dynamic systems. However, the mass reduction comes at a cost
of a higher susceptibility to acoustic problems when these structures are subjected to external mechanical or
acoustic excitations. Multiple active and passive damping technologies can be employed in order to reduce
the levels of acoustic emissions of the structure, for example, the use of viscoelastic materials and shunted
piezoelectric networks [1]. Since viscoelastic materials work better at higher frequencies and shunted damping
circuits work better for lower frequencies, as the loss factor is higher in different frequency ranges for each
technology, these two technologies can be combined using sandwich plates.

The use of piezoelectric materials along with resistance–inductance (RL) shunt circuits for structural
damping was first suggested and implemented experimentally by Forward [2]. The first calibration procedure
for RL serial circuits was proposed by Hagood and van Flotow [3] considering the mechanical impedance
of the structure. Few years later, Wu [4] developed a calibration method for parallel circuits using the same
approach. Since then, other authors have developed new calibration methods, with Tang [5] adding a negative
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Fig. 1 The sandwich plate with a piezoelectric patch and its associated RL shunted circuit

capacitance to improve the electromechanical coupling effect, and more recently Toftekær et al. [6] have
proposed a calibration method with residual mode correction.

Some authors have in the past addressed the issue regarding active and passive noise reduction in com-
posite structures. The work done by Larbi et al. [7–12] analyzes the structural–acoustic problems with smart
piezoelectric composite and sandwich plates with and without a viscoelastic core. The passive control has
recently been approached by Vieira and Araújo [13], where the stacking sequence was optimized and then the
patch configuration. The same authors have also implemented active control for noise reduction using a PID
controller implemented in ANSYS [14].

This paper is a further development of the work presented by Araújo and Madeira [15], where a layer-
wise sandwich finite element code was implemented with a frequency-dependent viscoelastic core composite
laminated skin layer and piezoelectric patches being placed in the top surface of the panel with an associated
resistive circuit. A multi-objective problem was solved in order to obtain the optimal patch configuration for
noise and vibration damping tackling multiple modes at the same time, with a total of five objectives: minimize
the mass, the number of equipotential zones, and the noise radiated in the three highest peaks across a specific
frequency range, where the radiated sound power (RSP) is used as the acoustic indicator. The new idea is,
instead of tackling themodes indiscriminately, to target specificmodes (in this case, the first five), thus allowing
to obtain solutions that can either target one of them individually or that can reduce their overall response.
Likewise, the same solver, Direct MultiSearch (DMS), is used in this work.

DMS [16] is a numerical solver for multi-objective optimization that does not require the computation
of objective function derivatives nor aggregates the objective functions. The method was developed as a
generalization of the single-objective optimization method direct search. Regarding its application to improve
the acoustic performance of laminated sandwich panels, it has been previously used to maximize the loss
factor while minimizing only the weight [17] and then both the weight and material cost [18], with the latter
application being the 5 objective problem [15] described in the previous paragraph.

2 Sandwich plate model

In this Section, the layer-wise sandwich laminated plate model is presented. It is comprised by two composite
laminated face layers, (e1) and (e2), a viscoelastic core, (v), and piezoelectric patches, (p), bonded to the top
outer surface of the plate (Fig. 1).

An RL shunted circuit is connected to each piezoelectric layer with an inductance and a resistance mounted
in series [3]. The general idea is for the mechanical energy of the plate to be converted to electrical energy in
the piezoelectric patch, that works as an electrical capacitance, which is then dissipated in the resistance as
heat. The inductance synchronizes both the plate and circuit resonant frequencies. Although in this work the
inductors will not be used, the formulation is kept general for shunted RL series circuits.

In this layerwise model, it is assumed that the origin of the z-axis is the medium plane of the core layer,
no slip occurs at the interfaces between layers, the displacements are continuous along the interfaces, and the
viscoelastic core, (v), has transverse compressibility.
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The composite layers and piezoelectric patches are modeled with first-order shear deformation theory
(FSDT) and the viscoelastic core with a higher-order shear deformation theory (HSDT). The displacement
fields for each layer with its respective degrees of freedom can be found in [19].

All thematerials used in each layer are linear, orthotropic, and homogeneous. The viscoelastic corematerial
properties are also complex and frequency dependent.

In this application, it is considered that all the layers in the sandwich plate model are constituted by
orthotropicmaterials. However, as the viscoelastic core displacement ismodeled differently from the composite
laminate and the piezoelectric layers, the constitutive relations are different for both.

For the laminated composite and piezoelectric layers, it is assumed zero transverse normal stress, with the
constitutive relations being described as [20]:
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whereσi i and τi j are the normal and shear stress components, respectively, εi i and γi j are the strain components,
E f i is the electric field, Di is the electric displacement field, QE

i j are the reduced stiffness coefficients at
constant electric field, ei j and e∗

i j are the electromechanical and reduced electromechanical coupling coefficients
(piezoelectric effect), respectively, and εi i and ε∗

33 are the dielectric and reduced dielectric constants, measured
at constant strain. The equations to compute the reduced values can be found in [20].

The set of equations (1) is easily applied to the laminated composite layers since it is only needed that their
electromechanical coupling coefficients vanish.

For the viscoelastic core, a full 3D orthotropic model is considered [21]:
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where Ci j are the stiffness coefficients, in terms of engineering quantities, whose expressions are found in
[21]. In the context of this work, the stiffness coefficients of the viscoelastic layer are complex and frequency
dependent, with the complex modulus being obtained as a consequence of using the elastic–viscoelastic
correspondence principle [22]. Thus, for an isotropic viscoelastic material with constant Poisson’s ratio, the
shear modulus is complex and frequency dependent:

G ( jω) = G ′ (ω) (1 + jηG (ω)) (3)

whereG ′ is the storage shear modulus, ηG is the associated material loss factor, and j = √−1 is the imaginary
unit.

The finite element formulation uses 8-node serendipity elements with 17 mechanical degrees of freedom
per node and one electrical degree of freedom per piezoelectric layer. The finite element formulation leads to
the following equilibrium equation in the frequency domain [15]:

[
K∗ (ω) − ω2Muu

]
U(ω) = F(ω) (4)

where Muu is the mass matrix, U(ω) is the vector of amplitudes of displacement, F (ω) = F (Ft (t)) is the
Fourier transform of the time domain force history Ft (t), and K∗ is the condensed stiffness matrix given by:

K∗ (ω) = Kuu (ω) − KuφZe (ω)
[
I + KφφZe (ω)

]−1 Kuφ
T (5)
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where Kuu (ω) is the complex stiffness matrix, Kuϕ is the electromechanical coupling stiffness matrix, Kφφ

is the dielectric stiffness matrix, I is the identity matrix, and Ze (ω) is the electrical impedance matrix of the
RL shunts, given by:
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where Ri and Li are the electrical resistance and inductance of the piezoelectric layer i , and j is the imaginary
unit.

The finite element problem is solved in two steps: First, the following eigenvalue problem given by the
nonlinear equation is solved in order to obtain the natural frequencies of the plate for a specific patch distribution
[19]:

[
K∗ (ω) − λ∗

nMuu
]

Un = 0 (7)

where λ∗
n is the complex eigenvalue given by

λ∗
n = λn (1 + jηn) (8)

where λn = ω2
n is the real part of the complex eigenvalue and ηn is the correspondent modal loss factor.

The nonlinear eigenvalue problem is solved iteratively using the Fortran library ARPACK [23] with a
shift-invert transformation. The iterative process ends when the stopping criteria are met,

‖ωi − ωi−1‖
ωi−1

≤ ε, (9)

where ωi and ωi−1 are the current and previous iteration real parts of the complex eigenvalue for the current
mode, respectively, and ε is the user-defined convergence tolerance.

Finally, the forced vibration problem is solved in the obtained frequencies in order to obtain the plate
response in each peak by Eq. (4) with ω = ωn .

3 Acoustic response

The plate is surrounded by a light fluid (air) to which it radiates noise. Since the mass of the fluid can be
neglected, the acoustic and structural problems can be solved separately: First the structural problem is solved,
and then the noise radiated by the plate into the surrounding medium is obtained and used as an indicator of
its performance. As such, the acoustic indicator chosen for the present work is the RSP (�), which can be
obtained from Rayleigh’s integral.

Using the elementary radiators approach, we avoid having to solve the Rayleigh integral, and the RSP can
be computed as [15]:

� = vH
n Rvn (10)

where vn is the vector with the amplitude of the normal velocity of each element (obtained as a solution of
the finite element problem), H is the Hermitian transpose, and R is the radiation resistance matrix for the
elementary radiators given by:
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where ρ0 is the mass density of the surrounding fluid, c0 is the speed of sound in the fluid, k = ω/c0 is the
wave number, Se is the surface area of each element, and ri j is the distance between the center of the elements
i and j .
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Table 1 Material properties of the carbon plies

E1 [GPa] E2 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ρ [kg/m3]
130.8 10.6 5.6 4.2 3.0 0.36 1543

Table 2 Reduced material properties for PZT-4 [20,26]

E [GPa] G [GPa] ν12 e∗ [N/V · m] ε∗ [F/m] ρ [kg/m3]
E1 = 81.3 G12 = 30.6 ν12 = 0.33 e∗

31 = −14.9 ε∗
33 = 4.24 × 10−9 ρ = 7500

E2 = 81.3 G13 = 25.6 e∗
32 = −14.9

G23 = 25.6

Table 3 Natural frequencies and respective frequency response for the first 5 modes of the plate

Mode Frequency [Hz] � [W]
1 179.829 4.110 × 106

2 309.377 0.478
3 387.113 1.773
4 501.101 8.772 × 104

5 560.982 7.024 × 103

Further details on this approach can be found in [24].
This method can be applied to any plane surface in an infinite baffle for any given boundary conditions,

as it only requires the knowledge of the surface geometry, the properties of the fluid, and the normal velocity
field distribution.

4 Problem statement

We consider a 200×300mm2 laminated sandwich plate made of carbon fiber plies with a viscoelastic core and
with all edges clamped. The stacking sequence for the carbon fiber plies is [0◦/90◦/ + 45◦] and [+45◦/90◦/0◦]
for e1 and e2, respectively, making the total stacking symmetric when patch-free. Each carbon ply is 0.5mm
thick (totaling up to 1.5mm for each e1 and e2), and the viscoelastic core is 2.5mm thick. The carbon plies
are orthotropic, whose material properties can be found in Table 1.

The viscoelastic core is made of an isotropic polymer with ν = 0.49, ρ = 1300 kg/m3, and a complex
shear modulus, described by a five-parameter fractional derivative model [25]. The complex shear modulus is
obtained as:

G ( jω) = G0 + G0(d − 1)
( jωτ)α

1 + ( jωτ)β
(12)

where G0 = 0.8MPa is the static shear modulus, d = 1.05, α = 0.566, β = 0.558, and τ = 7.23 × 10−10

s is the relaxation time. Since the goal of this paper is to evaluate the damping effect of shunted circuits in
piezoelectric patches, it is important that the damping effect of the viscoelastic core is minimal; hence, we use
d = 1.05. We do not eliminate completely the damping of the viscoelastic core (d = 1) in order to prevent the
response amplitudes for the undamped configurations from tending to infinity.

Piezoelectric patches are bonded to the upper surface of the plate. Both have top and bottom surfaces
electroded, which ensure the voltage is constant along each surface. The patch dimensions are 33.3× 50mm2

( 1
36 of the total area of the plate), and each one is 0.9mm thick, with its material being lead zirconate titanate
(PZT-4) whose reduced properties can be found in Table 2.

Figure 2 shows the modal vertical deformation of the plate for the first five modes. Table 3 shows the
correspondent natural frequencies and the respective RSP when a 100 Pa incident wave is applied to the
bottom surface of the plate at t = 0 s. This same load is the one applied in the optimization problem.

The goal of this study is to obtain the optimal configurations that minimize weight, equipotential zones,
and sound radiation, for the first five vibration modes. This defines a multiobjective optimization problem
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Fig. 2 Plate response for the first five modes

with seven objectives. The first of the three objectives is to minimize the total added mass of the patches
f1 = ∑

i mi . The second is to minimize the number of equi-potential zones f2 at the surface of the plate. The
remaining 5 objectives, f3– f7, are to minimize the RSP for modes 1–5, respectively, defined by equation (10).
The multi-objective optimization problem is defined as:

min
x

F(x) = ( f1(x), f2(x), f3(x), f4(x), f5(x), f6(x), f7(x))
T

s. t. xi ∈ [0, 1] , i = 1, ..., 9

x j ∈ [0 : 100 : 15000] �, j = 1, ..., 13 (13)

where xi is a real design variable that denotes whether or not there is a patch on position i (if xi < 0.5 is
rounded to 0, meaning there is no patch, and rounded to 1 otherwise) and x j is a design variable that has the
resistance value of the shunt circuit of the equipotential zone j .
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Fig. 3 Patch distribution in the full plate when considering only a quarter of it

Fig. 4 Initial solutions for the multi-objective problem (14)

The plate is discretized into a 6× 6 mesh with a total of 36 elements. In order to reduce the computational
effort, only a quarter of the plate is considered,with the patches being added symmetrically across the plate (Fig.
3). It is important to note that the multi-objective optimization problem defined in (13) already contemplates
these assumptions.

In order to improve convergence and keep the computation times at reasonable values, it was decided to
start by obtaining the optimal configurations for each one of the first five vibration modes, independently. To
do this, we start by solving the five problems presented in (14), with only three objectives (mass, equipotential
zones, and the RSP for the targeted mode k = 1, . . . , 5), keeping the same design variables as in problem (13),

min
x

F(x) = ( f1(x), f2(x), fk(x))
T

s. t. xi ∈ [0, 1] , i = 1, ..., 9

x j ∈ [0 : 100 : 15000] �, j = 1, ..., 13. (14)

The solutions obtained for these five optimizations are then serving to initialize the problem with seven
variables defined in (13).

The optimization problems are solved using DMS [16]. The optimization problems defined in (14) were
initialized considering the worst case scenarios for objective f2 and with R shunts set to 0, maximizing the
RSP for each mode (objectives f3– f7), whose configurations are presented in Fig. 4.

5 Results

We present in this Section some of the results obtained in the different multi-objective optimization problems.
First, the results of the five problems with 3 objectives (14) are presented, with each problem (14) commented
individually:

• For the first mode (k = 3), 4 non-dominated solutions were obtained. Figure 5 displays these solutions on
the planes f1– f3 and f2– f3 alongside their respective resistances. Each configuration was able to reduce
the sound levels of the first mode in at least seven orders of magnitude (from Table 3,� = 4.11×106 W),
with the solutions 3 and 4 reducing up to nine orders of magnitude, up to ∼ 10−2 W. One observation that
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can be made is that the objectives f2 and f3 are not conflicting, since there is only one zone with relevant
strain that occurs in the middle of the panel, meaning patches should only be placed there.

• For the second mode (k = 4), 16 non-dominated solutions were obtained. Figure 6 displays these solutions
on the planes f1– f4 and f2– f4 alongside their respective resistances (when there is more than one equipo-
tential zone, the resistance values are ordered from left to right, from bottom to top, which remains true
for the remaining Tables shown throughout the remaining of the work). The configurations obtained were
able to reduce the sound levels from 4.78 × 10−1 W (Table 3) to 10−4 ∼ 10−5W. Two key observations
can be made. The first is the occurrence of saturation of the resistances in the maximum value in some
of the solutions obtained, meaning a higher damping effect could be attained if the resistance range was
increased. The other one is the existence of equipotential zones with no resistance. For some patches, this
happens due to the symmetry condition imposed, as placing them in a position forces the placement in
other places that would not need them. In other cases, however, the equipotential zone in the centre of the
plate is the one with no resistance (where the patches placed due to symmetry are adjacent). This could
happen due to the fact that the patches, even in short-circuit boundary conditions, still increase the mass
and the stiffness, slightly changing the response, thus improving the acoustic performance (this effect is
showcased in the article [15], where the responses of the patch-free plate and of a chosen configuration in
short circuit are compared).

• For the third mode (k = 5), 16 non-dominated solutions were obtained. Figure 7 displays these solutions on
the planes f1– f5 and f2– f5 alongside their respective resistances. The configurations obtained were able
to reduce the sound levels from 1.773 W (Table 3) to 10−4 ∼ 10−6 W . The saturation of resistances was
again noticed. The same phenomena from the previous mode happened, where the patches in the middle
did not have a resistance, thus reducing the acoustic levels due to change in mass/stiffness.

• For the fourth mode (k = 6), 3 non-dominated solutions were obtained. Figure 8 displays these solutions
on the planes f1– f6 and f2– f6 alongside their respective resistances. The acoustic levels were reduced
from 8.772 × 104 W (Table 3) to ∼ 10−2 W.

• For the fifth mode (k = 7), 14 non-dominated solutions were obtained. Figure 9 displays these solutions on
the planes f1– f7 and f2– f7 alongside their respective resistances. The configurations obtained were able
to reduce the RSP from 7.024 × 103 W to 10−4 ∼ 10−5 W. It was again noticed that some solutions had
saturated resistances. Solutions 6 and 9 had again patches with no resistances, similar to modes 2 (k = 4)
and 3 (k = 5).

Overall, each problem was able to generate solutions that effectively reduce the RSP for its targeted mode.
The results also suggest that patches should be placed where there is more relevant strain.

The multi-objective problem with 7 objectives (13) was initialized with a total of 53 solutions, which
correspond to the set of all solutions obtained in five problems (14) previously solved. The optimization result
obtained for problem (13) was a set with 1793 non-dominated solutions after a total of 10048 evaluations of
the objective function (in each of the evaluations of the objective function the value of the seven objectives
is calculated). It is important to note that the algorithm employs a cache that stores the value of the objective
functions of every evaluated solution until the current evaluation, meaning that if in a new iteration a previous
analyzed solution is considered, the values of the objective function do not need to be computed, thus reducing
the computational efforts. Since the goal in this work is to obtain the best solution that can reduce the overall
levels for several modes, it is important to compare the responses of the different modes equally. As such, the
response for each mode has been normalized by Eq. 15, with the solutions being then compared by the norm
of L1 (16), [27]. That is, norm of L1 is used to classify the solutions obtained in relation to the modes (the
smallest value of the norm of L1 corresponds to the best solution for the first five modes simultaneously),

A =
Ak,i − min

i
Ak,i

max
i

Ak,i − min
i

Ak,i
, (15)

L1 = min

(
7∑

k=3

Ak,1,

7∑

k=3

Ak,2, . . . ,

7∑

k=3

Ak, j

)

, (16)

where in Eqs. (15) and (16) A is the matrix of non-dominated solutions, k = 3, . . . , 7 are the objective
functions, i is the number of the non-dominated solution, and j is the number of non-dominated solutions.

Figure 10 presents the best solutions, within the 1793 non-dominated solutions, obtained after solving
problem (13) alongside their resistances, for the objectives f1 and f2 and for the norm of L1. Table 4 shows
the values of each objective function displayed in Fig. 10.
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Solution R (Ω)
1 3600
2 5400
3 11500
4 2700

Fig. 5 Non-dominated solutions in respect of damping versus the added mass ( f1) and versus the number of equipotential zones
( f2) for mode 1 ( f3) alongside their respective resistances

Solution R (Ω)
1 10100

15000
0

15000
3200

2 15000
15000
100

15000
15000

3 15000
15000

0
10000
2700

10 15000
15000

0
15000
12600

15 15000
15000

16 3700
1500

Fig. 6 Non-dominated solutions in respect of damping versus the added mass ( f1) and versus the number of equipotential zones
( f2) for mode 2 ( f4) alongside their respective resistances
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Solution R (Ω)
1 7400

15000
11800

2 0
4 11400
7 15000

0
9100

8 6700
6400

11 15000
15000
6000

0
15000
15000
10300

13 11800
13600

0
14800
5600

14 11400
15000

Fig. 7 Non-dominated solutions in respect of damping versus the added mass ( f1) and versus the number of equipotential zones
( f2) for mode 3 ( f5) alongside their respective resistances

Solution R (Ω)
1 2200
2 4100
3 2200

8600
8600

Fig. 8 Non-dominated solutions in respect of damping versus the added mass ( f1) and versus the number of equipotential zones
( f2) for mode 4 ( f6) alongside their respective resistances
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Solution R (Ω)
4 3300

3300
5 200
10 0

0
12000

0
0
0

1500
0

12 15000
0
0

15000
14 6700

6700

Fig. 9 Non-dominated solutions in respect of damping versus the added mass ( f1) and versus the number of equipotential zones
( f2) for mode 5 ( f7) alongside their respective resistances

Solution R (Ω)
3 4800
4 10100

15000
0

15000
3200

7 15000
12900

8 15000
15000
6000

0
15000
15000
10300

9 15000
15000
2800

0
15000

Fig. 10 Non-dominated solutions obtained in problem (13) in respect of the norm L1 versus the added mass ( f1) and versus the
number of equipotential zones ( f2) alongside their respective resistances

From Table 4, we notice that for modes 2 to 5 ( f4– f7) the solutions picked were able to reduce the
sound levels similarly to the solutions obtained in five problems (14). The same did not happen for the first
mode, as it was previously reduced up to 10−2 W. Still, these solutions are able to reduce the first mode from
� = 4.11 × 106 W to 100 ∼ 10−2 W while still reducing the noise in the remaining modes.

From the solutions displayed in Fig. 10, the RSP curves were calculated in the frequency range 0–1024
Hz, being displayed in Figs. 11 and 12. In these Figures, it is seen that for every solution (apart from solution 7),
it was possible to reduce the RSP across the different modes of the panel. It is important to note that the values
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Table 4 Values of the components of the objective function defined in (13) for the solutions displayed in Fig. 10

Sol no. f1 f2 f3 [W] f4 [W] f5 [W] f6 [W] f7 [W]
3 24 1 2.121 × 10+2 1.116 × 10−2 5.957 × 10−2 2.254 × 10−1 3.342
4 20 1 8.484 × 10−1 2.714 × 10−5 9.465 × 10−6 1.817 6.766 × 10−3

7 4 2 1.065 × 10+1 4.980 × 10−5 1.901 × 10−5 1.104 3.595 × 10−2

8 12 7 5.912 3.894 × 10−5 6.855 × 10−6 2.432 × 10−2 6.688 × 10−5

9 8 5 3.109 × 10−1 4.226 × 10−5 8.351 × 10−6 2.085 × 10−2 2.156 × 10−4

Fig. 11 RSP curves for the non-dominated solutions displayed in the plane f1–L1

of many resistances of these solution have saturated, meaning a higher damping effect should be obtained by
increasing the considered range.

Additionally, a multi-objective optimization problem was also defined, in order to improve the solutions
obtained in (13). This problem is defined in Eq. (17) and considers the norm L1 as an objective, while keeping
the first two. Problem (17) was started from the non-dominated solutions obtained in (13),

min F(x) = (
f1(x), f2(x), L1(x)

)T

s. t. xi ∈ [0, 1] , i = 1, ..., 9

x j ∈ [0 : 100 : 15000] �, j = 1, ..., 13. (17)

A total of 11 non-dominated solutions were obtained, with some of them displayed in Fig. 13 in the planes
f1 − L1 and f2 − L1, besides their respective resistances. Table 5 shows the values of each objective function
from problem (17) of the solutions displayed in Fig. 13. Table 6 displays the RSP for these solutions in each
of the first five modes.

When comparing the RSP from the solutions obtained in problem (17), displayed in Table 6, with the
solutions obtained in problem (13), shown in Table 4, we notice a significant improvement in the first, fourth,
and fifth modes, without affecting the remaining two.

The two configurations 8 and 4 from Fig. 10 and the two configurations 11 and 7 from Fig. 13 were chosen
in order to compare both RSP curves, where the first two have the same f1 and the last two have the same
configuration with different resistances. Figures 14 and 15 show the RSP curves for these points, respectively.
In both cases, the solutions obtained by solving problem (17) had lower responses for the first five modes
than the ones obtained in problem (13), meaning that this approach is capable of generating solutions that can
reduce the overall response of the plate for the first five modes.
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Fig. 12 RSP curves for the non-dominated solutions displayed in the plane f2–L1

Solution R (Ω)
3 4800
6 12800

2600
800

15000
6800

7 5500
1200
800

15000
7300

8 7200
14100

9 15000
15000
1300
15000
5800

10 4800
15000
15000
3700

11 15000
6900
700

15000
9600

Fig. 13 Non-dominated solutions obtained in problem (17) in respect of the norm L1 versus the added mass ( f1) and versus the
number of equipotential zones ( f2) alongside their respective resistances
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Table 5 Values of the components of the objective function defined in (17) for the solutions displayed in Fig. 13

Sol no. f1 f2 L1

3 24 1 5.746 × 10−2

6 16 5 6.861 × 10−5

7 20 5 6.057 × 10−5

8 4 2 1.278 × 10−4

9 8 5 8.798 × 10−5

10 8 4 1.052 × 10−4

11 12 5 7.416 × 10−5

Table 6 RSP for the solutions of problem (17) displayed in Fig. 13

Sol no. Mode 1 [W] Mode 2 [W] Mode 3 [W] Mode 4 [W] Mode 5 [W]

3 2.121 × 102 1.116 × 10−2 5.957 × 10−2 2.254 × 10−1 3.342
6 1.457 × 10−1 3.125 × 10−5 4.811 × 10−6 3.949 × 10−2 7.360 × 10−4

7 1.226 × 10−1 2.759 × 10−5 3.881 × 10−6 4.056 × 10−2 1.555 × 10−3

8 1.578 × 10+1 4.678 × 10−5 1.934 × 10−5 9.776 × 10−1 2.884 × 10−2

9 4.390 × 10−1 3.903 × 10−5 9.562 × 10−6 6.476 × 10−2 1.230 × 10−3

10 2.139 × 10−1 4.608 × 10−5 1.535 × 10−5 6.777 × 10−3 7.972 × 10−4

11 1.860 × 10−1 3.335 × 10−5 6.505 × 10−6 4.198 × 10−2 1.855 × 10−3

Fig. 14 RSP curves for solution 9 (Fig. 10) and for solution 11 (Fig. 13)

Figure 16 displays the RSP curves of the best solution in terms of noise attenuation obtained from problem
(17) and the one with the best solution obtained in the previous work [15]. It is important to highlight that the
piezoelectric material and the interval of the resistances used in each work was different. Still, we can see that
both approaches were able to generate solutions that can reduce the targeted modes to similar levels.

As for the computational efforts between both works, it should be of the same order of magnitude as the
same optimization algorithm is used.
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Fig. 15 RSP curves for solution 10 (Fig. 10) and for solution 5 (Fig. 13)

Fig. 16 RSP curves for the best solution (sol. 4) obtained in problem (17) and the best solution obtained in the previous work
[15] in terms of maximum damping

6 Conclusions

This paper addressed the issue of noise reduction of laminated sandwich panels with a viscoelastic core and
surface-bonded piezoelectric patches with purely resistive shunted damping networks. The RSP was evaluated
from Rayleigh’s integral. A multi-objective optimization problem was solved in order to obtain the optimal
position of the piezoelectric patches in order to reduce the radiated noise in the first five modes. As such, seven
objectives were considered: minimize the added mass, minimize the number of resistive circuits needed (by
minimizing the number of equipotential zones) and the RSP response amplitudes of the first five modes. In
the end, the norm of L1 was used to compare the responses of each solution. This methodology was proven
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in order to obtain the configuration of the patches that reduce the overall response of the panel within the
considered frequency range. To finish the optimization process, the comparison criterion used to rank the best
solutions for the five modes, norm of L1, is used as an objective. In other words, we end the optimization
process with the resolution of a multi-objective problem with three objectives (replacing from the problem
with seven objectives the last five objectives, which correspond to the first five modes, by a single objective, the
norm of L1, while keeping the first two). Another relevant aspect to point out is that no inductances were used
in this work. As such, the influence of the inductances in the problem presented here could be an important
issue to address in a future work.
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