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Abstract The dynamic fracture characteristics of mode-III cracks are investigated. This is a crucial problem in
piezoelectric devices. The theoretical solution to this problem is described using the integral-transform method
(Laplace and Fourier transforms) and the Chebyshev point method. A crack-propagation model is provided to
obtain the stress and electrical-displacement fields near the crack tips. The results show that crack propagation
is related to the electromechanical coupling coefficient and film thickness. The effect of film thickness has not
been considered in previous literature. In the case of multiple cracks, according to their mutual effects, the
nondimensional DSIF inside the crack tip is more significant than that outside the crack tip, regardless of the
number of cracks. When the film thickness is small, the change in the DSIF is significant, indicating appropriate
circumstances, and a thinner film thickness is more conducive to safe design. Negative electrical-displacement
loads always prevent crack propagation, whereas positive electric-displacement loads can promote or prevent
crack propagation. Numerical examples are provided to highlight the result.

1 Introduction
1.1 Background

Owing to their electromechanical coupling behavior, piezoelectric materials have been widely used in advanced
instruments. However, fractures can cause safety accidents. Therefore, cracks, which represent their main
disadvantages, have been extensively investigated [ 1-10]. With the emergence of piezoelectric bimaterials, the
behavior of interfacial cracks has raised significant concerns [11-13].

However, all the above works have focused on static propagation. Recently, many researchers [14, 15]
have studied the dynamic fracture of cracks. Narita [16] researched a crack in a piezoelectric layer. The
results showed that designing piezoelectric devices was feasible and practical. The DSIF was obtained from
Gu [17]. A semi-infinite interfacial crack and permeable cracks between two piezoelectric materials were
analyzed [18, 19].

Piezoelectric films and coatings have recently emerged, which allow for the design of more sophisticated
materials and devices and expand the range of piezoelectric material applications [20-29].

Piezoelectric thin-film/substrate materials are widely used in modern life. However, due to mismatched
characteristics, piezoelectric thin-film/substrate materials tend to fracture at the interface under in-service load-
ing conditions. Nonetheless, most of the abovementioned studies on the fracture of piezoelectric biomaterials
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have been focused on large grain sizes, and a few studies have been conducted on the fracture of micrometer-
scale piezoelectric thin films, especially the dynamic analysis of multiple cracks in a piezoelectric thin film/
substrate. In addition, stress, thin film thickness, substrate thickness, and impact time play an essential role
in the structural safety design of piezoelectric film/substrate. Thus, the investigation of these factors with the
dynamic expansion of a piezoelectric film/substrate represents the innovation of the present study.

1.2 Outline

This paper is organized as follows. Section 2 presents in detail the constitutive equations and mixed initial
boundary conditions. Section 3 provides the integral equations and calculates the DSIF under anti-plane
mechanical stress and electric displacement impact loading. The DSIF under far-field forces and electric
impact loading are provided in Sect. 4. The numerical examples are discussed in Sect. 5. The conclusions are
provided in Sect. 6.

2 Problem statement and formulation

Figure 1 shows that the piezoelectric thin film and substrate occupy the domains €21 and €23, respectively.
The film and substrate thicknesses are d; and d», respectively. Multiple interface cracks appear in the same
direction and belong to this interval (ax, by) (k = 1, 2, ..., n), where a; and by denote the left and right ends
of the crack, respectively. We assume that the crack is in static equilibrium when ¢ < 0. The crack propagation
velocity is v. The crack tip is located at x = vt (¢ > 0).

The dynamic anti-plane equilibrium equations of the piezoelectric thin film/substrate are written as

my(Pw  *w m (0% TP\ (07w .
wloxz Tarz ) Ts \ox2 Tavz ) TP o M
2 2
(m) 0“w 0“w (m) d d) ¢)
°15 (ax2+ay2) (axZ ar2) =% )

where w = w(x, y, t) and ¢(x, y, t) represent the displacement components and the electric dielectric con-
stants, respectively; p™ is the mass density; and m = 1,2 signify the upper and lower materials, respectively.
A moving coordinate system is introduced as

x=X-—vt,y=Y. 3)
By using the transformation, Eq. (1) may be expressed as follows:
271 52 2 (m) ;02 2 2 /92 2
d a e a 0 1 a d
o (2) |22 s ¢+—¢ (=) (&2 2% @)
Cm axz = 9y? i’z) 9x2  9y? cm 912 xat
(m) ;a2 2 (m) 2
0w 0 a
) ()
4’2) ax2 9y (’”) ax2  9y?

1
where ¢, = (ci’f) / ,0('”)) ? is the shear bulk wave velocity.

3 Anti-plane mechanical stress and electric displacement impact loading

The mixed mechanical boundary conditions of the issues become:

Ty, (x,07,1) = 7y,(x,07,1) = —t0H (1), x € (ar, bp), (6)
Dy(x,()+,l‘) = Dy(x,07,1) = =DoH(t),x € (ax, by), @)
w(x, 0t 1) = w(x,07,8),x ¢ (ax, br), (8)

¢(x,0%,1) = ¢p(x,07, 1), x & (ak, by), ®)
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Tyo (x,0%,1) = 7y,(x,07, 1), x ¢ (ax, by), (10)
Dy(x,0%,1) = Dy(x,07,1),x ¢ (ak. br), (11)
w(x, yH 1) = wx,y 1) =0, x> +y> - oo, (12)
¢(x, ¥ 1) = ¢(x,y7,1) =0, x* + y> — oo, (13)
Ty, (x,d1, 1) = Ty (x, —dp, 1) =0, (14)
Dy(x,d1,1) = Dy(x, — da,1) = 0, (15)

0, t <O,

where Dy is the electric displacement, 7 is the stress, and H(t) = L >0

We assume that the piezoelectric biomaterials are at mechanical and electrical rest at t = 0, which is

dw(x, y,0
w(x,y,0) =0, %=0, — 00 <X,y < +00. (16)
3¢(x, y,0
¢(X,y,0):0,%:0,—oo<x,y<+oo. 17)

Following Li and Mataga [14, 15], a function is written as
(m)
e
p=¢— = (18)

(M)
€1

3.1 Solution to the problem

The Fourier transform on x and Laplace transform on ¢, we obtain [30]
+00 +00 .
w*(,y,p) = / / w(x, y, e Pldre**dx, (19)
—00 JO
+00 +00 .
¢*(C.y, p) =/ / P(x,y, e P dte' dx, (20)
—o00 JO

+00  p+00 ) oM ptoo
¢*(;,y,p):/ /O P(x,y,0)e Pdre' ¥ dx — (m)/ / w(x,y, e P'dre' dx, 1)
—00

€1

where ¢ = {1 + 1§, is complex.
According to the theory at infinity, we obtain the expression

1 +00 )
w¥(x,y, p) = E/ (Aime® + Byye m)e'0%de, (22)
—00
(m) +00
| 1 icly lelyy,—icx
¢ ('x y p) (m)w (x y p) + g (AZme + BZme )e d§9 (23)
€11 -

[fn—(2)21¢ 2+ L . 4 2ing
where am(é’—) B \/ fm sz e Sk\/é— - lp/(cm + U)\/é- +lp/(Cm —v) = am+(§)am (;) Sm =

(m) (m)
J1I—=(@ / cm)? fu=1+ e(l,fl)",(m), Ay, and By, are unknown functions satisfying the loading displacement

w*(x, y, p), and Ay, and Bzm are unknown functions satisfying the electric field ¢*(x, y, p).
The boundary conditions, i.e., Egs. (6—15), can be assumed to take the form

_ 70
‘C;)kz(xa 0+9 p) = ‘Cjz(-x’o sp) - _;9 X € (ak9bk)9 (24)
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* + * — Do

Dy(-xao ’p)sz(an 7p)=_77 Xe(ak,bk), (25)
w*(x,0%, p) = w*(x,07, p), x & (ax, by), (26)
@*(x,0%, p) = ¢*(x,07, p), x ¢ (ax, by), 27

T, (x,0%, p) = 75, (x,07, p), x ¢ (ak, by), (28)
D;(X,OJ’,p) = D;(X,Of,l?), x ¢ (ak, br), (29)
T;z(x’dlap):t;z(-xv _d27p):O7 (30)
D;(X,dl, p) = D;(X, —dy, p)=0. (3D

According to the geometric equation [28], we have:

m) 0w om0
r;‘z(x,y,p)—c44 dy €5 dy

(m) (m)e(m) y _ —amyy,—I{X
=5 (1 + (m) )(Almame " Bipame " )e d¢

+ o / {2 (Aam L1 — By lgle e ¥ de, (32)
D3x, v p) = 65 f (Aznle 1€l = Banlg e )7 ae, (33)
Substituting Egs. (28-31) into Eqgs. (32-33), respectively, we obtain:
RO
Cﬁ) 1+ 15(1)15 oq(A”e“‘dl _ B”e—am) +e(115)|§|<A216|§|d1 _ lee*'“"l) —o, (34)
e( )6(2)
zﬁ) 1+ 15(2)15 Clz(Alze’_“zd2 - Blzea2d2> + 6(125)|C|(A22€_‘§|”l2 - Bzzemdz) =0, (35)
11
&) [¢1(A2i €1 — Bye7EH) 0, (36)
—e 7 121(Appe ™€ — Bryelfld2) = 0, (37)

WD
1
o} )<1 + 15(1)15 )al(All — Bip)+e{5 |t 1(Agr — Bay)
€1l

(2) ()
2 € 2
= ciﬁ(l * 15(2)‘5 Jar(A1z = Biz | +€21¢1(A22 — B, (38)
11
—811)|§|(A21 Boy) = —811)|§|(A22 — B). (39
According Eqgs. (34-39), we have:

Azt = Byie I By = Appe K12, Ay = Biie 14, By = Appe 2%, (40)

8521)(1 — ¢2ltlda) 8521)(1 — ¢ 2ICldyy
By = oo B Bu =g —— (41)

g1 — e20cldr) g1 — e20cldr)

This problem is solved more efficiently by using the continuous distribution function to simulate collinear
cracks. The density function is introduced as follows:

d
huwo(x) = [w(k)(x 0*, p) — wy(x,0” ,p)] k=12,...,n, 42)

d _
ho(x) = a[(ﬂ(k)(x,OJr,P) —pw(x, 07, p)], k=12, ....n. (43)
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Substituting Egs. (26-27) into Eqs. (42—43), respectively, we have [10]:

. bk
1 .
A1+ B — A — Bp = Z/ huk)(s)e'**ds = ny, (44)
6(1) 6(2) “ i bk ‘
—5 (A1 + Bi1) — =35 (A12 + Bio) + (o1 + By — Az — By) = —/ hyu ()€’ ds = 1. (45)
&1 &1 § Ja
Solving Egs. (40—41) and Eqgs. (44-45), we obtain:
Rini + Rom R3ny + Rym Rsn1 + Remo Ryn1 + Rgmo
Ay =————— Bi=———-,Ap=—"——,Bp=—-—71—-, (46)
R R R R
Rony + Riom2 Riim + Riom Rizm + Riam Risn1 + Riena
A = — QR By = —r Axp = —r By = — =z 47

The values of R and R, (n =1, 2, ..., 16) are given in the Appendix.

The unknown functions Ay,,, A2, Bim and By, (m = 1, 2) depend on 11, n,. If we determine the values
of 11 and 77, then we can obtain the stress and electric displacement expressions. We know that the values of
n1 and 1, rely on the density functions /), and hpx) (k = 1, 2, 3. .., n). Therefore, we need to solve for
the density function Ay ), and hpgy (k =1, 2,3 ..., n).

Using Eqgs. (32-33) and Eqgs. (42-43), the equation expressions of the upper half plane are:

1 +00

ioge*”
27 J_so b1 R¢

1 [ree (1)l|§|€‘m b ; bi ; i
+ —/ s ke [(R9 — Rll)f R (s)e'**ds + (Rip — R12)/ h(p(k)(S)e’“dS]e rdg
ay ai

27 oo

by . by . )
|:(R1 — R3) / B (s)e'*ds + (Ry — Ry) / h(p(k)(s)e’“dsi|e_’§xd§
ay Ak

1 by, +00 iapey ..
=— [ / p1(R1 — R3) Rg_ et ")di]hw(m(S)dS

T Sy s
1 by +00 oY1
*5o / iRy — Ry 2L g_ et ")d;}hw(k)(s)ds
arp LJ—o0
1 (b e i101eY o
* o / e(l)(Rc) - Ri)—— { et x)dé“}hw(k)(S)ds
arp LJ—o0
L r > g HE1e™ i)
+ E es (R19o — R1» ) RC d¢ hw(k)(s)ds
arp LJ—o0
= (48)
1 by |:f+ ) l|§|e|§|y i(s—x)
- — g1/ (Rg — R11) et d§i|h 1 (s)ds
T . . 11 R¢ w(k)
1 b oo D |§| Iy pif(s—x)
- — Rio — Ry STHAC |k d
. |:Loo 811( 10 ) RC Ci| (p(k)(s) s
D
=-— 7 49)

M,
e e

where p; = cfm) 1+ - )15
8

Now, we transform Eqs (48) and (49) into the integral Cauchy nuclear equation of the first kind:

by jog ey by iope¥!
H z;(s X) / / H IC(S X)
- [/ 11— R dé’} wi)(s)ds + — — R d¢ |hew(s)ds

1 by +00 l|§|€ay o +00 l|:|€ o
— H—— iL(s—x) / / H if(s—x)
+ [/ 2 - e d;]hw(k)(s)ds + 5 " 4 c e d{ h(p(k)(s)ds

27 Jap —00

__b (50)

- ’

p
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1 by +00 i Icly | 1 by +00 i ¢y |
_ [/ HS&elg(s_x)d{:Ihw(k)(S)dS _ _/ |:/ H6&el§(s_x)d§i|h¢(k)(s)ds
21 gy —o0 R¢ 27 Jay -0 R¢

__Do (51)

1 1
where p1(R1—R3) = Hy, pi(Ro—Ry4) = Hz,EEIS)(R9—R11) = H3,e§5)(R1o—R12) = H4,8§1)(R9—R11) = Hs,
811)(R10 — Rpp) = Hg.
On the crack surface, we have:

/bk /+°° HY 1 e, ) Vo) /”k /+°° Hy 1 e, ) Voo 53 70
— + , + —= + , s)ds = —m—,
a —0 R*s—x 1) )R OTIE ai —00 R*s—x 2R e p

(52)
bi +00 H3* 1 by +oo Hf 1 Do
— +h3(x,s) |h s)ds + — + ha(x,s) |h s)ds = —m7—,
/ak (/_OO Re s 5 Hhal )) w(k)(8) /ak (/_oo Re 5 Hhal )) (k) (8) »
(53)
where
2 2) (2) 2 (1) (D ?2) (D (2)
€11 €15 €581 — €581 e €15 ¢
Y =sip <S2p2(_1) e 5D ~ s\ 2P TP G <2)
fu 1;(2)8(1)_ (1)8(2) (1)8(2) o ‘i
HY = —81171% — €5 (111)(S2P2 +51p1)s
e
(e8] (2)
2 e e
Hi :‘9(11) P2 (15) +S81p1—= (2)
€1 S
o — @
4 = &[[(s2p2 +s1p1),
[N (2) (D52 (2)
(ej<e £iv) 5
Rf = — BT ES O B ), (54)
M _ 2 (1)
811811811 11
H| + H; I‘I”<
hi(x, s) = —Rr "R sin(¢ (s — x))d¢,
0
® (H>+ Hy 1‘1>’<
ha(x, s) = R T e ) SinC(s —x)de,
0
o Hj H*
h3(x, s) = R R sin(¢ (s — x))d¢,
0

ha(x, s) = /OOO (% - %) sin( (s — x))d¢.

Considering the boundary conditions and superposition principle, Egs. (52) and (53) can be expressed as:

Xn:/bk L (s)ds+/bk Bl o) (s)ds)
o Vo \R* sk —x; 1(X 5 Sk | w(k)(Sk)d Sk e R 5 —x; 2WXjs Sk) ) (k) Sk )ASk

=—n3, xj € (@b j. k=12 . .n, (55)
p
; / L i B (s1)d +/kk Hy 1 s Vo sod
i — Xi,$ s )ds
= \Jy R* Sk — X 5WXjs Sk lw(i) Sk )d Sk o \R*sc—x; 6{Xj5Sk) J k) (Sk)ASk
1 Do .
= (1) » —, xj € (aj,bj), j,k=12,...,n. (56)

€11

By transforming, we have:

hwy(X) = g1 (x),
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hoo(x) = g2(k)(x),
hi(x,s)=Pi(f,D), (i=1,2,3,4).

For the convenience and accuracy of numerical calculation, the normalized quantities are defined as:

by — ax by + ay

mey, = 2 > Moy = (k = 1, 2’ .. ~7n)7 (57)

fiom B0 g = 2T =12, ), o
mo, moy

Using equations (57) and (58), the integral equations (55) and (56) can be expressed as follows:

2":/‘ (H* o +mo, P1(f, L)) g0 () dlk

k=1 R* molic +no, —mo, fj —no,

+ Z f ot mojnoj T+ Mo P e dle = S (59)
Z/ R* moylg + o, niolkno f— o, +mo, P3(f. li))g100L)dl+

Z/ R* mrog Ik + 110, ni()j o fj —mo, +mo, Pa(f, ) g2 (Ti)dly = —NT?O (60)

To obtain the dislocation densities on the surface of the interface crack, we need to solve the Cauchy
singular integral equation. We can observe that the dominant part of the integral equation has a Cauchy kernel.
We find that the dislocation density functions g (lx) and gox)(lx) (k =1, 2, ..., n) in Egs. (59) and (60) have
square-root type singularities. We can express that g1x)(lx) = (1/,/1 — l,f)~h 100w To-(1/ p), where hygy(lk)
is a continuous function defined in the interval [—1, 1]. Therefore, the following equations are obtained:

hiwr) 7o

g1olk) = T—, (61)
J1- 7
hagy () Do 62)

&) = .
J1=1 7

According to the Chebyshev point method, Egs. (59) and (60) can be transformed into the following
algebraic equation:

N n
moy,
— + Pi(fig,l h l
N Z: ¢ ;( R* mo kg +no, —mo; fiqg — no; o P1ia- Do)
*
2 moy
— +mo, P2(fig, lkoDhowy (k@) = —1,
R* mOkle +ny, — mOj qu - I’l()j g Ja>TkQ (ke (63)
m()k
— X (( +mo, P3(fig: lko) o (ko)
Z QX_: R* mo, kg +no, —mo, fiqg — no, eI
H4 mo,
— +mo, Pa(fig: lkoDhogy (ko)) = —1,
R molkg +no, —mo, fig —no, L HReTHOTEL (64)
N N
> xohwli) =0, Y xohawlke) =0, j =12, ...n,g =1,2, ... N, (65)

0=0 0=0



712 Y. Zhang et al.

where xo = xny = %’Xl = =xN=1=1,
2q — )

lro = cos il
N KTy

fiq = cos
N is the number of nodes in the quadrature formula. f;, and /g are zero points of Chebyshev polynomials of
the first and second kinds, respectively. According to Egs. (63—65), we can find the solutions of /1)(lx) and
hoy k), so that the stress and electrical displacement are obtained.

3.2 Intensity factors
According to fracture theory, when the DSIF reaches the fracture toughness, the crack will expand, otherwise,

the crack will not expand or stop growing. Therefore, it is essential to calculate the DSIF accurately.
According to [31, 32], the DSIF Ky and electric displacement intensity factors Ky are expressed as

Kiifar) = V2m(ax — x),_, 4, _oTyz(x.0, p), (66)
Kiy(a) = v/2r(ar — x),_, 4 _oDy(x.0. p), (67)
Kiii(bi) = V2 (x = bic) g 40 Tyz(x. 0, p), (68)
Kiy(be) = V27 (x = bi), 00 Dy (%, 0, p). (69)

According to Eqgs. (59-62), we have:
w0 Hy i higo(=1) N T0H) i hao(—1)

lim t,,(x,0, p) = im im , 70
x_)ak_ yZ( p) pR* lp—>—1— l]% _ 1 pR* l—>—1— /l’% _ 1 ( )
DoH* h -1 DoHF h —1
lim Dy(x,0,p) = ——3 lim wEh | Doby - 2D (71)
x—>a; PR* h—-1- l]% -1 PR* ——1- /l’% 1

HF —h 1 Hr —h 1
lim 7.(6,0, p) = "0 jim 0@ M Zhaa @) (72)

x—>b+ PR* —1+ /lg —1 PR* —1* /l]% 1

DoH* —h 1 H* —h 1
lim Dy(x,0,p) = 205 jipy @ ofs e @) (73)

x—b+ pR* [—1* 21 pR* [—1* 2 _1

k Vi
Using the inverse Laplace transform, we have:
Km(ar) = to/mai(Z1x(t) + Zok (1)), (74)
Kiv(ar) = Do/mar(Zsp(t) + Zar (1)), (75)
Kum(by) = —tov/wbi(Zsr(t) + Zer (1)), (76)
Kiv(ar) = —Dooy/Thi(Z71(t) + Zgi (1)), (7
where
Zi(t) = L Hi higy(—DeP'dp, Zxu(t) = L/ H ha(—De?'dp,
27i Jpr PR* 2wi Jg, pR*
1 HF 1 HF
Z3(t) = — S hig(=DeP dp, Za(t) = =— 2 oy (—1eP" dp,

2ni Jp, pR* 2ni Jp, pR*

HF Hi H¥
Z5i(t) = 557 [5, srehiao(De?'dp, Zat) = 2 [p, saehaw(MeP dp, Zu() = 5z [, sazhia

H*
(DeP'dp, Zs(t) = 557 [, zho(De? dp.
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When ¢ — o0, according to Eqs. (74—77), we have:

Hy Hy
Km(ax) = w0/ ax Fhl(k)(_l) + Fhﬂk)(—l) , (78)
H H
Kiv(ak) = Do/mai Fhl(k)(—]) + FhZ(k)(—l) , (79)
HF Hf¥
Ku(br) = —t0v/7wbi R—}khl(k)(l) + R_ih2(k)(1) , (80)
H; H}
Kiv(bi) = —Dov/ 7 by Fhl(k)(l) + FhZ(k)(l) : (81)
The nondimensional DSIF and electric displacement factors can be expressed as
f() = Km(,v)/ Kui(2,0) (82)
g() = Kv(t,v)/Kiv(t,0) (83)

where Kjpi(¢, v) and K1y (#, v) are the universal function for the DSIF and electric displacement intensity factor,
respectively; K(¢, 0) and Kpy(¢, 0) are the DSIF and electric displacement intensity factor for a stationary
crack, respectively.

4 Far-field forces and electric impact loading

For piezoelectric media, the boundary conditions of the crack are well-known. The solution to a piezoelectric
crack problem involves a geometrically and physically discontinuous problem, and the actual electrical bound-
ary condition should be that the normal electrical displacement of the media is equal to the nondimensional
electrical displacement of the defect interface. However, few solutions can be obtained under these bound-
ary conditions. Therefore, according to different defects, they can be divided into impermeable cracks and
permeable cracks after approximate treatment.

The nondimensional electrical displacements on the upper and lower surfaces of the crack are considered
permeable cracks. The surface charge of an impermeable crack is considered to be zero, which is defined as
the D-P boundary condition.

The crack growth problem under stress and electric displacement impact loading (7o H(¢) and Do, H (1))
at infinity is investigated. The boundary conditions of Egs. (6) and (7) are changed into

T_VZ(x90+’ t) = TyZ(x»0_9t) = _TOOH(t)’ X € (ak’ bk)s (84)
Dy(x,0%,1) = Dy(x,07,1) = D* — Do H(t), x € (ax, by), (85)
0, t<0, .. . . .
where H(t) = L >0 D* is the electrical displacement in the crack plane.
Taking the Laplace transform of Eqs. (84) and (85), we obtain
(0%, p) = (6,07, p) = =2, x € (ax. by, (86)
) P
* + * - Dy — D
Dy(-x’o ’p):Dy(an 7p):_T’ X e(ak’bk)' (87)

According to the above derivation method, the DSIF and electric displacement intensity factor of a; and
by are expressed as

TooHff higy(—1) . Too Hy " hago(—1)

Iim 7,,(x,0, p) = lim ) 88a
x_)ak_ yZ( p) pR* lp—>—1— l]%—l pR* lp—>—1— l]%_] ( )
Do H Riao(—=1)  DeoH) -1
lim Dy(x,0,p) = ——2 1lim D | Deolly - h2nCED (88b)

X_)ak_ pR* lp—>—1— ll%_l pR* lp—>—1— ll%—l

Too H —h 1 Too HY —h 1
lim 7y:(x,0, p) = =L lim @ | Ty ) T2 (88¢)
x—b+ pR* L—1* 2_1 pR* L—1* 2_1

k

Do Hi YR  teoHE Y o (1
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vt

Fig. 1 Multiple interfacial propagating cracks between the piezoelectric thin film /substrate

4.1 Impermeable cracks (D-P boundary condition)

For impermeable cracks, the electrical displacement within the crack is negligible because the dielectric
constant of the piezoelectric material is 3—4 orders of magnitude larger than that of air or vacuum. D* in
Eq. (85) satisfies the following condition [5]:

D* =0. (39)
We have
Ki(ax) = toon/mar(Zix(t) + Zo(1)), (90a)
Krv(ar) = Doo/Tax(Zak(t) + Zai (1)), (90b)
Kum(bi) = —Tooy/Thi(Zsi(t) + Zor (1)), (90c)
Kiv(ax) = —Doo /T (Zax(t) + Zgi (1)), (90d)
where Zi(t) = 5[5, ,,”—,ihuk)(—l)ewdp, Zon(t) = 5[5, p”—,ihz<k><—1)e1"dp, Z3(t) = 5= [5,
pH—éhuk)(—l)emdP, Zu®) = 57 fp %hz(k)(_l)eptdp, Zs(t) = 3 [p pH_Ii*hl(H(l)emdp’
Za(t) = 5 [y mha(Deldp, Zu(t) = 54 [p hioDel'dp. Zs(t) = 5 [y 1o
hogyyeP' dp.

According to Egs. (90a-90d) and the virtual crack closure technique, we can obtain the energy release rate
(33]

G(ax) = T(ZZH K+ @ KK + @3Kyy), ©On

where w| = Z%(’),

_ Zu)+ Zu)

—~

Z1y (1)
w3 = — s

- ‘Zlk(z) Zoi(1)

| Z3k(t) Zax (1)

= =

One can see

Km(ar) = too/mar Y1x(2), (92a)
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Kiv(ax) = Doon/mag Yok (1), (92b)
Ki(bk) = —Tooy/ i Y31(0), (92c)
Kiv(ak) = —Dooy/ bi Yar (1), (92c¢)
where
e =5 [ [ —1)}1”@,
2 Br
H*
Yor(t) = —/ |: *hz(k)(—l)]ep'dp,
7t JBr
1
ruw == [ [ }e”’dp,
27‘[1 Br
Yar(t) 1 / H3 i
= — e .
a 2mi Br pR* P
4.2 Permeable cracks
The joint degree of electromechanical load can be expressed as
e15Doo/€11T00 = A, (93)

where A is a parameter.
For permeable cracks, the electric potential on the upper and lower surfaces of the crack is continuous:

h(p(k)(x) =0. (94)

By applying the inverse Laplace transform, the DSIF and dynamic electric displacement intensity factor
are written as

K(ar) = /21 (ax = x),_ g _0Tye(x,0,1) = /TarToo S1x (1), (95)
Kiv@n) = V2 =) g Ds3,0.0) = 1 oS0, 96)
Kui(br) = v/27 (X = bio)g 40 Ty= (6. 0.1) = /T b Too S3i(0), 97)
Krv(be) = 20 = by g Dy, 0,1) = f—ll; bt Sak (1), (98)

Hr Hy
where S1(t) = # I p_Rl*hl(k)(_l)epth» Sor(t) = ﬁ I p—,%ﬁhl(k)(—l)ep’dp,

S3(t) = %m I3, %hl(k)(l)eptdlk Sai(t) = 21? I %hl(k)(l)e’”dp-

From the previous results, we find that the DSIF and dynamic electrical-displacement intensity factors are
related to the applied impact stress and material properties. The singularity of the electrical displacement is
derived from the electromechanical coupling effect. This conclusion is consistent with that in [31].

5 Numerical examples

This section consists of three parts. In the first part, numerical validation is performed with previous work
to verify the correctness of the theoretical derivation. In the second part, numerical examples of double- and
triple-interface cracks are presented. The influence of material constants, v and ¢/ fy are discussed. Our research
yields some new conclusions. The crack length is 2a, and the thickness of the single material is denoted by d.
The value of #y is 1 s, and the unit of #/#y is ms. The electromechanical coupling coefficient is represented
by k. In the third part, the influence of 7 and Dy, on the dynamic energy release rate are discussed.
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Fig. 2 The nondimensional function f(v) versus v/c for the following piezoelectric thin film/substrate materials: a PZT —4/PZT—
5H and b BaTiO3/PZT65/35

5.1 Numerical validation with the previous results

Some numerical validations are performed with previous results [17]. We choose PZT —4/PZT — 5H and
BaTiO3/ P ZT65/35 for our research. The corresponding analysis diagram is presented in Fig. 2. We show the
change in the nondimensional function f(v) with two different piezoelectric film thicknesses. Each is plotted
against v/c for two different piezoelectric thin film/substrate materials. The larger the ratio of the crack size
to material thickness is, the more significant the nondimensional function f(v). In other words, the thinner
the film is, the higher the nondimensional function f(v). We also find that the smaller the electromechanical
coupling coefficient is, the larger is nondimensional function f(v). This result is consistent with the result in
Ref. [17].

Figure 3a—d show the change in the nondimensional function f(v) at five different piezoelectric film
thicknesses. Each is plotted against v/c for four different piezoelectric thin film/substrate materials. When the
film thickness is smaller, the nondimensional function f(v) increases. The nondimensional function f(v) is
controlled by the piezoelectric film thickness, i.e., the thinner the film thickness is, the greater its influence on
the nondimensional DSIF. In addition, the variation law of crack growth is consistent with that in Refs. [14]
and [15].

Figure 4a shows the nondimensional function f(v) of a PVDF thin film/PZT — 5H substrate and the
ratio of the piezoelectric film thickness to crack length. Figure 4b shows the nondimensional function f(v) of
a PVDF thin film/PZT — 4 substrate and the ratio of the piezoelectric film thickness to crack length. Under
four different conditions, the normalized stress intensity factor increases with the decrease in dj / 2a. When
the substrate thickness is constant, the thinner the film is, the more pronounced the effect. By comparing the
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Fig. 3 The f(v) versus the nondimensional velocity v/c for the following piezoelectric thin film/substrate materials: a PZT-
4/PZT-5H; b PZT-4/BaTiO3; ¢ PZT65/35/PZT-5H; d BaTiO3/PZT65/35

two figures, we can observe that when the ratio of the film thickness to the substrate is constant, the influence
of a smaller electromechanical coupling coefficient on f(v) becomes more apparent.

Figure 5a shows the nondimensional function f(v) of a PVDF thin film/PZT-4 substrate and the ratio of ¢
to #. Figure 5b shows the nondimensional function f(v) of a PVDF thin film/PZT — 5H substrate and the
ratio of 7 to fg. We can observe that f(v) increases as the dimensionless time increases. We can clearly see that
when the film thickness is constant, the thicker the substrate is, the lesser its influence on the nondimensional
function f(v). The dynamic nondimensional stress intensity factor reaches a peak and then tends to static
values.



718 Y. Zhang et al.

(C) R T T T T T T T
- —~ .. - ad =4
L - < a/d]:2
L ~_“‘~\\ +4.,' ' +  ad=1 |
_____________________ N N - - - ad,=0.6
0.5
z
&=
I I
0
d) Vo T T T T T T T
i ald =4
. a/d]:2
= + o _
RIS ++++. . +  ad=l
___________ .l N - - - ad,=0.6
------------- DT e e 2/d 0.2
z
-~ =
0.5+
I I
0

Fig. 3 continued

5.2 The double- and triple-interface cracks

‘We now focus on the multiple-fracture solution: On this basis, the interaction behavior of interfacial cracks under
impact loading is investigated in detail. Figures 6 and 7 show the numerical results.

Under dynamic loading, f(v) of the piezoelectric thin film/substrate with double interface cracks is obvi-
ously different from that of a single crack. The variations in the nondimensional DSIF against d;/(2a) as a
function of crack distance d;/(2a) are computed.

In the case of multiple cracks, according to their mutual effects, the nondimensional DSIF inside the crack
tip is more significant than that outside the crack tip, regardless of the number of cracks. Figure 6a shows that
when the film thickness is constant, the larger the crack size is, the larger its influence on the nondimensional
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Fig. 4 Variations of f(v) verses d;/(2a) for different piezoelectric thin film/substrate materials PVDF thin film/PZT-5H substrate
and PVDF thin film/PZT-4 substrate

function f(v). We can clearly see that when the film thickness is constant, the thicker the substrate is, the
lesser its influence on the nondimensional function f(v) in Fig. 7. Figure 6b shows that when the substrate
thickness is constant, the film thickness is small, and the change in the nondimensional stress intensity factor
is large, which indicates that under appropriate circumstances, a thinner film thickness is more conducive to
safe design.
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Fig. 5 Variations in f(v) versus t/1y for different piezoelectric thin film/substrate materials a PVDF thin film/PZT — 4 substrate
and b PVDF thin film/PZT — 5H substrate

5.3 Impermeable and permeable cracks

According to Eq. (91), the dynamic nondimensional energy-release rate can be expressed G/ G, (G, is the
dynamic energy-release rate for a stationary crack). According to Eq. (95), the nondimensional DSIF can be
defined as Fy.

Figure 8 shows the effect of stress on the nondimensional energy-release rate at different values (PZT — 5
thin film/PZT — 5 substrate). Figure 8 shows that when t, increases from zero, G/ G, always increases.
However, when t, decreases from zero, G/ G, will first decrease and then increase. The stress loading pushes
or interferes with the crack growth.

Figure 9 shows the effects of the electrical displacement and stress on the nondimensional energy-release
rate at different values. As a result, their effects on the energy-release rate take the form of a parabola at different
values. Figure 9 shows that when D, decreases from zero, G/ G, decreases. However, when D, increases
(a > 0), G/G, first increases and then decreases. The result suggests that when the electrical displacement is
negative, crack growth can be hindered. However, positive electric-displacement loads can promote or hinder
crack growth. This is discussed by Pak [5].

To better investigate dynamic crack propagation under mechanical and electrical impacts. Figure 10 shows
the nondimensional dynamic intensity factors under different values of 1. As shown, when ct/(2a) proceeds,
Fy first increases, peaks and finally flattens, which is similar to the result presented by Wang [32].
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6 Conclusions

The dynamic fracture characteristics of mode-III cracks are investigated. The theoretical solution to this
problem is described using the integral-transform method (Laplace and Fourier transforms) and the Chebyshev
point method. By analysis, the following conclusions are presented: (1) When the film thickness is thinner,
the nondimensional functions increase. The nondimensional functions are controlled by the piezoelectric
film thickness. (2) The nondimensional DSIF increases with decreasing d / (2a). (3) When the thickness of
the film is constant, the thinner the substrate is, the more apparent the effect. When the ratio of the film
thickness to substrate remains constant, the influence of the smaller electromechanical coupling coefficient on
the nondimensional DSIF becomes more evident. (4) The nondimensional DSIF increases as the dimensionless
time increases. We can observe that when the thickness of the substrate is constant, the thinner the film
is, the more significant the influence on the nondimensional functions. (5) The nondimensional DSIF of
multiple cracks is clearly more significant than that of a single crack when the film thickness is the same.
(6) The nondimensional DSIF of the crack tip inside is more significant than that outside the crack tip of the
dimensionless DSIF, irrespective of the number of cracks. (7) Stress loading can promote or prevent crack
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propagation. (8) Negative electrical displacement loads always prevent crack propagation, whereas positive
electric-displacement loads can promote or prevent crack propagation.

It is believed that the stress intensity factor is related to crack size, component geometry, and loading.
According to the analysis in the current work, the larger crack size is, the more significant the nondimensional
DSIF is. The smaller the electromechanical coupling coefficient is, the larger the nondimensional DSIF is. The
thinner the film thickness is, the larger the nondimensional DSIF is. The larger the nondimensional DSIF at
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Fig. 10 The variation in the nondimensional DSIF under different values A

the crack tip is, the more pronounced the stress concentration at the crack tip is. If the nondimensional DSIF
exceeds the critical value, then the crack will expand and fracture. Therefore, under appropriate conditions,
the thinner the film is, the safer is the structure design.

Acknowledgements This study was supported by the National Natural Science Foundation of China (11972019), Shanxi Provin-
cial Key Research and Development Project (202102090301027), and Shanxi Postgraduate Innovation Project (2022Y668).

Data availability All the numerical calculated data used to support the findings of this study can be obtained by calculating the
equations in the paper, and piezoelectric material parameters are taken from references [14, 15] and [34-36].

Declarations

Conflict of interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

Appendix
(1)5521) 20¢1d (2)8(121) 20¢1d 6525) 2apd 2a1d
— | —p\W L 2(E a2 Ul 21 d _ 15 —2002d> —2a1d;
R = es e(l)(l e )+ejs 8(1)(1 e ) 8(2)(1 +e ) |e
11 11 11
@ @ @ —2zld —2/¢ld
. % C4(124) 1+ 615 615 (1 _e—Zazdz) _811 (1 —e 11 2)(1 +e 21 1) _(1 +€_2|C|d2) e—zaldl
Iq el elD(1 — e=20cin)
&
Ry = e<115>%(1 e €<125>(1 — 2l (_1 _ efzazdz)efzaldl
11
@1 1.2
= _e—z\{ldz)<1+e—2a2d2> €561 (1)815511 o—20id)
&
2) (M) 1.2 (2)
Ry = | (1 _e—2|§\a’2)615 €11~ €5°11 eﬁ(] 4 o200y

(€8] ?2)
€1 €1



Dynamic analysis of interfacial multiple cracks 725

2 (2 (2 —2|¢|d —2(¢ld
_ 2 of, as5ks (1 — ¢~ 202 _end—e C12)(1 + 721 (1 4 e 2l
el 62 D1 — e=2cldry

11
@ .M (CYINE))
€z & — €< €&

Ry=(1— e—2|;|d2)(1 +e—2a2a’2) 15411 15411

&b

11

2 —2¢|d —2|¢|d (M (1)

0 P 1 S T Ll Cle)(1 + 7261 1 14 G565 ) | _ ~2eds

Rs = (I+e )+ D cu |1+ D ( e )
|§| 811(1 —E_Zlgldl) &

o e® ,
45 (1 4 g 2eady) | DL (| =20cldry Dy (-2l

(1) 15 (1)
" . @
- — 2 (27X
Re = (1 + e 20141y — o 2¢ldn) 8(15) _ 12(1)11

11
1 (1) (2) —2|¢|dy —2|¢1d;
e e e (1l —e l1+e
R7 — _al (1 _ €2a1d1)€2a2dzcé(‘z)<l + 15*15 ) {(1 +€72‘C|d2)+ 11( )( ):|

gl (1 — e=2lcir)
@D, 1) (2) 2) (1)
+ (1 _ e—2\{|d2)(1 + e—20(|d1 )e—2a2d2 e]5 (815 811 - 815 811 )

()
1

(2) (1) 1) (2
Rg = (14 ¢~ 20d1y(] _ o= 2¢ld2y 200> 15 €11 — 45611

8(1)
(2 —21¢|da @, @\ D
B0 e L e 2 2 €15€15 \ €15 1 —2md; —2a1d,
Ry = Sgll)e pIrar |§|c44 1+ 5521) 8(111)(1 e 1 +e )

8511) &2

i e(l)e(l) 6(2)
+_Ciz) 1+ 15 715 15 (1 _ e—2a1d1)(1 +e—2(12d2)
| @
@ (2 6(125)6525) —2ayd; —2a1d,
Rio=—|—ciu|1+ o) (1—e 1+e )
rd 1]

(1 1) (2) =2|¢|d>
a1 €15€15 —2ayd 2oy | BT —2iclay L — €
+EC44 1+ 8(1) (1 — e o1 1)(1 +e o2 2) Ee ¢ ll—e‘w
11
(2 —2\¢|d @) @\ M)
Ry = _ml — e~ 2l |:0(_2C55‘)<1 + €15€15 )ei(l o 672012(12)(1 +e*20{1d1)
D1 — p—2l51d (2) ()
€1 I—e Y & 1

(1) (2
2) o ‘o 2,2
—=2|¢|d.
gl l1—e 11d2 azcﬁ)<l+elsels>(1 —e_2azd2)(1+e_2ald‘)
1 — e—2I1d (2
eif 1—e r g &1

1 M\ 2
o ee e
+|§1| 64(34) |4 15715 ) 15 (1— e—2a1d1)(1 +e—2a2d2)]

Rip = —

(1 (1)

e.ce

e (14 B> |1 =21 4 e7202%)
14 &

(2 (D

w0 o 22,2\
R13 — HCEM,) 1 + 15 715 i(] _ e—2a2d2)(1 +e—20{|d1)
¢ i/ &n

ar DN 2
+ _CE]_4) 1+ 15(1)15 %25)(1 _ 6720(1(11 )(l +e*20{2d2)
i 3\ !
o €z €
Ry = X2 O, 05%15 (1 — e~ 202d2)(] 4 o= 200d1)
oI e
11

@ (1)
ﬂ (1 615815 _ ,2a1d) —2a0dy
+ |C|C44 (1+ 8(111) (1—e 1 +e )



726 Y. Zhang et al.
2 2 (1)
— 2l | 92 .2 €15¢1s o—202d —2a1d
Ris=e 1S d> | | <71 - (l)(l axdry(q 4 p=2endry
€11
) 6(15)6<15) <2) 2a1d 2ard
- 1571 —2a1d; —2aad;
+ |§|c44 1+ KO (2)(1 1 +e )
“ 1; Bee)
Rig = e—2|{|d2 4(14) 1+ 15(2)15 (1 _ e—20l2d2)(1 +e—2a1d1)
11 &1
@ 1 (1) (1)
+Ec44 1 15(1)15 (] _ e—2a1d1)(1 +e—20tzd2)
, 1 i IR
R = 6(15)(1 _e—2|{'|d2) _ ( ) 11 (1 —2|{'|dz) (115) (2) (1 +e 20(1d1)(1 +e 2a2d2)
11 €11 &
2) —2|¢|dy —2{¢|dy (2) (2)
&7l —e 1+e o
+ | (1 420y 4 i T X )| 2 D1+ (2) (1 — e7202d2)(] 4 =214
gy (1 —e=2lld) 1<l
LM 515)6(115) 2a1d 202d
—_— _ ,201d) —2002d>
+|§|c44 1+ —=—= (1) (1—e W1l +e )
]]
References
1. Shindo, Y., Tanaka, K., Narita, F.: Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

longitudinal shear. Acta Mech. 120, 31-45 (1997)

. Deeg W.EJ.: The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph. D. Thesis. Stanford

University (1980).

. Sosa, H.A., Pak, Y.E.: Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids Struct.

26(1), 1-15 (1990)

. Zhang, T.Y.: Effects of static electric field on the fracture behavior of piezoelectric ceramics. Acta Mech. Sin. 18, 537-550

(2002)

. Pak, Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57(3), 647-653 (1990)
. Suo, Z., Kuo, C.-M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4),

739-765 (1992)

. Kwon, S.M., Lee, K.Y.: Eccentric crack in a rectangular piezoelectric medium under electromechanical loadings. Acta Mech.

148, 239-248 (2001)

. Sosa, H.: On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29(21), 2613-2622 (1992)
. Liu, L.L., Feng, W.J., Ma, P, et al.: Fracture analysis of a penny-shaped dielectric crack in a piezoelectric cylinder. Acta

Mech. 226, 3045-3057 (2015)

Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 112(1), 79-100 (1992)

Yang, P.S., Liou, J.Y., Sung, J.C.: Subinterface crack in an anisotropic piezoelectric bimaterial. Int. J. Solids Struct. 45,
4990-5014 (2008)

Ou, Z.C., Chen, Y.H.: Near-tip stress fields and intensity factors for an interface crack in metal/piezoelectric bimaterials. Int.
J. Eng. Sci. 42, 1407-1438 (2004)

Govorukha, V., Kamlah, M., Sheveleva, A.: Influence of concentrated loading on opening of an interface crack between
piezoelectric materials in a compressive field. Acta Mech. 226, 2379-2391 (2015)

Li, S.F., Mataga, P.A.: Dynamic crack propagation in piezoelectric materials-part I. Electrode solution. J. Mech. Phys. Solids
44(11), 1799-1830 (1996)

Li, S.F.,, Mataga, P.A.: Dynamic crack propagation in piezoelectric materials-part II. Vacuum solution. J. Mech. Phys. Solids
44(11), 1831-1866 (1996)

Narita, F., Shindo, Y.: Dynamic anti-plane shear of a cracked piezoelectric ceramic. Theor. Appl. Fract. Mech. 29(3), 169-180
(1998)

Gu, B., Wang, X.Y., Yu, S.W,, Gross, D.: Transient response of a Griffith crack between dissimilar piezoelectric layers under
anti-plane mechanical and in-plane electrical impacts. Eng. Fract. Mech. 69, 565-576 (2002)

To, A.C., Li, S., Glaser, S.D.: On scattering in dissimilar piezoelectric materials by a semi-infinite interfacial crack. Q. J.
Mech. Appl. Math. 58(2), 309-331 (2005)

Gao, C.F,, Wang, M.Z.: Collinear permeable cracks between dissimilar piezoelectric materials. Int J Solids Struct. 37,
4969-4986 (2000)

Chi, S., Chung, Y.L.: Cracking in coating-substrate composites with multi-layered and FGM coating. Eng. Fract. Mech. 70,
1227-1243 (2003)

Sedaghati, R., Dargahi, J., Singh, H.: Design and modeling of an endoscopic piezoelectric tactile sensor. Int. J. Solids Struct.
42, 5872-5886 (2005)



Dynamic analysis of interfacial multiple cracks 727

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Wang, Y.C., Chen, Y.W.: Application of piezoelectric PVDF film to the measurement of impulsive forces generated by
cavitation bubble collapse near a solid boundary. Exp. Therm. Fluid Sci. 32, 403—414 (2007)

Ding, S.H., Li, X.: Periodic cracks in a functionally graded piezoelectric layer bonded to a piezoelectric half-plane. Theor.
Appl. Fract. Mech. 49, 313-320 (2008)

Peng, X.L., Li, X.F.: Transient response of the crack tip field in a magnetoelectroelastic half-space with a functionally graded
coating under impacts. Arch. Appl. Mech. 79, 1099-1113 (2009)

Asadi, E., Fariborz, S.J., Fotuhi, A.R.: Anti-plane analysis of orthotropic strips with defects and imperfect FGM coating.
Eur. J. Mech. A/Solid. 34, 12-20 (2012)

Ding, S.H., Li, X.: The collinear crack problem for an orthotropic functionally graded coating-substrate structure. Arch.
Appl. Mech. 84, 291-307 (2014)

Bayat, J., Ayatollahi, M., Bagheri, R.: Fracture analysis of an orthotropic strip with imperfect piezoelectric coating containing
multiple defects. Theor. Appl. Fract. Mech. 77, 41-49 (2015)

Zhang, Y.N., Li, J.L., Xie, X.F.: Dynamic propagation characteristics of a mode-III interfacial crack in piezoelectric bi-
materials. Adv. Mater. Sci. Eng. 1, 1-21 (2022)

Hu, S.S., Liu, J.S., Li, J.L.: Fracture analysis of griffth interface crack in fine-grained piezoelectric coating/substrate under
thermal loading. Adv. Math. Phys. 1, 1-15 (2020)

Chen, H.S., Wei, W.Y,, Liu, J.X., Fang, D.N.: Propagation of a semi-infinite conducting crack in piezoelectric materials:
Mode-I problem. J. Mech. Phys. Solids 68(1), 77-92 (2014)

Li, X.F, Tang, G.J.: Transient response of a piezoelectric ceramic strip with an eccentric crack under electromechanical
impacts. Int. J. Solids Struct. 40, 3571-3588 (2003)

Wang, X.Y., Yu, S.W.: Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical
impacts:mode-1II problem. Int. J. Solids Struct. 37, 5795-5808 (2000)

Wang, B.L., Han, J.C., Du, S.Y.: Dynamic response for non-homogeneous piezoelectric medium with multiple cracks. Eng.
Fract. Mech. 61, 607-617 (1998)

Li, X.F.: Transient response of a piezoelectric material with a semi-infinite mode-III crack under impact loads. Int. J. Fract.
111(2), 119-130 (2001)

Noble, B.: Methods based on the Wiener-Hopf technique. Pergamon Press, New York (1958)

Freund, L.B.: Dynamic fracture mechanics. Cambridge University Press, Cambridge (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.



	Dynamic analysis of interfacial multiple cracks in piezoelectric thin film/substrate
	Abstract
	Acknowledgements
	References




