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Abstract Here, higher order models of elastic shells of revolution are developed using the variational principle
of virtual power for 3-D equations of the linear theory of elasticity and generalized series in the coordinates of
the shell thickness. Following the Unified Carrera Formula (CUF), the stress and strain tensors, as well as the
displacement vector, are expanded into series in terms of the coordinates of the shell thickness. As a result,
all the equations of the theory of elasticity are transformed into the corresponding equations for the expansion
coefficients in a series in terms of the coordinates of the shell thickness. All equations for shells of revolution of
higher order are developed and presented here for cases whose middle surfaces can be represented analytically.
The resulting equations can be used for theoretical analysis and calculation of the stress–strain state, as well
as for modeling thin-walled structures used in science, engineering, and technology.

1 Introduction

Shell structures are important elements that arewidely used in science, engineering, and technology.Theoretical
analysis and modeling of shells has a long history. Many mathematical models of shells were developed in
the last century. Shell structures can have a complex geometry, involving the parametrization of the middle
surface of the shell and the use of a complex mathematical apparatus of differential geometry. There are many
excellent books on complex geometry shells. Among others, we can recommend the books of Kilchevskiy [31],
Kornishin et al. [36], Rekach andKrivoshapko [57], inwhich shells of complex geometry are considered, which
are necessary for understanding mathematical information. For a deeper study of the differential geometry of
surfaces and its application to shell theory, one can refer to Gray et al. [24], Kuhnel [44], von Seggern [67],
which contain not only theoretical information, but also the Mathematica computer algebra program, which
greatly simplifies theoretical analysis and applications.

Shells of revolution represent a very important class of structural elements that are very interesting for
theoretical analysis and have many applications in science and technology. Of particular interest are shells,
the middle surface of which can be represented in an analytical form, in the form of mathematical equations.
A description and mathematical analysis of such surfaces can be found in Krivoshapko and Ivanov [42].
General information and analysis of some special classes of shells of revolution can be found in Koryakin et al.
[35], Kovarik [37], Reddy [55, 56], Rekach and Krivoshapko [57], Timoshenko and Woinovsky-Krieger [64],
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Vlasov [66], Wan and Weinichke [68]. There are many books and thousands of articles on the various types of
revolution shells. We cannot present and analyze them here. Therefore, we will mention here only those that
we used in preparing this article.

The standard reference to classical plate theory is Timoshenko and Woinowsky-Krieger[64]. Cylindrical
shells considered in numerous publications, see for example Kovarik [37], Reddy [55, 56], Timoshenko and
Woinowsky-Krieger [64], Vlasov [66]. Conical shells considered in numerous publications, see for example
Kovarik [37], Reddy [56], Vlasov [66]. Spherical shells considered in numerous publications, see for example
Kovarik [37], Reddy [56], Timoshenko and Woinowsky-Krieger [64], Vlasov [66], Xie et al. [71]. Ellipsoidal
shells considered in numerous publications, see for example Klochkov et al. [32–34], Krivoshapko [40], Meish
[47], Meish and Maiborodina [48], Tangbanjongkij et al. [63]. Paraboloidal shells considered in numerous
publications, see for example Al-Khatib et al. [1], Chernobryvko et all. [15, 16], Kang and Leissa [27, 28],
Krivoshapko [41], Xie et al. [71]. Hyperboloidal shells considered for example in Kang and Leissa [29],
Krivoshapko [39]. Toroidal shells considered in numerous publications, see for example Clark [17, 18], El-
Raheb and Wagner [20, 21], Leung [45], Lutskaya et al. [46], Ming et al. [49], Naboulsi et al. [50], Senjanovic
et al. [58, 59], Sun [26, 61], Sutcliffe [62], Wenmin et al. [70]. Elliptic toroidal shells considered in Zingoni
A., et al. [72]. Catenoidal shells considered in Zun [60]. Pseudospherical shells considered for example in
Gil-oulbe et al. [23], Krawczyk [38], Krivoshapko and Ivanov [43].

Most of the publications mentioned above used classical shell theories based on the Kirchhoff–Love
and Midlin–Timoshenko hypotheses. There is another approach to the theory of shells, which consists in
expanding the components of the stress–strain field into series of polynomials in thickness. This approach was
first proposed by Cauchy [14] and Poisson [54], but at that time it did not find wide application and interest in
the scientific community and did not receive further development for a long time. Significant extensions and
developments of this approach for shells of arbitrary geometry were made by Kilchevskiy [31]. He created
the so-called generalized tensor series for the expansion of three-dimensional equations of elasticity in terms
of the thickness of the shell. Then the Legendre polynomials were proposed for the development of new
theories of higher orders of Vekua plates and shells [65]. This approach has significant advantages, since
the Legendre polynomials are orthogonal and, as a result, simpler equations are obtained. There are many
books and research papers devoted to the application of the polynomial series to the development of higher
order theories of bars, plates and shells. Among others, the books of Gulyaev et al. [25], Khoma [30], Pelekh
and Lazko [51], Pelekh and Sukhorol’skii [52], Vekua [65] and the works of Czekanski and Zozulya [19],
Zozulya [73–85], Zozulya and Saez [87, 88], Zozulya and Zhang [90]. Carrera’s Unified Formulations (CUF)
approach can be viewed as a generalization of the polynomial decomposition method for beams, plates and
shells, including sandwich structures and multi-field loads. Hundreds of articles are available at (CUF) on the
various extensions and applications of Carrera andmanymore. Among them, the following arementioned here:
Carrera [2–7, 13] deals with multilayer anisotropic plates and shells, and Carrera and Zozulya [10–14] and
Zozulya and Carrera [86] deal with micropolar beams, plates, and shells. For more information and references
related to the polynomial series approach for developing models of multilayer anisotropic composite plates
and shells and their finite element analysis, see Carrera et al. [7, 53], as well as the works mentioned above.

In this work, 2-D models of elastic shells of rotation of higher order based on the 3-D theory of elasticity
are developed. Higher-order models are based on the variational principle of virtual power with expansion of
the equations of the 3-D theory of elasticity into generalized series in terms of cross-sectional coordinates in
thickness. The equations of 2-Dmodels of higher orders of shells of revolution are developed and presented, the
middle surfaces of which can be represented analytically. The resulting equations can be used for theoretical
analysis and calculation of the stress–strain state, as well as for modeling thin-walled structures that are used
in science, engineering, and technology.

2 3-D theory of elasticity in coordinates related to the middle surface of shell

Here we are developing higher-order theories of elastic shells of revolution, which are based on polynomial
expansion and CUF. Therefore, we consider first 3-D equations of the linear theory of elasticity. Let an elastic
body occupy the domain V � � × [−h, h], in a 3-D Euclidian space. Here � is the middle surface of the
shell and 2h is the thickness of the shell.

For the purpose of the theories that are developed here, we introduce an orthogonal curvilinear system of
coordinates x(x1, x2, x3) related to the middle surface of the shell. The position vector of an arbitrary point is
equal to R(x1, x2, x3) � ei xi . Coordinates xα(x1, x2), α � 1, 2 are associated with the principle curvatures
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k1 and k2 of the middle surface of the shell and coordinate x3 is perpendicular to it. The position vector R(x)
of any point in domain V, occupied by material points of the shell may be presented as

R(x) � r(xα) + x3n(xα), (1)

where r(xα) is the position vector of the points located in the middle surface of the shell, and n(xα) is a unit
vector normal to the middle surface of the shell.

Unit orthogonal basic vectors and their derivatives with respect to space coordinates are equal to

ei � 1

Hi

∂R
∂xi

,
∂ei
∂x j

� �k
i jek , (2)

where Hi are Lamé coefficients and �k
i j are Christoffel symbols. They are calculated by the equations

Hi �
∣
∣
∣
∣

∂R
∂xi

∣
∣
∣
∣
�

√

∂R
∂xi

· ∂R
∂xi

, �k
i j � − 1

Hi

∂Hi

∂x j
δik +

1

2Hi Hk

(

δ jk
∂Hj Hk

∂xi
+ δik

∂Hi Hk

∂x j
− δi j

∂Hi Hj

∂xk

)

. (3)

In the orthogonal curvilinear coordinate system from the last equation it follows that�k
i j � 0 for i �� j �� k

and

�k
ii � − 1

Hk

∂Hi

∂xk
, �k

ik � 1

Hi

∂Hk

∂xi
for i �� k. (4)

In this curvilinear system of coordinates the 3-D equations of elasticity can be simplified by considering
that Lamé coefficients and their derivatives have the form

Hα � Aα(1 + kαx3) for α � 1, 2 and H3 � 1,

∂Hβ

∂xα

� ∂Aβ

∂xα

(1 + kαx3),
∂Hβ

∂x3
� kβ Aβ ,

∂H3

∂xi
� 0.

(5)

Here Aα(x1, x2) �
√

∂r(x1, x2)
∂xα

· ∂r(x1, x2)
∂xα

are the coefficients of the first quadratic form of a surface, kα are
the principal curvatures and α � 1, 2.

Given that we have considered relatively thin shells, we can make the following assumptions:

1 + kαx3 ≈ 1 → Hα ≈ Aα ,
∂Hβ

∂xα

� ∂Aβ

∂xα

,
∂Hα

∂x3
� kαAα , α,β � 1, 2. (6)

Considering the assumptions (5) and (6) the Christoffel symbols (4) become

�β
αα � 1

Aα

∂Aβ

∂xα

, �3
αα � −kαAα , �α

3α � kαAα , α,β � 1, 2. (7)

The classical theory of elasticity assumes that the body consists of interconnected points and continuously
fills the occupied volume. The position of a point during deformation is determined by the displacements vector
u(x1, x2, x3) as functions of their coordinates. Internal forces (the interaction between adjacent elements) are
determined using a force stress tensor σ(x1, x2, x3). Deformations are completely described by symmetric
strain ε(x1, x2, x3) tensor. An elastic body can be affected by surface and volume forces, which are represented
by vectors p(x1, x2, x3) � σ(x1, x2, x3) ·n(x1, x2, x3) and b(x1, x2, x3) respectively. The tensors and vectors
introduced above have the form

σ �
∣
∣
∣
∣
∣
∣

σ11 σ21 σ31
σ12 σ22 σ32
σ13 σ23 σ33

∣
∣
∣
∣
∣
∣

, ε �
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∣
∣
∣
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∣
∣
∣
∣
∣

, u �
∣
∣
∣
∣
∣
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u3

∣
∣
∣
∣
∣
∣

, p �
∣
∣
∣
∣
∣
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p3

∣
∣
∣
∣
∣
∣

, b �
∣
∣
∣
∣
∣
∣

b1
b2
b3

∣
∣
∣
∣
∣
∣

. (8)

For convenience, we introduce vector notations here and represent the above functions that determine
the stress–strain state of elastic media in the vector form. The classical force stress and strain tensors are
symmetrical, so they can be presented as six component vectors:

σ � ∣
∣σxx , σyy , σzz , σxy , σyz , σxz

∣
∣T , ε � ∣

∣εxx , εyy , εzz , εxy , εyz , εxz
∣
∣T . (9)
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Kinematic relations in the theory of elasticity relate the displacement vectors to the strain vector introduced
in (8) and (9) by the following equations

ε � D · u (10)

where D is a matrix differential operator of the form

D �
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∣
∣
∣
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∣
∣
∣
∣
∣

. (11)

Applying thematrix operator (11) to the displacement vector, the symmetric strain ε tensor can be presented
in vector form:

ε �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
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∂x1

+ u2
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∂A1
∂x2
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1
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∂u2
∂x2
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∂A2
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∂u3
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1
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. (12)

Constitutive relations are usually established by introducing the potential energy density function. In the
case of linear orthotropic elastic media, it can be presented in the general form

W (ε) � εT · C · ε, (13)

where C is the 6 × 6 matrix of elasticity moduli of the form

C �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (14)

Taking the derivative of the potential energy density function with respect to the strain ε tensor and
substituting the kinematic relations (10) into the obtained result, the classical stress vector can be presented
the following form:

σ � ∂W

∂ε
� C · ε � C · D · u. (15)

Substituting the equations for the matrix of material constants (14), the operator (11) and the displace-
ment vector into Eq. (15), we obtain equations for the classical stress vector expressed as a function of the
displacement vector components.

In the case of isotropic material, the corresponding classical moduli of elasticity presented in Eq. (14) have
the form

C11 � C22 � C33 � λ + 2μ, C12 � C13 � C23 � λ, C44 � C55 � C66 � μ, (16)

where λ and μ are Lamé constants of classical elasticity.
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The CUF approach for the development of higher order theories of plates and shells is based on the principle
of virtual displacements (PVD), (see Washizu [69] for references), which in the general case of the 3-D linear
elasticity can be presented in the form

δ

∫

V

W (ε)dV � δLext (b, p). (17)

Here W (ε) is the density of potential energy of the elastic body, Lext (b, p) is the work of the external
volume b and p surface loads.

We will show here how all the 3-D equations elasticity and natural boundary conditions can be found by
calculating the corresponding variations of the potential energy density function. The equations obtained and
the developed approach will be used to develop the theory of higher order elastic plates and shells.

The variation of the potential energy density of the elastic 3-D body is determined though the variations
of the strain ε tensor in the form

δW � δε · σ. (18)

Strain tensor variations can be represented in term of displacement vector variations. Substituting kinematic
relations (10) into equation (18) one can obtain

δW � D · δu · σ. (19)

Variation of the work of the external volume and surface load in the case of elastic media can be calculated
as follows:

δLext (bu , pu) �
∫

V

bu · δudV +
∫

∂V

pu · δudS. (20)

Now, substituting (19) and (20) into (17) the PVD for elastic media can be represented as
∫

V

D · δu · σdV �
∫

V

bu · δudV +
∫

∂V

pu · δudS. (21)

This equation can be represented in the following form
∫

V

DT · (σ · δu)dV −
∫

∂V

(DT · σ) · δudS �
∫

V

bu · δudV +
∫

∂V

pu · δudS. (22)

Here we use the following relations:

(D · δu) · σ � (DT · σ) · δu − DT · (σ · δu). (23)

Applying to the second term of the left-hand side of the variational equation (22) matrix analogy of
the Gauss–Ostrogradsky divergence theorem and collecting the members that contain variations δu and δω
separately, we obtain that the volume and surface integrals have the form

∫

V

((DT · σ + b) · δudV �
∫

∂V

(DT
n · σ − p) · δudV , (24)

where DT
n is the matrix analogue of the vector normal to the boundary, it has the matrix form

DT
n �

∣
∣
∣
∣
∣
∣

n1 0 0 n2 0 n3
0 n2 0 n1 n3 0
0 0 n3 0 n2 n1

∣
∣
∣
∣
∣
∣

. (25)

Since the variations of δu and δω in (24) are arbitrary, in order to fulfill (24) it is necessary and sufficient
that the corresponding volume and surface integrals are equal to zero:

∫

V

(DT · σ + b)dV � 0,
∫

∂V

(DT
n · σ − p) · dV � 0. (26)
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These integral equalities imply differential equations of equilibrium and natural boundary conditions for
the linear theory of elasticity in the form

DT · σ + b � 0, DT
n · σ − p � 0. (27)

To obtain the equations of equilibrium for the linear theory of elasticity in the form of a displacement
vector, we substitute the expressions for the classical stress vector from the generalized Hooke’s law (15) into
Eq. (27). As a result, the following differential equations are obtained:

DT · C · D · u + b � 0. (28)

In the sameway, substituting the expressions for the classical stress vector fromEq. (15) one obtains natural
boundary conditions for the linear theory of elasticity in the form of a displacement vector:

DT
n · C · D · u − p � 0. (29)

Here p is the classical traction vector given on the boundary.
In order for boundary value problem for differential equations of equilibriumof the linear theory of elasticity

in a form of displacements vector (28) to have a unique solution, it is also necessary to set essential boundary
conditions. In the case considered here, they can be taken in the form

u − u0 � 0. (30)

The differential equations of equilibrium (28) and the natural boundary conditions (29) can be represented
in a compact form as

L · u � b, B · u � p, (31)

where L and B are the matrix differential operators, u is the vector of unknown functions and b and p are the
vectors of external load and surface traction, respectively. They have the following form:

L �
∣
∣
∣
∣
∣
∣

Lu1,u1 Lu1,u2 Lu1,u3
Lu2,u1 Lu2,u2 Lu2,u3
Lu3,u1 Lu3,u2 Lu3,u3

∣
∣
∣
∣
∣
∣

, u �
∣
∣
∣
∣
∣
∣

u1
u2
u3

∣
∣
∣
∣
∣
∣

b �
∣
∣
∣
∣
∣
∣

b1
b2
b3

∣
∣
∣
∣
∣
∣

,

B �
∣
∣
∣
∣
∣
∣

Bu1,u1 Bu1,u2 Bu1,u3
Bu2,u1 Bu2,u2 Bu2,u3
Bu3,u1 Bu3,u2 Bu3,u3

∣
∣
∣
∣
∣
∣

, p �
∣
∣
∣
∣
∣
∣

p1
p2
p3

∣
∣
∣
∣
∣
∣

.

(32)

Analytical expressions formatrix differential operatorsL andB for the linear orthotropic theory of elasticity
in general case of the orthogonal curvilinear coordinates system are very complicate and are not given here.
In the case of the Cartesian coordinates, they are presented in Carrera and Zozulya [8].

In following sections, the 3-D equations of the theory of elasticity presented here will be used to develop
a higher-order theory of shells of revolution using the CUF approach.

3 CUF for elastic shells of higher order of arbitrary geometry

Following the CUF approach, the displacement fields, which are functions of curvilinear coordinates (x1, x2,
x3) are represented as series of functions of the coordinated x3 directed orthogonally to the middle surface of
the shell, in the form

u(x1, x2, x3) � Fu,τ (x3) · uτ (x1, x2), τ � 1, 2, ... ,M , (33)

whereFu, τ (x3) are the basic functions of the thickness coordinates anduτ (x1, x2) is the vector of displacements.
They have the form

Fu,τ (x3) �
∣
∣
∣
∣
∣
∣

Fu1,τ (x3) 0 0
0 Fu2,τ (x3) 0
0 0 Fu3,τ (x3)

∣
∣
∣
∣
∣
∣

, uτ (x1, x2) �
∣
∣
∣
∣
∣
∣

u1,τ (x1, x2)
u2,τ (x1, x2)
u3,τ (x1, x2)

∣
∣
∣
∣
∣
∣

. (34)
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In (33), according to Einstein’s notation, the repeated subscript τ indicates summation. In the general case,
the choice of the numberM and functionsFu, τ (x3) is arbitrary, i.e., formodeling the kinematic field of the shells
along their thickness different base functions of any order can be considered. The final equation becomes simple
if functions Fu, τ are polynomials, especially orthogonal polynomials. The expansions coefficients uτ (x1, x2)
as functions of the coordinates x1 and x2 coincided with the middle surface of the shell. The first subscript
in basic functions Fu, τ indicates the component of the displacement vector, the second index indicates the
number of the function in the serial expansion.

Applying matrix differential operators (11) to the displacement vector represented by equations (33) one
can obtain the strain vector in the form

ε � Du,τ · uτ , (35)

where Da, τ is a matrix operator of the form

DT
u,τ �

∣
∣
∣
∣
∣
∣
∣
∣

Fu1,τ
A1

∂
∂x1

Fu2,τ
A1A2

∂A2
∂x1

0
Fu1,τ
A2

∂
∂x2

− Fu2,τ
A1A2

∂A1
∂x2

0
∂Fu1,τ
∂x3

− Fu3,τ k1
Fu1,τ
A1A2

∂A1
∂x2

Fu2,τ
A2

∂
∂x2

0
Fu2,τ
A1

∂
∂x1

− Fu1,τ
A1A2

∂A2
∂x1

∂Fu2,τ
∂x3

− Fu3,τ k2 0

Fu1,τ k1 Fu2,τ k2
∂Fu3,τ
∂x3

0
Fu3,τ
A2

∂
∂x2

Fu1,τ
A1

∂
∂x1

∣
∣
∣
∣
∣
∣
∣
∣

. (36)

Substituting the kinematic relations (35) into the generalized Hooke’s law (15), the classical force stress
vector can be presented as

σ � C · Du,τ · uτ . (37)

Substituting the expression for the strain vector represented by equations (35) and the classical force stress
vector represented by equation (37) into (18), we obtain a variation of the potential energy density in the form

δW � DT
u,τ · Fu,τ (x3) · δuτ (x1, x2) · C · (Du,s · Fu,s(x3) · us(x1, x2). (38)

The body force is a function of curvilinear coordinates b(x1, x2, x3). They can also be represented as a
series of functions of the thickness coordinate x3 in the form

b(x1, x2, x3) � Fu,τ (x3) · bu,τ (x1, x2), τ � 1, 2, ... ,M. (39)

The surface load is the function only the coordinates x1 and x2, of the middle surface of shell and the
thickness coordinate x3 has specific values that correspond to points on the surfaces x3 � −h and x3 � h.

Let us consider a variation of the work of the external body and surface load in the case of elastic media.
Taking into account (39) and (20) the variation of the work of the external body and surface loads in the case
of elastic media can be presented as

δLext (b,p) �
∫

V

Fu,τ (x3) · δuτ (x1, x2) · Fu,τ (x3) · bu,τ (x1, x2)dV +
∫

∂V

Fu,τ (x3) · δuτ (x1, x2) · p(x1, x2)dS.

(40)

Now, using the CUF ear theory of elasticity approach can be represented in the form

(41)

∫

V

(DT
u,τ · Fu,τ (x3) · δuτ (x1, x2)dV �

∫

V

Fu,τ (x3) · δuτ (x1, x2) · Fu,τ (x3) · bu,τ (x1, x2)dV+

∫

∂V

Fu,τ (x3) · δuτ (x1, x2) · pu(x1, x2)dS.

For convenience, we split up the matrix operator DT
u, τ into two parts,

DT
u,τ � Dy,T

u,τ + DC ,T
u,τ , (42)
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where

(43)

Dy,T
u,τ �

∣
∣
∣
∣
∣
∣
∣
∣

Fu1,τ
A1

∂
∂x1

Fu2,τ
A1A2

∂A2
∂x1

0
Fu1,τ
A2

∂
∂x2

− Fu2,τ
A1A2

∂A1
∂x2

0 −Fu3,τ k1
Fu1,τ
A1A2

∂A1
∂x2

Fu2,τ
A2

∂
∂x2

0
Fu2,τ
A1

∂
∂x1

− Fu1,τ
A1A2

∂A2
∂x1

−Fu3,τ k2 0

Fu1,τ k1 Fu2,τ k2 0 0
Fu3,τ
A2

∂
∂x2

Fu1,τ
A1

∂
∂x1

∣
∣
∣
∣
∣
∣
∣
∣

,

DC ,T
u,τ �

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0 0
∂Fu1,τ
∂x3

0 0 0 0
∂Fu2,τ
∂x3

0

0 0
∂Fu3,τ
∂x3

0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

.

The volume integral in equations (41) is transformed using the following relations:

Dy,T
u,τ · (Fu,τ (x3) · δuτ (x1, x2)) · C · (Du,s · Fu,s(x3) · us(x1, x2)

� Dy
u,τ · (C · (Du,s · Fu,s(x3) · us(x1, x2) − Dy

u,τ · (C · (Du,s · Fu,s(x3) · us(x1, x2).
(44)

Then, collecting the terms containing variations δuτ separately, we obtain that the following equations for
the integrals over volume and surface, respectively:

(45)
∫

V

(

(DC ,T
u,τ · Fu,τ (x3) · C · Du,s · Fu,s(x3) · us(x1, x2)− Dy,T

u,τ · Fu,τ (x3) · C · (Du,s · Fu,s(x3) · us(x1, x2)

−Fu,τ (x3) · Fu,s(x3) · bu,s(x1, x2)
) · δuτ (x1, x2)dV � 0,

∫

∂V

(Du,T
n,τ · C · Du,s · Fu,s(x3) · us(x1, x2) − Fu,τ (x3) · pu(x1, x2) · δuτ (x1, x2))dS � 0.

Here, the volume integrals are transformed into integrals over the surface using the matrix analogy of
Gauss-Ostrogradsky divergence theorem in the form
∫

V

Dy
u,τ · C · Du,s · Fu,s (x3) · us (x1, x2) · δuτ (x1, x2)dV �

∫

∂V

Du,T
n,τ · C · Du,s · Fu,s (x3) · us (x1, x2) · δuτ (x1, x2)dS, (46)

where Du, T
n, τ is the matrix analogy of the vector normal to the boundary, it has the form

Du,T
n,τ �

∣
∣
∣
∣
∣
∣

n1Fu1,τ 0 n2Fu1,τ 0 0 0
0 n2Fu2,τ n1Fu2,τ 0 0 0
0 0 0 0 n2Fu3,τ n1Fu3,τ

∣
∣
∣
∣
∣
∣

. (47)

In fact, equations (45) are equations of equilibrium and natural boundary conditions for displacements of
elastic higher order shells in the integral form, obtained using the CUF approach.

The integrals over volume and surface in (45) have the form

∫

V

(·)dV �
∫

�

h∫

−h

(·)dx3d�,
∫

∂V

(·)dV �
∫

∂�

h∫

−h

(·)dx3dS. (48)

Taking into account this decomposition and integrating the first and third equations in (45) over the shells
thickness as well as that variations δuτ depend only on variables x1 and x2 differential equations for displace-
ments of the higher order elastic shells can be represented in matrix form as

LG
M · uGM � bGM , (49)

where the global matrix operator LG
n , the vectors of unknown functions uGM and the right hand bGM side have

the form

LG
M �

∣
∣
∣
∣
∣
∣
∣

Lloc
1,1 · · · Lloc

1,M
...

. . .
...

Lloc
M ,1 · · · Lloc

M ,M

∣
∣
∣
∣
∣
∣
∣

, uGM �

∣
∣
∣
∣
∣
∣
∣

uloc1
...

ulocM

∣
∣
∣
∣
∣
∣
∣

, bGM �

∣
∣
∣
∣
∣
∣
∣

bloc1
...

blocM

∣
∣
∣
∣
∣
∣
∣

. (50)
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The matrices Lloc
τ , s are the fundamental nuclei of the differential equations of equilibrium of elastic shells

of higher orders. They, as well as the vectors of local unknown functions ulocs and local expression for external
body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
u1,u1 Lτ ,s

u1,u2 Lτ ,s
u1,u3

Lτ ,s
u2,u1 Lτ ,s

u2,u2 Lτ ,s
u2,u3

Lτ ,s
u3,u1 Lτ ,s

u3,u2 Lτ ,s
u3,u3

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

u1,s

u2,s

u3,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃u1,τ

b̃u2,τ

b̃u3,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (51)

The components of the vector external body and surface loads blocs have the form

b̃ux ,τ � Jux ,uxτ ,s bux ,s + Juxτ pux , b̃uy ,τ � J
uy ,uy
τ ,s buy ,s + J

uy
τ puy , b̃uz ,τ � Juz ,uzτ ,s buz ,s + Juzτ puz , (52)

where

J
ui ,u j
τα ,sβ �

h∫

−h

dFui ,τ (x3)

dx3

dFu j ,s(x3)

dx3
dx3, (i , j) → (x1, x2, x3). (53)

As mentioned above, the natural boundary conditions are obtained from the second equation (45). After the
integration over the shell thickness and by taking into account that the variations δuτ depend only on variables
x1 and x2, the natural boundary conditions for the higher order elastic shells can be represented in matrix form
as

BN ,G
M · uGM � pGM , (54)

where the global matrix operator BN ,G
M , the vectors of unknown functions uGM and the right-hand side pGM have

the form

BN ,G
M �

∣
∣
∣
∣
∣
∣
∣

Bloc
1,1 · · · Bloc

1,M
...

. . .
...

Bloc
M ,1 · · · Bloc

M ,M

∣
∣
∣
∣
∣
∣
∣

, pGM �

∣
∣
∣
∣
∣
∣
∣

ploc1
...

plocM

∣
∣
∣
∣
∣
∣
∣

. (55)

The matrices Bloc
τ , s are the fundamental nuclei for the natural boundary for higher order elastic shells and

plocs are the vectors of local expression for the external load applied at the ends of the shells. They can be
written as

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣

Bτ ,s
u1,u1 Bτ ,s

u1,u2 Bτ ,s
u1,u3

Bτ ,s
u2,u1 Bτ ,s

u2,u2 Bτ ,s
u2,u3

Bτ ,s
u3,u1 Bτ ,s

u3,u2 Bτ ,s
u3,u3

∣
∣
∣
∣
∣
∣

, plocs �
∣
∣
∣
∣
∣
∣

Ju1,u1τ ,s Pu1,s
J u2,u2τ ,s Pu2,s
J u3,u3τ ,s Pu3,s

∣
∣
∣
∣
∣
∣

. (56)

The essential boundary conditions for the higher order elastic shells can be represented in matrix form as

BE ,G
M · uGM

∣
∣
∣

L

0
� u0,GM , (57)

where the global matrix operator BE ,G
M , the vectors of the right-hand side have the form

BE ,G
M �

∣
∣
∣
∣
∣
∣
∣

I · · · 0
...
. . .

...
0 · · · I

∣
∣
∣
∣
∣
∣
∣

, u0,GM �

∣
∣
∣
∣
∣
∣
∣

u0,loc1
...

u0,locM

∣
∣
∣
∣
∣
∣
∣

. (58)

Here I is the identity matrix and therefore the global matrix operator BE ,G
M is the identity matrix operator.

Coefficients of the fundamental nuclei Lloc
τ , s and Bloc

τ , s in general case of the orthogonal curvilinear system
of coordinates are very complicate and will not be presented here. Instead, we will consider some special cases
of shells of revolution.
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4 CUF approach for higher order elastic shells of revolution

A simple concept of the surface was given by Euclid, considering it a figure that has only length and width.
In fact, the concept of a surface is much more complex, since it covers the whole variety of forms created by
nature and man, generalized into a geometric image.

Mathematically, a surface can be considered as 2-D manifold in 3-D space. The analytical representation
of a surface can be done using its equation. From this point of view, a surface can be defined as the locus of
points in space whose coordinates implicitly satisfy the given equation

F(x1, x2, x3) � 0. (59)

A more general analytical description of a surface is reduced to expressing the coordinates of its points in
terms of two independent parameters and, usually denoted by the Latin letters u and v, in the form of a system
of equations

x1 � f1(u, v), x2 � f2(u, v), x3 � f3(u, v). (60)

If the coordinates x1, x2.x3 of the surface point are referred to the radius vector, thenwe obtain an equivalent
equation in vector form

r(u, v) � f1(u, v)e1 + f2(u, v)e2 + f3(u, v)e3. (61)

The position of any pointM on the surface can be specified by two parameters u and v. Therefore, a surface
in three-dimensional space is said to be a 2-D set of points in space given by equations (60). The parameters
u and v, that define a point on the surface are called the curvilinear coordinates of the surface.

Derivative of the vector function r(u, v) with respect to parameters u and v define the tangential to the
surface vectors

∂r(u, v)
∂u

� ru(u, v),
∂r(u, v)

∂v
� rv(u, v). (62)

The vectors ru and ru located in the tangential plane. Then coefficients of the first quadratic form of the
surface, as well as the unit vector normal to the surface is determined though cross product in the form

Au(x1, x2) �
√

∂r(u, v)
∂xu

· ∂r(u, v)
∂xu

, Av(x1, x2) �
√

∂r(u, v)
∂xv

· ∂r(u, v)
∂xv

, n(u, v) � ru(u, v) × rv(u, v)

|ru(u, v) × rv(u, v)| .
(63)

The principal curvatures of the surface are calculated using the following equations:

ku � n(u, v) · ruu(u, v)
ru(u, v)2

, kv � n(u, v) · rvv(u, v)

rv(u, v)2
, (64)

where

∂2r(u, v)
∂u2

� ruu(u, v),
∂2r(u, v)

∂v2
� rvv(u, v). (65)

Further references related to the geometry of surfaces can be found in Gray et al. [24], Kuhnel [44], von
Seggern [67] and applications to the complex shells theory in Galimov and Paimushin [22], Guliaev et al. [25],
Kil’chevskiy [31], Kornishin et al. [36], Rekach and Krivoshapko [57].
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4.1 Main relations for surfaces of revolution

The surface of revolution is formed by the rotation of a plane curve around a fixed straight line, called the axis
of rotation. To derive parametric equations of the surface of revolution of a general form, we define the plane
curve in the coordinate plane x1, x3 by the equations

x1 � f1(u), x3 � f2(u). (66)

Consider a point M with coordinated x1 � f1(u), 0, x3 � f2(u), after rotation around axis x3 by the angle
ϕ will receive new coordinated x1 � f1(u) cos(ϕ), f1(u) sin(ϕ), x3 � f2(u).

Therefore, the parametric equation of the surface of revolution can be presented in the following vector
form

r(u,ϕ) � f1(u) cos(ϕ)e1 + f1(u) sin(ϕ)e2 + f2(u)e3. (67)

The first derivatives of the vector r(u, ϕ) are given by the expressions

∂r(u,ϕ)
∂u

� f1(u)
′ cos(ϕ)e1 + f1(u)

′ sin(ϕ)e2 + f2(u)
′e3,

∂r(u,ϕ)
∂ϕ

� − f1(u) sin(ϕ)e1 + f1(u)s cos(ϕ)e2
(68)

The coefficients of the first quadratic form of the surface, as well as the unit vector normal to the surface
and the principal curvatures are calculated by the equations

A1(u) �
√

( f1(u)′)2 + ( f2(u)′)2, A2(u) � f1(u)
′,

n(u, v) � − f2(u)′ cos(v)
A1(u)

e1 − f2(u)′ sin(v)
A1(u)

e2 +
f1(u)′

A1(u)
e3,

κ1 � f1(u)′ f2(u)′′ − f1(u)′′ f2(u)′

A3
1

, κ2 � f2(u)′

A1A2
.

(69)

Here fα(u)′ and fα(u)′′ are the first and second derivatives of the function f1(u) with respect to u and
α � 1, 2.

More information related to the surfaces of revolution parametrization can be found in Gray et al. [23],
Krivoshapko and Ivanov [42] and applications to the shells of revolution in Korjakin et al. [35], Kovarik [37],
Reddy [56], Rekach and Krivoshapko [57], Vlasov [66], Wan and Weinitschke [68].

4.2 Circular plate in polar coordinates

The simplest surface of revolution is a plane formed by rotation around an axis x3 of a straight line that passing
though it. In this case, we have model of an elastic plate of the circular geometry in polar coordinates. Models
of circular plates are very important and are often used in theoretical analysis as well as applications in sciences
and engineering. The middle surface of the plate is a circle, the analytical representation of which in Cartesian
coordinates x , y, z is given by the equation

x2 + y2 ≤ R2, z � 0. (70)

We introduce polar coordinates where x1 � ρ, x2 � ϕ and x3 � z, z ∈ [−h, h]. The parametric equations
of the surface of revolution (70) have the following vector form:

r(ρ,ϕ) � ρ cos(ϕ)e1 + ρ sin(ϕ)e2. (71)

In case the parameters ρ and ϕ or polar coordinates belong to intervals and x ∈ [0, R] ϕ ∈ [0, 2π] we
have complete circle of radius R, otherwise a circular segment.

The coefficients of the first quadratic form of the circle, as well as the unit vector normal and the principal
curvatures are equal to

A1 � 1, A2 � ρ, n(x ,ϕ) � e3, κ1 � 0, κ2 � 0, (72)
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respectively.
The coefficients Lamé for a circular plate have the form

H1 � 1, H1 � ρ and H3 � 1. (73)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of a circular plate. The final equations have the form (50), and the essential boundary conditions
have the form (57).

ThematricesLloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher order

circular elastic plates. They, as well as the vectors of local unknown functions ulocs and the local expression
for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
uρ ,uρ

Lτ ,s
uρ ,uϕ

Lτ ,s
uρ ,uz

Lτ ,s
uϕ ,uρ

Lτ ,s
uϕ ,uϕ

Lτ ,s
uϕ ,uz

Lτ ,s
uz ,uρ

Lτ ,s
uz ,uϕ

Lτ ,s
uz ,uz

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

uρ,s

uϕ,s

uz,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃uρ ,τ

b̃uϕ ,τ

b̃uρ ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (74)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as plocs the vectors
of local the expression for the external load applied to the shell ends for the higher order circular plate have
the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
uρ ,uρ

Bτ ,s
uρ ,uϕ

Bτ ,s
uρ ,uz

Bτ ,s
uϕ ,uρ

Bτ ,s
uϕ ,uϕ

Bτ ,s
uϕ ,uz

Bτ ,s
uz ,uρ

Bτ ,s
uz ,uϕ

Bτ ,s
uz ,uz

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

J
uρ ,uρ
τ ,s Puρ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J uz ,uzτ ,s Puz,s

∣
∣
∣
∣
∣
∣
∣
∣

. (75)

Coefficients of the fundamental nucleiBloc
τ , s can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
The standard reference to classical plate theory is Timoshenko and Woinowsky-Krieger [64].

4.3 Cylindrical shell

Models of elastic shells of the cylindrical geometry are very important and are often used in theoretical analysis
as well as applications in sciences and engineering. Consider a cylindrical shell formed by rotation around an
axis x3 of a straight line parallel to it and located at a distance R from it. The middle surface of the shell is a
cylinder, the analytical representation of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2 � R2. (76)

We introduce cylindrical coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [R−h, R+h]. The parametric
equations of the surface of revolution (76) have the following vector form

r(x ,ϕ) � R cos(ϕ)e1 + R sin(ϕ)e2 + xe3. (77)

If the parameters x and ϕ or cylindrical coordinates belong to intervals and x ∈ [0, H ] ϕ ∈ [0, 2π], we
have a closed cylinder of length H , otherwise a cylindrical segment, as shown in Fig. 1.

The coefficients of the first quadratic form of a cylindrical surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 � 1, A2 � R, n(x ,ϕ) � − cos(ϕ)e1 − sin(ϕ)e2 + e3, κ1 � 0, κ2 � 1

R
, (78)

respectively.
The coefficients Lamé for a cylindrical shell have the form

H1 � 1, H2 � R
(

1 +
r

R

)

and H3 � 1. (79)
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Fig. 1 Two cylindrical surfaces of revolution

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a cylindrical shell. The final equations have the form (50), and the essential
boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order cylindrical elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for the external body and surface loads blocs , have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (80)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using the equations presented in the

previous sections. Their analytical expressions can be found in Carrera and Zozulya [13, 14].
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order cylindrical shell have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (81)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
Cylindrical shells considered in numerous publications, see for example Kovarik [37], Reddy [56], Timo-

shenko and Woinowsky-Krieger [64], Vlasov [66].

4.4 Conical shell

Models of elastic shells of conical geometry are very important and are often used in theoretical analysis as
well as applications in sciences and engineering. Consider a conical shell formed by rotation around an axis
x3 of a straight line, not parallel, but forming constant angle ψ with it. The middle surface of the shell is a
cone, the analytical representation of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2 � z2 cos(ψ)2. (82)

We introduce cylindrical coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [x − h, x cos(ψ) + h]. The
parametric equations of the surface of revolution (82) have the following vector form:

r(x ,ϕ) � x sin(ψ) cos(ϕ)e1 + x sin(ψ) sin(ϕ)e2 + x cos(ψ)e3. (83)
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Fig. 2 Two conical surfaces of revolution

If the parameters x and ϕ or the cylindrical coordinates belong to intervals and x ∈ [0, H ] ϕ ∈ [0, 2π] we
have a closed cone of length H , otherwise a conical segment, as shown in Fig. 2.

The coefficients of the first quadratic form of a conical surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 � 1, A2 � x sin(ψ),

n(x ,ϕ) � − cos(ψ) cos(ϕ)e1 − cos(ψ) sin(ϕ)e2 + sin(ψ)e3,

κ1 � 0, κ2 � cot(ψ)

x
,

(84)

respectively.
The coefficients Lamé for a conical shell have the form

H1 � 1, H2 � x sin(ψ)

(

1 +
r cot(ψ)

x

)

and H3 � 1. (85)

Substituting these parameters into the equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a conical shell. The final equations have the form (50), and the essential
boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order conical elastic shells. They, as well as the vectors of local unknown functions ulocs and the local expression
for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (86)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order conical shell have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (87)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
Conical shells considered in numerous publications, see for example Kovarik [37], Reddy [56], Vlasov

[66].
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Fig. 3 Two spherical surfaces of revolution

4.5 Spherical shell

Models of elastic shells of spherical geometry are very important and are often used in theoretical analysis
as well as applications in sciences and engineering. Consider a spherical shell formed by rotation around the
axis x3 of the circle x21 + x23 � R2. The middle surface of the shell is a sphere, the analytical representation of
which in Cartesian coordinates x , y, z is given by the equation

x2 + y2 + z2 � R2. (88)

We introduce spherical coordinates where x1 � ϕ, x2 � ψ and x3 � r , r ∈ [R−h, R +h]. The parametric
equations of the surface of revolution (88) have the following vector form:

r(ψ ,ϕ) � R cos(ψ) cos(ϕ)e1 + R cos(ψ) sin(ϕ)e2 + R sin(ψ)e3. (89)

If the parameters ϕ and ψ or the spherical coordinates belong to intervals ϕ ∈ [0, 2π] and ψ ∈ [−π/2,
π/2] we have a complete spherical surface, otherwise a spherical segment, as shown in Fig. 3.

The coefficients of the first quadratic form of a spherical surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 � R, A2 � R sin(ψ),

n(ψ ,ϕ) � − cos(ψ) cos(ϕ)e1 − cos(ψ) sin(ϕ)e2 − sin(ψ)e3,

κ1 � 1

R
, κ2 � 1

R
,

(90)

respectively.
The coefficients Lamé for a spherical shell have the form

H1 � R
(

1 +
r

R

)

, H2 � R sin(ψ)
(

1 +
r

R

)

and H3 � 1. (91)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a spherical shell. The final equations have the form (50), and the essential
boundary conditions have the form (57).

Matrices Lloc
τ , s in (51) are the fundamental nuclei of the differential equations of equilibrium for the higher

order spherical elastic shells. They as well as vectors of local unknown functions ulocs and local expression for
external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
uϕ ,uϕ

Lτ ,s
uϕ ,uψ

Lτ ,s
uϕ ,ur

Lτ ,s
uψ ,uϕ

Lτ ,s
uψ ,uψ

Lτ ,s
uψ ,ur

Lτ ,s
ur ,uϕ

Lτ ,s
ur ,uψ

Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

uϕ,s

uψ ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃uϕ ,τ

b̃uψ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (92)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [11, 12].
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Fig. 4 Two ellipsoidal surfaces of revolution

The matrices Bloc
τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs

of the local external load applied to the shell ends for the higher order spherical elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
uϕ ,uϕ

Bτ ,s
uϕ ,uψ

Bτ ,s
uϕ ,ur

Bτ ,s
uψ ,uϕ

Bτ ,s
uψ ,uψ

Bτ ,s
uψ ,ur

Bτ ,s
ur ,uϕ

Bτ ,s
ur ,uψ

Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

J
uϕ ,uϕ
τ ,s Puϕ,s

J
uψ ,uψ
τ ,s Puψ ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (93)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytical expressions can be found in Carrera and Zozulya [13, 14].
Spherical shells considered in numerous publications, see for example Kovarik [37], Reddy [56], Timo-

shenko and Woinowsky-Krieger [64], Vlasov [66], Xie et al. [71].

4.6 Ellipsoidal shell

Models of elastic shells of ellipsoidal geometry are very important and are often used in theoretical analysis as
well as applications in sciences and engineering. Consider an ellipsoidal shell formed by rotation around the

axis x3 of the ellipse
x21
a2

+
x23
b2

� 1. The middle surface of the shell is an ellipsoid, the analytical representation
of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2

a2
+
z2

b2
� 1. (94)

We introduce spherical coordinates where x1 � ϕ, x2 � ψ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (94) have the following vector form:

r(ϕ,ψ) � a cos(ψ) cos(ϕ)e1 + a cos(ψ) sin(ϕ)e2 + b sin(ψ)e3. (95)

If parameters ϕ and ψ or spherical coordinates belong to intervals ϕ ∈ [0, 2π] and ψ ∈ [−π/2, π/2] we
have a complete ellipsoidal surface, otherwise a ellipsoidal segment, as shown in Fig. 4.

The coefficients of the first quadratic form of a ellipsoidal surface, as well as the unit vector normal to the
surface and the principle curvatures are equal to

A1 �
√

b2 cos(ψ)2 + a2 sin(ψ)2, A2 � a cos(ψ),

n(ϕ,ψ) � − b cos(ψ) cos(ϕ)
√

b2 cos(ψ)2 + a2 sin(ψ)2
e1 − b cos(ψ) sin(ϕ)

√

b2 cos(ψ)2 + a2 sin(ψ)2
e2 − a sin(ψ)

√

b2 cos(ψ)2 + a2 sin(ψ)2
e3,

κ1 � ab
(

b2 cos(ψ)2 + a2 sin(ψ)2
)3/2 , κ2 � b

a
√

b2 cos(ψ)2 + a2 sin(ψ)2
,

(96)

respectively.
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The coefficients Lamé for an ellipsoidal shell have the form

H1 �
√

b2 cos(ψ)2 + a2 sin(ψ)2

(

1 +
abr

(

b2 cos(ψ)2 + a2 sin(ψ)2
)3/2

)

,

H2 � a cos(ψ)

(

1 +
br

a
√

b2 cos(ψ)2 + a2 sin(ψ)2

)

,

H3 � 1.

(97)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for an ellipsoidal. The final equations have the form (50), and the essential
boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order ellipsoidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
uϕ ,uϕ

Lτ ,s
uϕ ,uψ

Lτ ,s
uϕ ,ur

Lτ ,s
uψ ,uϕ

Lτ ,s
uψ ,uψ

Lτ ,s
uψ ,ur

Lτ ,s
ur ,uϕ

Lτ ,s
ur ,uψ

Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

uϕ,s

uψ ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃uϕ ,τ

b̃uψ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (98)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order ellipsoidal elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
uϕ ,uϕ

Bτ ,s
uϕ ,uψ

Bτ ,s
uϕ ,ur

Bτ ,s
uψ ,uϕ

Bτ ,s
uψ ,uψ

Bτ ,s
uψ ,ur

Bτ ,s
ur ,uϕ

Bτ ,s
ur ,uψ

Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

J
uϕ ,uϕ
τ ,s Puϕ,s

J
uψ ,uψ
τ ,s Puψ ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (99)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Ellipsoidal shells considered in numerous publications, see for example Klochkov et al. [32–34],

Krivoshapko [40], Meish [47], Meish and Maiborodina [48], Tangbanjongkij et al. [63].

4.7 Paraboloidal shell

Models of elastic shells of paraboloidal geometry are very important and are often used in theoretical analysis
as well as applications in sciences and engineering. Consider a paraboloidal shell formed by rotating around

the axis x3 of a parabolic curing line
x21
a2

� x3. The middle surface of the shell is a paraboloid, the analytical
representation of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2

a2
� z. (100)

We introduce curvilinear coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (100) have the following vector form:

r(x ,ϕ) � ax cos(ϕ)e1 + ax sin(ϕ)e2 + ax2e3. (101)

If parameters x and ϕ or spherical coordinates belong to intervals x ∈ [0, H ] and ϕ ∈ [0, 2π] we have a
complete paraboloidal surface, otherwise a paraboloidal segment, as shown in Fig. 5.
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Fig. 5 Two paraboloidal surfaces of revolution

The coefficients of the first quadratic form of a paraboloidal surface, as well as the unit vector normal to
the surface and the principal curvatures are equal to

A1 � a
√

1 + 4x2, A2 � ax ,

n(ϕ,ψ) � −2ax cos(ϕ)

a
√
1 + 4x2

e1 − 2ax sin(ϕ)

a
√
1 + 4x2

e2 − a

a
√
1 + 4x2

e3,

κ1 � 2

a
(

1 + 4x2
)3/2 , κ2 � 2

a
√
1 + 4x2

,

(102)

respectively.
The coefficients Lamé for a paraboloidal shell have the form

H1 � a
√

1 + 4x2

(

1 +
2r

a
(

1 + 4x2
)3/2

)

, H2 � ax

(

1 +
2r

a
√
1 + 4x2

)

and H3 � 1. (103)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a paraboloidal shell. The final equations have the form (50), and the
essential boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order paraboloidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (104)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs of
the local external load applied to the shell ends for the higher order paraboloidal elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s .

∣
∣
∣
∣
∣
∣
∣
∣

(105)

The fundamental nuclei coefficients Bloc
τ , s can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Paraboloidal shells considered in numerous publications, see for example Al-Khatib et al. [1], Cher-

nobryvko et all. [15, 16], Kang and Leissa [27, 28], Krivoshapko [41], Xie et al. [71].
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Fig. 6 Two hyperboloidal surfaces of revolution

4.8 Hyperboloidal shell

Models of elastic shells of hyperboloidal geometry are very important and are often used in theoretical analysis
as well as applications in sciences and engineering. Consider a hyperboloidal shell formed by rotation around

the axis x3 of a hyperbola
x21
a2

− x23
b2

� 1. The middle surface of the shell is a hyperboloid, the analytical
representation of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2

a2
− z2

b2
� 1. (106)

We introduce curvilinear coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (106) have the following vector form:

r(x ,ϕ) � a cosh(x) cos(ϕ)e1 + a cosh(x) sin(ϕ)e2 + b sinh(x)e3. (107)

If the parameters x and ϕ or the spherical coordinates belong to intervals x ∈ [0, H ] and ϕ ∈ [0, 2π] we
have a complete hyperboloidal surface otherwise a hyperboloidal segment, as shown in Fig. 6.

The coefficients of the first quadratic form of a hyperboloidal surface, as well as the unit vector normal to
the surface and the principal curvatures are equal to

A1 �
√

a2 sinh(x)2 + b2 cosh(x)2, A2 � a cosh(x),

n(ϕ,ψ) � − b cos(ϕ) cosh(x)
√

a2 sinh(x)2 + b2 cosh(x)2
e1 − b cosh(x) sin(ϕ)

√

a2 sinh(x)2 + b2 cosh(x)2
e2 +

a sinh(x)
√

a2 sinh(x)2 + b2 cosh(x)2
e3,

κ1 � − ab
(

a2 sinh(x)2 + b2 cosh(x)2
)3/2 , κ2 � b

a
√

a2 sinh(x)2 + b2 cosh(x)2
,

(108)

respectively.
The coefficients Lamé for a hyperboloidal shell have the form

H1 �
√

a2 sinh(x)2 + b2 cosh(x)2

(

1 − abr
(

a2 sinh(x)2 + b2 cosh(x)2
)3/2

)

,

H2 � a cosh(x)

(

1 +
br

a
√

a2 sinh(x)2 + b2 cosh(x)2

)

,

H3 � 1.

(109)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a hyperboloidal. The final equations have the form (50), and the essential
boundary conditions have the form (57).
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Fig. 7 Two toroidal surfaces of revolution

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order hyperboloidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (110)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs of
the local external load applied to the shell ends for the higher order hyperboloidal elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (111)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Hyperboloidal shells considered for example in Kang and Leissa [29], Krivoshapko [39].

4.9 Toroidal shell

Models of elastic shells of toroidal geometry are very important and are often used in theoretical analysis as
well as applications in sciences and engineering. Consider a toroidal shell formed by rotation around the axis
x3 of a circle of radius r and the center of the circle located outside the axis at a distance R: (x1−R)2 +x23 � r2.
The middle surface of the shell is a torus, the analytical representation of which in Cartesian coordinates x , y,
z is given by the equation

(√

x2 + y2 − R

)2

+ z2 � r2. (112)

We introduce curvilinear coordinates where x1 � ϕ, x2 � ψ and x3 � z, z ∈ [−h, h]. The parametric
equations of the surface of revolution (112) have the following vector form:

r(ψ ,ϕ) � (R + r cos(ψ)) cos(ϕ)e1 + (R + r cos(ψ)) sin(ϕ)e2 + r sin(ψ)e3. (113)

If parameters ϕ and ψ or curvilinear coordinates belong to intervals ϕ ∈ [0, 2π] and ψ ∈ [−π , π] we
have a complete toroidal surface otherwise a toroidal segment, as shown in Fig. 7.

The coefficients of the first quadratic form of a toroidal surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 � r , A2 � R + r cos(ψ),

n(ϕ,ψ) � − cos(ψ) cos(ϕ)e1 − cos(ψ) sin(ϕ)e2 − sin(ψ)e3,

κ1 � 1

r
, κ2 � cos(ψ)

R + r cos(ψ)
,

(114)
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respectively.
The coefficients Lamé for a toroidal shell have the form

H1 � r
(

1 +
z

r

)

, H2 � (R + r cos(ψ))

(

1 +
z cos(ψ)

R + r cos(ψ)

)

, H3 � 1. (115)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a toroidal shell. The final equations have the form (50), and the essential
boundary conditions have the form (57).

ThematricesLloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher order

toroidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local expression
for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
uϕ ,uϕ

Lτ ,s
uϕ ,uψ

Lτ ,s
uϕ ,ur

Lτ ,s
uψ ,uϕ

Lτ ,s
uψ ,uψ

Lτ ,s
uψ ,ur

Lτ ,s
ur ,uϕ

Lτ ,s
ur ,uψ

Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

uϕ,s

uψ ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃uϕ ,τ

b̃uψ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (116)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order toroidal elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
uϕ ,uϕ

Bτ ,s
uϕ ,uψ

Bτ ,s
uϕ ,ur

Bτ ,s
uψ ,uϕ

Bτ ,s
uψ ,uψ

Bτ ,s
uψ ,ur

Bτ ,s
ur ,uϕ

Bτ ,s
ur ,uψ

Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

J
uϕ ,uϕ
τ ,s Puϕ,s

J
uψ ,uψ
τ ,s Puψ ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (117)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Toroidal shells considered in numerous publications, see for example Clark [17, 18], El-Raheb andWagner

[20, 21], Leung [45], Lutskaya et al. [46], Ming et al. [49], Naboulsi et al. [50], Senjanovic et al. [58, 59], Sun
[26, 61], Sutcliffe [62], Wenmin et al. [70].

4.10 Elliptic toroidal shell

Models of elastic shells of elliptic toroidal geometry are very important and are often used in theoretical
analysis as well as applications in sciences and engineering. Consider an elliptic toroidal shell formed by
rotation around the axis x3 of a ellipse with axes a, b and the center of the ellipse located outside the axis

at a distance R: (x1−R)2

a2
+

x23
b2

− 1 � 0. The middle surface of the shell is an elliptic torus, the analytical
representation of which in Cartesian coordinates x , y, z is given by the equation

(√

x2 + y2 − R
)

a2

2

+
z2

b2
− 1 � 0. (118)

We introduce curvilinear coordinates where x1 � ϕ, x2 � ψ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (118) have the following vector form:

r(ψ ,ϕ) � (a + b cos(ψ)) cos(ϕ)e1 + (a + b cos(ψ)) sin(ϕ)e2 + R sin(ψ)e3. (119)

If parameters ϕ and ψ or curvilinear coordinates belong to intervals ϕ ∈ [0, 2π] and ψ ∈ [−π , π] we
have a complete elliptic toroidal surface otherwise an elliptic toroidal segment, as shown in Fig. 8.
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Fig. 8 Two elliptic toroidal surfaces of revolution

The coefficients of the first quadratic form of a toroidal surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 �
√

R2 cos(ψ)2 + b2 sin(ψ)2, A2 � a + b cos(ψ),

n(ψ ,ϕ) � − R cos(ψ) cos(ϕ)
√

R2 cos(ψ)2 + b2 sin(ψ)2
e1 − R cos(ψ) sin(ϕ)

√

R2 cos(ψ)2 + b2 sin(ψ)2
e2 − b sin(ψ)

√

R2 cos(ψ)2 + b2 sin(ψ)2
e3,

κ1 � bR
(

R2 cos(ψ)2 + b2 sin(ψ)2
)3/2 , κ2 � R cos(ψ)

(a + b cos(ψ))
√

R2 cos(ψ)2 + b2 sin(ψ)2
,

(120)

respectively.
The coefficients Lamé for an elliptic toroidal shell have the form

H1 �
√

R2 cos(ψ)2 + b2 sin(ψ)2

(

1 +
bRr

(

R2 cos(ψ)2 + b2 sin(ψ)2
)3/2

)

,

H2 � (a + b cos(ψ))

(

1 +
Rr cos(ψ)

(a + b cos(ψ))
√

R2 cos(ψ)2 + b2 sin(ψ)2

)

, H3 � 1

(121)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for an elliptic toroidal shell. The final equations have the form (50), and the
essential boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order elliptic toroidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
uϕ ,uϕ

Lτ ,s
uϕ ,uψ

Lτ ,s
uϕ ,ur

Lτ ,s
uψ ,uϕ

Lτ ,s
uψ ,uψ

Lτ ,s
uψ ,ur

Lτ ,s
ur ,uϕ

Lτ ,s
ur ,uψ

Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

uϕ,s

uψ ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃uϕ ,τ

b̃uψ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (122)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order elliptic toroidal elastic shells have the
form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
uϕ ,uϕ

Bτ ,s
uϕ ,uψ

Bτ ,s
uϕ ,ur

Bτ ,s
uψ ,uϕ

Bτ ,s
uψ ,uψ

Bτ ,s
uψ ,ur

Bτ ,s
ur ,uϕ

Bτ ,s
ur ,uψ

Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

J
uϕ ,uϕ
τ ,s Puϕ,s

J
uψ ,uψ
τ ,s Puψ ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (123)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Elliptic toroidal shells considered in Zingoni A., et al. [72].



Carrera unified formulation (CUF) for the shells of revolution 131

Fig. 9 Two catenoidal surfaces of revolution

4.11 Catenoidal shell

Models of elastic shells of catenoidal geometry are very important and are often used in theoretical analysis
as well as applications in sciences and engineering. Consider a catenoidal shell formed by rotation around the
axis x3 of a catenary a cosh(x3/a) � x1 curve line segment. The middle surface of the shell is a catenoid, the
analytical representation of which in Cartesian coordinates x , y, z is given by the equation

x2 + y2 � a cosh(z/a). (124)

We introduce curvilinear coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (124) have the following vector form:

r(x ,ϕ) � a cosh(x/a) cos(ϕ)e1 + a cosh(x/a) sin(ϕ)e2 + xe3. (125)

If the parameters x and ϕ or cylindrical coordinates belong to intervals x ∈ [0, H ] and ϕ ∈ [0, 2π] we
have a complete catenoidal surface otherwise a catenoidal segment, as shown in Fig. 9.

The coefficients of the first quadratic form of a catenoidal surface, as well as the unit vector normal to the
surface and the principal curvatures are equal to

A1 � cosh(x/a), A2 � a cosh(x/a),

n(x ,ϕ) � − cos(ϕ)

cosh(x/a)
e1 − sin(ϕ)

cosh(x/a)
e2 + sech(x/a)2e3,

κ1 � − sech(x/a)2

a
, κ2 � sech(x/a)2

a
,

(126)

respectively.
The coefficients Lamé for a catenoidal shell have the form

H1 � cosh(x/a)

(

1 − r

a cosh(x/a)2

)

,

H2 � a cosh(x/a)

(

1 +
r

a cosh(x/a)2

)

and H3 � 1

(127)

Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a catenoidal shell. The final equations have the form (50), and the essential
boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order catenoidal elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for the external body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (128)
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Fig. 10 Two pseudospherical surfaces of revolution

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order catenoidal elastic shells have the form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (129)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Catenoidal shells considered in Zun [60].

4.12 Pseudospherical shell

Models of elastic shells of pseudospherical geometry are very important and are often used in theoretical
analysis as well as applications in sciences and engineering. Consider a pseudospherical shell formed by
rotation around the axis x3 of an involute of the catenary a cosh(x3/a) � x1 curved line segment. The middle
surface of the shell is a pseudosphere, the analytical representation of which in Cartesian coordinates x , y, z
is given by the equation

a ln(a +
√

a2 − x2 − y2) −
√

a2 − x2 − y2 � z. (130)

We introduce curvilinear coordinates where x1 � x , x2 � ϕ and x3 � r , r ∈ [−h, h]. The parametric
equations of the surface of revolution (130) have the following vector form

r(x ,ϕ) � a sin(x) cos(ϕ)e1 + a sin(x) sin(ϕ)e2 + a(cos(x) + log(tan(x/2))e3. (131)

If the parameters x and ϕ or curvilinear coordinates belong to intervals x ∈ [0, H ] and ϕ ∈ [0, 2π] we
have a complete pseudospherical surface otherwise a pseudospherical segment, as shown in Fig. 10.

The coefficients of the first quadratic form of a pseudospherical surface, as well as the unit vector normal
to the surface and the principal curvatures are equal to

A1 � a cot(x), A2 � a sin(x),

n(x ,ϕ) � − cos(x) cos(ϕ)e1 − cos(x) sin(ϕ)e2 +
cos(x)

cot(x)
e3,

κ1 � − 1

a cot(x)
, κ2 � cot(x)

a
,

(132)

respectively.
The Lamé coefficients for a pseudospherical shell have the form

H1 � a cot(x),

(

1 − r

a cot(x)

)

, H2 � a sin(x)

(

1 +
r cot(x)

a

)

, H3 � 1. (133)
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Substituting these parameters into equations (49)–(58), we obtain equations corresponding to the higher
order theory of the linear theory for a pseudospherical shell. The final equations have the form (50), and the
essential boundary conditions have the form (57).

The matrices Lloc
τ , s in (51) are the fundamental nuclei of differential equations of equilibrium for higher

order pseudospherical elastic shells. They, as well as the vectors of local unknown functions ulocs and the local
expression for external the body and surface loads blocs have the form

Lloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Lτ ,s
ux ,ux Lτ ,s

ux ,uϕ
Lτ ,s
ux ,ur

Lτ ,s
uϕ ,ux Lτ ,s

uϕ ,uϕ
Lτ ,s
uϕ ,ur

Lτ ,s
ur ,ux Lτ ,s

ur ,uϕ
Lτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, ulocs �

∣
∣
∣
∣
∣
∣
∣
∣

ux ,s

uϕ,s

ur ,s

∣
∣
∣
∣
∣
∣
∣
∣

, blocs �

∣
∣
∣
∣
∣
∣
∣
∣

b̃ux ,τ

b̃uϕ ,τ

b̃ur ,τ

∣
∣
∣
∣
∣
∣
∣
∣

. (134)

The fundamental nuclei Lloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
The matrices Bloc

τ , s of the fundamental nuclei for natural boundary conditions, as well as the vectors plocs
of the local external load applied to the shell ends for the higher order pseudospherical elastic shells have the
form

Bloc
τ ,s �

∣
∣
∣
∣
∣
∣
∣
∣

Bτ ,s
ux ,ux Bτ ,s

ux ,uϕ
Bτ ,s
ux ,ur

Bτ ,s
uϕ ,ux Bτ ,s

uϕ ,uϕ
Bτ ,s
uϕ ,ur

Bτ ,s
ur ,ux Bτ ,s

ur ,uϕ
Bτ ,s
ur ,ur

∣
∣
∣
∣
∣
∣
∣
∣

, plocs �

∣
∣
∣
∣
∣
∣
∣
∣

Jux ,uxτ ,s Pux ,s

J
uϕ ,uϕ
τ ,s Puϕ,s

J ur ,urτ ,s Pur ,s

∣
∣
∣
∣
∣
∣
∣
∣

. (135)

The fundamental nuclei Bloc
τ , s coefficients can be easy calculated using equations presented in the previous

sections. Their analytic expressions are complicated, and we do not present them here.
Pseudospherical shells considered for example in Gil-oulbe et al. [23], Krawczyk [38], Krivoshapko and

Ivanov [43].

5 Conclusion

Higher-order theories for elastic shells of revolution have been developed here using the CUF approach which
is based on the series expansion of general 3-D equations of linear theory of elasticity into a series expansion
with respect to shell thickness. In the expansion mentioned above, the 2-D higher order shells of revolution
theories are developed from general 3-D equations of linear theory of elasticity using the principle of virtual
power. All the functions that define the stress–strain state of the shell including classical tensors as well as
strain tensors, vectors of displacements and body forces have been expressed in terms of the coefficients of
that general series expansion with respect to the shell thickness coordinate. Thereby, all equations of linear
theory of elasticity including generalized Hooke’s law have been transformed to the corresponding equations
for the coefficients of the series expansion accordance with the (CUF) approach. The system of the equations
of equilibrium in terms of the series expansion of displacement vectors coefficients has been obtained.

The equations of 2-D models of higher orders of shells of revolution are developed and presented here,
for the cases the middle surfaces of which can be represented analytically. More specifically, we represent
here a higher order theory for plates in polar coordinates, cylindrical. conical, spherical, elliptical, parabolical,
hyperboloidal, toroidal, elliptic toroidal, catenoidal and pseudospherical shells.

The obtained equations can be used for theoretical analysis and calculation of the stress–strain state, as
well as for modeling thin-walled structures that are used in science, engineering, and technology.
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