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Abstract In this paper, the optimization of piezoelectric patch positions is conducted in order to improve vibra-
tion performance of an FG-truncated conical shell. This investigation is done based upon a new optimization
trend on a rotating cone for the first time, as well as, the piezoelectric material has been considered functionally
graded. The vibration model is based on the classical theory, and the governing equation is obtained using the
Lagrange equation. The sensor voltage change rate is selected as feedback signal to vibration control. Four
different piezoelectric sets considered with different numbers of piezoelectric Patches. The settling time of the
system and position of the piezoelectric patches in longitudinal direction is assumed as an objective function
and optimization variable, respectively. Optimization is carried out using sequential quadratic programming
and pattern search algorithms. Also, the symmetrical and asymmetrical layouts of the piezoelectric patches in
order to study the settling time have been considered. Then, the effect of piezoelectric lengths and arcs on the
settling time has been studied. The results show that the best position for piezoelectric placement is in a range
between the middle and the base of the cone.

1 Introduction

Investigating the vibration of conical shells has particular importance due to its various applications in marine
environments, aerospace, gas turbines, fluid transport pipelines, and so on. The importance of this vibration
increases when the conical shell has rotational speed. Lots of research have been performed in the field of
investigating the vibration of these structures. Li et al. [1] addressed the calculation of the natural frequency
and forced vibration response of a conical shell by means of the Rayleigh–Ritz method. They investigated the
vibration response in frequency domain. Setoodeh et al. [2] analyzed the dynamics and free vibrations of a
functionally graded conical shell with variable thickness based on layerwise theory. The authors used differ-
ential quadrature method and Ansys software to discretize the equations and validate the results, respectively.
Daneshjo et al. [3] presented an analysis of the dynamics and critical speed of a rotating conical shell with
orthogonal stiffeners. In obtained results, the effect of parameters such as rotation speed, depth-to-width ratio
of the stiffeners, number of stiffeners, cone angle, and boundary conditions on natural frequency is observed.

Nowadays, active and passive vibration control is important in most vibrating structures that use in aircraft,
satellite, spacecraft, and pipelines. It is desirable for researchers to design an optimal closed-loop vibration
control system with best performance. One impressive way to reduce cost and weight of the structure is to use
piezoelectric patches instead of layers as sensors and actuators. In order to use these patches, designers deal
with location, numbers, and dimensions of these patches, so a lot of choices are available. The basic questions
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that come up are what values for these three mentioned parameters should be considered so that the system
shows best performance? To answer this question, it is necessary to examine the optimization topic. There
are few studies about optimization in vibration control of shells. Karroubi and Irani [4] investigated vibration
of rotating FG cylindrical shell with two piezoelectric layers. The piezoelectric materials was considered
functionally graded (FG). They studied the effect of axial and circumferential wave number and piezoelectric
thickness on the natural frequency. Also, Campbell’s diagramwas depicted. Results show that using Galerkin’s
method leads to omitting the Coriolis effects.

Li et al. [5] studied the active control of free and forced vibration of a non-rotating conical shell using
piezoelectric patches. To suppress vibrations, negative velocity feedback and linear quadratic regulator method
were used. Numerical results of this paper illustrate that control gain is more effective than the piezoelectric
size on vibration suppression. Jafari et al. [6] used the Lagrange method to study linear and nonlinear vibration
of a functionally graded cylindrical shell with a piezoelectric layer. They investigated the effect of cylindrical
radius, thickness, and circumferential wave number on the natural frequency. Moreover, they also studied
vibrational behavior by changing the excitation force and applying an external voltage to the system. Heidari
et al. [7] studied free vibrations of a porous cylindrical rotor with functionally graded piezoelectric patches
based on first-order shear theory. In this study, various parameters such as porosity coefficient, fundamental
natural frequency, critical speed, and piezoelectric characteristics are investigated. Based on the results of this
research, higher value of piezoelectric angular pitch leads to a decrease in fundamental natural frequency.
Song et al. [8] studied the active control of vibration of a composite cylindrical shell reinforced with carbon
nanotubes using piezoelectric patches. They took into account thermal effects and used Reddy’s high-order
shear deformation theory. They also proceeded to control the vibration amplitude by velocity feedback and
LQRmethod. According to the results, vibration control effect of the velocity feedbackmethod ismore efficient
in thin cylindrical shells than thick ones.

Biglar et al. [9] worked on optimizing of location of sensor and actuator to control vibration of cylindrical
shell using genetic algorithm. The objective function they used was based on controllability and observabil-
ity. Also, the optimization variables were the positions and orientations of piezoelectric patches. In order to
improve the maximum power of actuator, a new control method was presented “saturated negative velocity
feedback rule.” Active control of vibration of a simply supported thick cylindrical panel with optimally placed
sensor and actuator pairs based on the linear three-dimensional exact piezo-elasticity theory was conducted by
Hasheminejad and Oveisi [10]. The authors controlled the system under harmonic electromechanical excita-
tions using the LQGmethod. It can be found from results that reducing the control input weighting factor causes
a significant decrease in the closed-loop frequency response values. In [11], free and forced vibration reduction
of non-rotating conical shells were investigated by Jamshidi and Jafari where four kinds of piezoelectric layer
distributions were used. In this paper, the effect of control gain and piezoelectric distribution on closed-loop
response and actuator voltage were analyzed simultaneously. Mohammadrezazadeh and Jafari [12] applied
velocity feedback control method to nonlinear vibration suppression of laminated composite conical shell.
In this study, the modified Galerkin method to discretize the PDE equations was used. Also, the asymptotic
stability of the system was investigated using Lyapunov’s indirect method.

Rostami and mohammadimehr [13] presented an analytical approach to the vibration control of a rotating
sandwich cylindrical shell. The modeling and the control have been accomplished based on first-order shear
deformation theory and Maxwell equations. The shell was considered porous, and functionally graded magne-
to-electro-elastic layers were used to suppress vibration. Dong et al. [14] focused on active control of dynamic
behaviors and vibration characteristics of a sandwich cylindrical shell made of the graphene reinforced com-
posite, considering thermal load. The results show that the velocity feedback gain does not affect the system’s
stiffness. Hoa et al. [15] analyzed nonlinear energy transfer of a flexible plate with arbitrary boundary condi-
tions. The aim of this paper was to investigate low-frequency vibration isolation. Lagrange’s approach was the
method used to obtain equations of motion. Also, in order to validate frequency response and mode shapes,
numerical method and finite element simulation were used, respectively. Xi et al. [16] presented a new coding
metasurface based on fast optimization method to attain the reduction of wideband radar cross-section of the
microstrip antenna array. Yan et al. [17] presented a novel complementary metal-oxide semiconductor latches
design, namely Quadruple-Node-Upset-Tolerant Latch with optimized overhead for reliable computing. This
design can stand multiple-node upset errors due to radiations.

In order to increase the efficiency of a ducted propeller system, Yu et al. [18] investigated its performance
with considered weight penalty. For this purpose, optimization based on surrogate-based optimization (SBO)
technique and momentum source method (MSM) was carried out. Wang et al. [19] designed a novel control
method to make the teleoperation system more practical by amalgamating terminal sliding mode control and
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the neural network adaptive control method. Lu et al. [20] proposed a bilateral adaptive control approach to
investigate the uncertainty of dynamic parameters and time delay. In this paper, the Lyapunov function was
used to investigate stability and performance of the closed-loop system.

Regarding the wide application of autonomous underwater vehicles and the importance of their precise
motion control in the presence of parameters uncertainty, Liu et al. [21] have presented a robust fractional-
order proportional–integral–derivative (FOPID) controller. The authors gave simulation results to prove the
correctness of proposedmethod. Liu et al. [22] investigated hybrid dynamicmodel of a high-speed thin-rimmed
gear. The system is assumed six degrees of freedom, and the effects of centrifugal and inertia forces are present
in the finite element model. In this article, the effect of the flexible gear body and high speed on the system
was studied.

According to the literature, there are no studies that investigate and optimize the location of piezoelectric
patches to improve the vibration behavior of a rotating FG conical shell. Therefore, in the present research, this
issue has been addressed to optimize the position of FG piezoelectric sensors and actuators. In optimization
procedure, settling time has been selected as objective function, and also the location of piezoelectric patches in
the longitudinal direction has been considered as optimization variable. It should be noted that the sensors and
actuators are modeled in pairs (sensor as inner layer and actuator as outer layer of the shell), and optimization is
done in two different sensor and actuator sets: symmetric and asymmetric configurations with two optimization
techniques, SQP1 and PS2 are used. SQPmethods solve a sequence of optimization subproblems, each ofwhich
optimizes a quadratic model of the objective subject to a linearization of the constraints. Also, PS is one of the
numerical optimization methods that is considered a derivative-free method. It aims to find the most desirable
answer with the exploratory move by searching a number of mesh points. Therefore, the main innovations
of this paper include: optimization of vibration control response of a rotating FG conical shell; considering
piezoelectric patches properties to be functionally graded; choosing a simple function as an objective function
unlike similar studies; using effective and simple procedures to optimize; and investigating the effect of the
number, length, and angle of piezoelectric patches on the vibration behavior.

2 Modeling

In this research, a FG rotating cone with FG piezoelectric patches is modeled using energy method so that
sensors and actuators are at inner and outer of the shell, respectively. Firstly, the kinetic and potential energies
of system are obtained, and then, they are discretized, and finally, governing equations of motion are acquired
in the ODE form using the Lagrange method.

2.1 Basic relationships

Schematic of the controlled rotating conical shell and piezoelectric arrangement is shown in Fig. 1. a and b
are the radiuses at the two ends and α show semi-cone angle. The thickness of shell, actuator and sensor is
indicated with h, ha and hs , respectively. The radius of the cone is a function of x asr(x) � a + xsin(α). L and
2l p refer to length of shell and piezoelectric in the longitudinal direction. Also, 2θp shows patch angle; X p and
�p are the distance of middle point of each piezoelectric from the origin in x and θ directions, respectively. Va
is actuator voltage and Vs is sensor voltage which investigate in further sections. It should be noted that system
rotates at � rad/s about x axis. The stress–strain and electrical field–displacement relationships are expressed
as [23]:
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⎧
⎨

⎩

σ i
x

σ i
θ

σ i
xθ

⎫
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εxθ

⎫
⎬

⎭
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⎧
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⎧
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⎩

shell : −h
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2
sensor : −h
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2

actuator : h
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2 + ha

i � f , p

(1)

The subscripts f and p represent the shell and piezoelectric. σ and C are the stress and stiffness matrix. Also,
mechanical strain and electrical field are indicated with ε and E . D is the electrical displacement vector, e and
ζ show effective piezoelectric and permittivity constants, respectively.

1 Sequential quadratic programing.
2 Pattern search.
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Fig. 1 Rotating conical shell with piezoelectric patches. a Three-dimensional, b side view, c front view

The, other parameters in Eq. (1) are as follows [5, 24]:
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(2)

In Eq. (2), Q11 � Q22 � E f (z)
1−υ2 ; Q12 � Q21 � υE f (z)/

(
1 − υ2

)
; Q12 � Q21 � E f (z)/

[
2
(
1 − υ2

)]
, where

E f (z) is elasticity modulus and υ is Poisson ratio of shell that is assumed to be constant. For the piezoelectric
layer, it is assumed that the electric field direction and polarity are parallel to each other and perpendicular
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to the piezoelectric surface. Therefore, it can be assumed that Ex � Eθ � 0 [5, 25, 26]. Regarding [27], the
electric potential is taken into account to be linear within the thickness of actuator layer:


a(x , z, t) � 
a(x , t) + (z − za)
Va(x , t)

ha
, (3)

where 
a � (

+ + 
−)/2; 
+ and 
− are electrical boundary conditions at the top and bottom of actuator,

respectively. Electric field in thickness direction is equal to

|Ez| �
∣
∣
∣
∣−
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, x � xP , (4)

while Va is the actuator voltage and ha refers to actuator thickness. In this study, the classical theory and Love
strain–displacement relations have been used. In Love relations, normal and transverse shear stress and strain
along the shell thickness are ignored, and only plane stresses are presented. The relationship between strain
and displacement is as follows [28]:
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Both main and piezoelectric layers are considered to be FG, so the shell and piezoelectric properties are
changed as [29, 30]:
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The Young’s modulus and shell density vary in thickness of shell; also, C and M indices show ceramics and
metals, respectively. P and N introduce power low index of the shell and piezoelectric layers that range of
their changes are [0, ∞] and [−2, 2], respectively [31].

2.2 Equation of motion

To obtain the equation of motion by means of energy method, it is necessary to calculate the kinetic and
potential energies:

⎧
⎨

⎩

Tt � ∑
Ti

Ut � ∑
U(st)i +

∑
Uhi

i � f ; a; s (7)

According to Eq. (7), kinetic energy (Tt ) of the system is the sum of kinetic energies of the main layer ( f ),
actuator (a), and sensor patches (s). Also, potential energy (Ut ) of system is divided into two parts: strain
energy

(
U(st)

)
due to bending and strain energy (Uh) due to hoop tension.
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Equation (8) describes how to calculate kinetic energy of the system [32]. The range of integrals is defined
according to area and thickness of each element as shown in Fig. 1:
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where ρ f and ρp refer to shell and piezoelectric density, respectively. Two parameters na and ns represent the
number of actuators and sensors. �V vector also shows the velocity of each element, which can be calculated
according to Eq. (9).

The strain energy due to bending is expressed in Eq. (10) [33]. As can be seen, integral related to the actuator
has mechanical and electrical terms, but integral related to the sensor and core layers has only mechanical
terms [8]:
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The strain energy due to hoop tension can be obtained from Eq. (11) [33]:
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The hoop tension (Nθ ) and its related strain are expressed in Eq. (12) and Eq. (13) [33, 34].

Nθ i � ρi (z)�
2r2(x) → i � f , p, (12)
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In order to discretize the dynamic equation, the solution related to the simply supported boundary conditions
has been considered as follows [34]:
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w(x ; θ ; t) �
MT∑

m�1
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n�1

[
wmn
1 (t)cosnθ − wmn

2 (t)sinnθ
]
sin

(mπx

L

)
, (14)

where u, v, and w are vibration displacements in the x , y, and z direction, respectively. m and n show longi-
tudinal and circumferential wavenumbers. Also, MT and NT are numbers of finite term to the approximation
of exact solution. By substitution Eq. (14) into Eq. (7), the x and θ variables are eliminated and kinetic and
potential energies are calculated as a function of time. By making up L � Tt − Ut and using the Lagrange
approach, differential equations of motion are obtained in the form ODE [34]:

L � Tt −Ut → d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
� 0, (15)

Mq̈ + Cq̇ + Kq + KaVa � 0,
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2 ;wmn
1 ;wmn

2

}T , Va � {
Va1; Va2; Va3; . . . Vaj

}T
. (16)

M , C and K are inertia, gyroscopic effect and stiffness matrices, respectively. The stiffness matrix (K ) is
affected by the strain energy (Ut ) and rotational terms in the kinetic energy. Unlike the stiffness and inertia
matrices which are symmetric, the gyroscopic effect matrix is asymmetric. Va is the actuator voltage and Ka
also is the actuator voltage coefficient, which is defined as follows:

Ka �
[
kai j

]
→ i � 1 . . . 6 (Number of variables of Eq. 14), j � 1 . . . na (Number of actuators). (17)

As is known, the surface integral of sensor’s electrical displacement in its thickness direction is equal to
electrical charge produced on each sensor [8]:

Qsj (t) �
∫

Asj

Dz(z � zm)dA � K̂s j q , (18)

where Asj is outer face area of each sensor, zm is transverse coordinate of the sensor mid-plane and also K̂s j
is a coefficient that is a row vector.

Using Eq. (18), the voltage of the jth sensor is calculated [8]:

Vsj (t) � hs
ζ3Asj

Qs j (t) �
(

hs
ζ3Asj

K̂s j q

)

� Ksjq(t), (19)

Vs(t) � Ksq(t), (20)

Ks �
[
ksi j

]
→ i � 1 . . . ns (Number of sensors); j � 1 . . . 6 (Number of variables of Eq. 14). (21)

Finally, the elements of Ks matrix express the relationship between sensor voltage and displacements. These
coefficients depend on the thickness, outer face area, material, and position of sensor.

The sensor voltage calculated in Eq. (20) has been considered as a feedback of the system output. In order
to suppress vibration, negative velocity feedback is applied, so that voltage exerted to piezoelectric actuator is
proportional to the derivative of the sensor voltage:

Va � −Kt
dVs(t)

dt
� −Kt Ksq̇(t). (22)

Kt is feedback control gain, which is expressed as amatrix with dimensions (na × ns). By substituting Eq. (22)
into Eq. (16), the final form of the system equation is obtained as:

Mq̈ + (C − KaKt Ks)q̇ + (K )q � 0. (23)
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Table 1 Details of optimization problem

Objective function J � ts
(
X p

) � 4
min(|Re(s)|)

Constraints Static constraint l p < X p < (L − l p)
Stability constraint Mq̈ + (C − KaK t Ks)q̇ + (K )q � 0

statespace→ G �
{
q
q̇

}

→ Ġ � AcG

Ac �
[

0 I
−KM−1 −(C − KaK t Ks)M−1

]

→ s � eig(Ac) → Re(s) < 0

Dynamic constraint M
(
X p

)
q̈ +

[
C
(
X p

) − Ka
(
X p

)
Kt Ks (X p)

]
q̇ + K (X p)q � 0

Optimization parameters X p

2.3 Optimization problem and algorithms

Details needed to implement the optimization problem are considered in this section to have optimal vibration
reduction (Table 1). These details are objective function that is to be minimized; optimization parameters that
are unknown parameters lead to minimize the objective function and optimization constraints that limit the
parameters to the allowable region. As mentioned in the previous section, system settling time is considered
as the objective function that is defined: “The time required for the response to reach and stay within 2%
or 5% neighborhood of the final value” [35], where the system response is the vibration in three direction
and the final value of response is zero. To achieve the settling time, the real part of dominant pole of system
(the nearest pole to imaginary axis) must be calculated. For this purpose, it is necessary that using Eq. (23),
the system characteristic equation

(
Ms2 + (C − KaK t Ks)s + K � 0

)
is written and its roots are obtained.

For this problem, three constraints have been defined: the first constraint is the static constraint that specifies
the allowable range of piezoelectric position. The second one is considered the stability characteristic which
means the acceptable optimization parameter is one that guarantees asymptotical stability. Finally, the third
constraint is the system dynamic equation as an equality dynamic constraint.

As can be observed in Table 1, the static and the stability constraints have an inequality form and the
dynamic constraint has equality form. The position of piezoelectric patch (X p) in the x direction is assumed
as optimization variable. l p is half-length of piezoelectric pairs in the longitudinal direction (see Fig.1), G
indicates state variables vector and Ac is the dynamic matrix of closed-loop system and Re(s) refers to real
part of eigen values or Ac.

After defining the optimization problem and determining the details (objective function, constraints, and
optimization parameter), it is needed to be specified optimization algorithms. In this paper, two algorithms,
SQP and PS, have been used. Performance of algorithms is as follows:

The PS algorithm starts by creating points around the initial point, which can be provided by the user or
obtained from the results of previous calculations. These points considered by the algorithm are called mesh
points, and their distance to the starting point is called mesh size. The steps of the algorithm are as follows
[36]:

(a) Setting the starting or initial point (by user)
(b) Constructing mesh points around the starting point
(c) Calculation of the objective function at each mesh point

If the objective function at the mesh point is less than the value of it at starting point, the sampling is
successful, and the following steps are followed:

(A) The current point is set as the new starting point.
(B) The mesh size is doubled.
(C) The algorithm returns to step b.

If the sampling is unsuccessful, the mesh size is halved and the process continues from step b.
Termination conditions are as follows:

(1) If the mesh size is less than the defined limit in advance.
(2) If distance between two starting points is less than the set limit.
(3) If number of iterations reaches the predefined number.
(4) If difference of objective function between two successful samplings is less than the specified limit.



Optimal location of FG actuator/sensor patches on FG rotating conical shell 5343

Table 2 Comparison of frequency parameter of a rotating conical shell α � 30◦; h/a � 0.01; L/a � 6;m � 1; υ � 0.3

n �∗ f f f b

Han [38] Present Difference (%) Han [38] Present Difference (%)

1 0.1 0.6692 0.6806 1.7 0.8116 0.8388 3.3
2 0.1 0.4095 0.4005 − 2.2 0.5320 0.5212 − 2
3 0.1 0.3362 0.3366 0.12 0.4308 0.4278 0.7
4 0.1 0.3797 0.3828 0.82 0.4538 0.4545 0.15

Table 3 Shell properties [39]

EC (GPa) EM (GPa) ρC
(
kg m−3

)
ρM

(
kg m−3

)
υ

380 70 3800 2700 0.33

Table 4 Piezoelectric properties (PZT-4) [40]

Q0
11 Q0

12 Q0
66 e031 e032 ζ 0

33 ρ0
p

GPa C m−2 10−9 F m−1 kg m−3

139 77.8 30.6 − 5.2 − 5.2 5.62 7800

Table 5 System parameters

�
( rev

s

)
N P α ha

h
hs
h

L
a

h
a NT MT

150 2 1 30° 0.25 0.25 6 0.01 1 1

The SQP is a popular and strong algorithm used for constrained nonlinear problems. Its advantage is its
high speed in optimization. In this method, in each iteration, a quadratic optimization problem is solved, in
which a quadratic approximation of the objective function (based on approximation of the second order of
Lagrange function) and a first-order linear approximation of the constraints are used. Unlike the PS algorithm,
here the direction of searching is determined by calculating the gradient, and the termination condition is
also established based on defining the limit on the difference between two consecutive values of the objective
function [37].

3 Discussion and results

Before the discussion, to check thevalidity, the natural frequencies of systemare comparedwith previous similar
results. For this aim, a homogenous rotating conical shell without piezoelectric patches is considered, whose
natural frequencies and rotational speed aremade dimensionless usingEq. (24). In Table 2, the non-dimensional
natural frequency of the simplified system is compared with reference [38] in different circumferential wave
numbers.

�∗ � �b

√

ρ
(
1 − υ2

)

E
; f f � ω f b

√

ρ
(
1 − υ2

)

E
; fb � ωbb

√

ρ
(
1 − υ2

)

E
(24)

As can be seen in Table 2, the backward and forward natural frequencies of the system are in good agreement
with the reference [38].

To implement the optimization algorithm and determine the optimum position of piezoelectric patches, it
is necessary to determine all system element’s mechanical and electrical properties. Piezoelectric patches are
considered of type PZT −4; also, alumina and aluminum are used in inner and outer core layers, respectively.
In Tables 3 and 4, the shell and piezoelectric properties are presented [39, 40]. Also, Table 5 gives other
physical and geometrical parameters.
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Fig. 2 Rotating conical shell with different numbers of piezoelectric pair. A 2 pairs, B 4 pairs, C 6 pairs and D 8 pairs

Table 6 The real part of closed-loop poles corresponding to Fig. 3

CaseA CaseB CaseC CaseD

− 1166 − 894 − 906 − 898
− 1166 − 894 − 906 − 898
− 46.25 − 863 − 875 − 867
− 46.25 − 863 − 875 − 867
+ 8.9×10–4 − 1.73 − 1.75 − 1.74
+ 8.9×10–4 − 1.73 − 1.75 − 1.74
− 1.03 − 7.58 − 7.68 − 7.61
− 1.03 − 7.58 − 7.68 − 7.61
− 6.48 − 9.82 − 9.96 − 9.87
− 6.48 − 9.82 − 9.96 − 9.87
− 8.43 − 13.61 − 13.8 − 13.68
− 8.43 − 13.61 − 13.8 − 13.68

3.1 Effect of number of piezoelectric patches

Figure 2 shows the four different cases A, B, C and D in which the number of piezoelectric pairs varies from
2 to 8. In order to compare the system response between these 4 cases, the feedback gain is chosen so that the
maximum voltage of each actuator is equal to maximum allowable value. Also in each case the sum of the
piezoelectric arc angles is considered to be equal with other cases, and also all other conditions are assumed
to be same.

Figure 3 illustrates open- and close-loop response of point A0 � (x ; θ) � ( L
4 ; 0

)
to the initial displacement.

Since the vibration has been controlled in time domain by reducing umn
1 (t), umn

2 (t), vmn
1 (t), vmn

2 (t), wmn
1 (t)

and wmn
2 (t), and according to Eq. (14), the vibration of all points on the conical shell is controlled. The point

A0 � ( L
4 ; 0

)
is selected only to show time history of resulted variables, and any other points can be selected.

As can be seen, the steady-state response in case A is oscillatory with constant amplitude, and this is
because there is a conjugate pole with zero real part; therefore, the system cannot be asymptotically stable, but
in three other cases, the system is asymptotically stable with the settling time in the same range. To prove this,
the real parts of the closed-loop poles in four cases (A, B, C, D) are presented in Table 6. As can be seen in the
first column of Table 6, (case A), there are two poles with a real part close to zero that have been bolded. The
existence of a conjugate pole with zero real part (or in the other words, a pole on an imaginary axis) causes
oscillatory steady-state response with constant amplitude, and the system cannot be asymptotically stable.
Exactly the same result can be seen in Fig. 3a. On the other hand, all real parts of the poles of B, C, and D
cases are negative, which means the system in these three cases is asymptotically stable.

3.2 Effect of piezoelectric patches position, symmetric optimization

In this section, the best position of sensor–actuator pairs is obtained in the longitudinal direction. It is assumed
that x coordinate of all piezoelectric is equal with each other, and therefore, the system is symmetric. Opti-
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A B

C D

Fig. 3 Non-controlled and controlled response in the transverse direction (w). A 2 pairs, B 4 pairs, C 6 pairs and D 8 pairs

Table 7 Initial guesses and piezoelectric dimensions (according to Fig. 1)

Case Initial guess Length and arc

X0
p
L

lp
L θp(deg)

A 5
8

1
8 60

B 30
C 20
D 15

mization procedure is implemented by means of two SQP and PS algorithms. The piezoelectric geometry and
initial guess are given in Table 7.

Table 8 presents the results of optimization procedure. By comparison of the third and fourth columns, it
can be found that the obtained results by the PS algorithm are better than the SQP. In case A, the result obtained
from the SQP algorithm was diverged. According to Table 8, the results of the three cases B, C, and D are
equal together, and this shows that, as the same of previous section, the number of piezoelectric (except case
A) does not effect on settling time. Also in the fifth column of Table 8, Ap and A f are the ratio of total area of
sensor–actuator pair and cone, respectively. The results of this column indicate that the higher the value of the
X p, the greater the Ap/A f ratio. The mass of piezoelectric patches is one of the important parameters; for this
reason, the ratio of optimized to non-optimized value of piezoelectric mass is presented in the sixth column
of Table 8. As another comparison, the area under curve of absolute value of the voltage–time in four cases
is compared in the seventh column to show control effort (Eq. (25)). For this comparison, settling times in all
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Table 8 Symmetric optimizing of piezoelectric position in the x direction

Case Algorithm Result Ap
A f

m p(optimal)
mp

Sopt (ts � 1) (Volt s)

X p
L ts(s)

A SQP – – – – –
PS 0.478 0.70 0.324 0.8467 58.13

B SQP 0.582 0.43 0.366 0.955 43.60
PS 0.742 0.37 0.430 1.122 39.41

C SQP 0.582 0.43 0.366 0.955 42.50
PS 0.742 0.37 0.430 1.122 38.81

D SQP 0.582 0.43 0.366 0.955 42.13
PS 0.742 0.37 0.430 1.122 38.52

Fig. 4 Required voltage—PS (symmetric)—case A

cases must be the same. The last column of Table 8 expresses the S parameter, and as be seen, the minimum
value is related to case D.

S � max

(∫ t

0
|Vai |dt

)

i � num of actuator (25)

Figures 4, 5, and 6 show required actuator voltage signal according to the obtained results from Table 8,
and, as expected, the highest voltage is observed in case A. It should be noted that in these diagrams, the
settling time has been set at 1 s to have same conditions.

Figure 7 depicts the convergence of symmetric optimization process. Vertical and horizontal axes indicate
settling time as objective function and number of iterations, respectively. It is clear that the results of the
three cases B, C, and D have acceptable agreement using both algorithms. Also, it can be observed that the PS
algorithm performs less iteration than the SQP algorithm. It should be noted that at the first step of optimization
in case A, the system has a pole with zero real part and have infinite settling time, that’s why the diagram of
case A starts from 2.

In Fig. 8, the settling time of the closed-loop system is plotted based on the position of piezoelectric patches.
It appears that for the three cases B, C, and D, X p � 0.582L is the relative extremum point and X p � 0.742L
is the absolute ones, also for case A, X p � 0.478L is a relative extremum.

Figure 8a shows a discontinuity in range [0.68L; 0.72L], resulting of poles near to imaginary axis; therefore,
the settling time in this range is great, and the diagram has a vertical asymptote. For further understanding of
this discontinuity, Fig. 8b focuses on the discontinuity part, and also real parts of poles for cases A and B are
presented in Tables 9 and 10, respectively. As shown in Fig. 8b, the settling time between points X p � 0.625L
and X p � 0.719L has been enhanced to about 250 s. Tables 9 and 10 also demonstrate that at some X p, the real
part of dominant pole is very close to zero, so that the settling time increases sharply. For example, according
to Table 9, the settling time at point X p � 11

16L � 0.687L is as follows:
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Fig. 5 Required voltage—SQP (symmetric)—cases B, C, and D
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Fig. 6 Required voltage—PS (symmetric)—cases B, C, and D

Fig. 7 Symmetric optimization convergence



5348 M. J. Niasar et al.

(a)

(b)

Fig. 8 Settling time based on position of the sensor/actuator pairs. a For all cases. bWith magnification of the discontinuity range
for Cases B, C, and D

Table 9 Real part of closed-loop poles in terms of X p for case A

ω X p

2L
16

3L
16

4L
16

5L
16

6L
16 0.478L 8L

16
9L
16

10L
16

11L
16 0.718L 13L

16
14L
16

ω1
Forward −0.22 −0.84 −1.83 −3.01 −4.27 −5.68 −6.48 −7.51 −8.42 −9.072 −9.21 −8.27 −6.12
Backward−3.17 −1.06 −2.13 −3.29 −4.36 −6.10 −5.89 −6.30 −6.48 −6.41 −6.27 −5.33 −4.04
ω2
Forward −26.5 −23.9 −16.3 −10.6 −8.03 −5.68 −5.16 −3.34 −1.03 −0.92 −10.1 −110 −127
Backward−3.98 −7.8 −15.7 −23.4 −28.6 −24.6 −21.1 −7.98 0.0009 −13.7 −24.6 −6.56 −1.91
ω3
Forward −15.4 −55.2 −101 −76.4 −22.0 −9.3 −9.93 −17.7 −4.62 −126.9 −850 −457 −241.9
Backward−3.48 −16.4 −58.3 −210 −440 −842 −927 −1120 −1166 −997 −174 −129 −64.6
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Table 10 Real part of closed-loop poles in terms of X p for case B

ω Xp

2L
16

3L
16

4L
16

5L
16

6L
16

7L
16

8L
16 0.582L 10L

16
11L
16 0.742L 13L

16
14L
16

ω1
Forward −0.28 −1.05 −2.23 −3.60 −4.98 −6.31 −7.57 −9.11 −9.82 −10.6 −10.7 −9.75 −7.26
Backward −0.48 −1.65 −3.40 −5.43 −7.48 −9.37 −11.1 −12.9 −13.6 −14.2 −13.9 −12.1 −8.80
ω2
Forward −25.9 −31.3 −36.1 −40.9 −44.2 −42.9 −35.5 −17.7 −7.58 −0.0165 −11.1 −52.6 −79.6
Backward −24.4 −27.0 −29.0 −32.1 −34.8 −33.5 −25.9 −9.11 −1.73 −3.61 −26.4 −73.8 −93.6
ω3
Forward −8.2 −39.2 −95.1 −180 −300 −458 −633 −818 −863 −839 −730 −495 −269
Backward −1.21 −48.9 −111 −20.2 −326 −487 −666 −852 −894 −859 −735 −487 −262

Table 11 Asymmetric optimization of location of each piezoelectric pair

Case Algorithm ts(s)
Ap
A f

m p(optimal)
mp

Sopt(ts � 1) (Volt.s)

A SQP 0.74 0.320 0.8423 63.18
B SQP 0.46 0.330 0.8626 43.65
C SQP 0.50 0.303 0.7918 58.13
D SQP 0.49 0.324 0.8452 40.27

Table 12 Position of each piezoelectric pair obtained from asymmetric optimization

Case X p1
L

X p2
L

X p3
L

X p4
L

X p5
L

X p6
L

X p7
L

X p8
L

A 0.3118 0.6209 – – – – – –
B 0.5456 0.6837 0.125 0.6192 – – – –
C 0.6117 0.4422 0.125 0.5740 0.6748 0.125 – –
D 0.6919 0.125 0.6839 0.125 0.125 0.6672 0.6958 0.6995

ts
(
X p

) � 4

min(|Re(s)|) → X p � 11

16
L � 0.687L → ts � 4

0.0165
� 242 (sec) (26)

Generally, considering the settling time and actuator voltage criterions, optimization results show that at
least 4 numbers of piezoelectric pairs are needed to have a desirable closed-loop response.

In the first vibration mode, there is an antinode inX p � L
2 . It makes sense for all of the piezoelectric

patches to be located near to this point. On the other hand, the less the piezoelectric distance from the base of
the cone, the larger the piezoelectric area. It means that the piezoelectric area in range

[
0; L

2

]
is smaller than

in range
[ L
2 ; L

]
. Therefore, the best point for piezoelectric placement is in the

[ L
2 ; L

]
range.

3.3 Asymmetric optimization

To improve closed-loop response, the position of each piezoelectric pair is optimized in the x direction,
separately. Initial guess and the other piezoelectric parameters have been considered like the previous section.

Tables 11 and 12 represent the results of asymmetric optimization of sensor/actuator position in the longi-
tudinal direction. The results show that case B has the best settling time. Ratio of the area and the mass ratios
has been calculated in the fourth and fifth columns of Table 11, respectively. To study the voltage effort of
actuator in the last column of Table 11, the defined parameter in Eq. (25) has been calculated for all cases, and
as can be seen, the maximum value has been obtained for case A. The optimal position of patches is reported
in Table 12. A comparison of symmetric and asymmetric optimization results is displayed in Table 13. The
results of this table show that in the cases B and C, mass and piezoelectric surface, in asymmetric optimization,
have been reduced by about 10% compared with symmetric optimization.

In general, a comparison between the results of asymmetric optimization in cases B, C, and D and Sect. 3.1
expresses that the settling time has been decreased from 2 s in Fig. 3 to around 0.5 s, and the covered surface
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Table 13 Comparison of symmetric and asymmetric optimization results

Case ts(s)
Ap
A f

m p(optimal)
mp

Sopt (ts � 1) (Volt.s)

Symm Asym Symm Asym Symm Asym Symm Asym

B 0.43 0.46 0.366 0.330 0.955 0.8626 43.60 43.65
C 0.43 0.50 0.366 0.303 0.955 0.7918 42.50 58.13
D 0.43 0.49 0.366 0.324 0.955 0.8452 42.13 40.27

Fig. 9 Required actuator voltage—asymmetric optimization—case A

Fig. 10 Required actuator voltage—asymmetric optimization—case B

of the cone by piezoelectric has been reduced between 67 and 70% in comparison with Fig. 2, and also the
piezoelectric mass for vibration control has been decreased by 21–16%.

Figures 9, 10, 11, and 12 indicate the required voltage of actuators according to the obtained results from
Table 11 for the same settling time (ts � 1sec). Regarding figures, the most sudden increase in voltage at zero
second is related to case D. As can be seen, these figures are in agreement with the numbers in the last column
of Table 11.
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Fig. 11 Required actuator voltage—asymmetric optimization—case C

Fig. 12 Required actuator voltage—asymmetric optimization—case D

3.4 Piezoelectric size effect

This part of the paper tries to answer this question: Does changing the piezoelectric area affect the vibration
response? Changes in piezoelectric area depend on two factors: (1) change in piezoelectric length and (2) vari-
ations of piezoelectric arc. In order to find the answer to the question, the settling time (ts) versus piezoelectric
half-length (lP ) and arc (2θ P ) in different curves, which show the position of the piezoelectric, is plotted
in Figs. 13, 14, 15 and 16. It should be noted that these diagrams have been depicted for four piezoelectric
arrangement modes: A, B, C, and D.

In Figs. 13 and 14, the effect of piezoelectric half-length on the settling time (ts) in various xP has been
investigated. It is expected that the settling time decreases by piezoelectric half-length increase, but Figs. 13
and 14 illustrate that this is a misconception; therefore, these figures prove that increasing the stability of
system (decreasing settling time) by increasing the piezoelectric length is not a suitable way.
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Fig. 13 Variations of the settling time in terms of piezoelectric pairs half-length in case A

Fig. 14 Variations of settling time in terms of piezoelectric half-length in cases B, C and D

The effect of piezoelectric arc on settling time is shown in Figs. 15 and 16. The horizontal axis shows the
sum of arcs of all piezoelectric pairs:

K∑

i�1

(2θPi ) K � number of piezoelectric pairs (2, 4, 6, 8). (27)

In Fig. 15, which is drawn for case A (2 piezoelectric pairs), it can be seen that, except for one curve, in the
rest of curves with the increase in piezoelectric arc, the vibration suppression time (settling time) decreases.
According to this figure, the best response reaches when piezoelectric pairs are at xP � 0.5 and each arc is 180
degrees. The trend of all curves in Fig. 16, which has drawn for three cases A, B, and C (four, six, and eight
piezoelectric pairs), is descending, and the lowest settling time is seen at 360 degrees, where piezoelectric has
encircled the cone, like a ring.

The four figures that have been investigated in this section contain this point: the size and dimensions of
the piezoelectric definitely have an effect on the closed-loop response, and to suppress the vibrations in the
shortest time, the piezoelectric pairs should be considered like a ring.
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Fig. 15 Settling time versus sum of the piezoelectric arcs in case A

Fig. 16 Settling time versus sum of the piezoelectric arcs in cases B, C and D

3.5 Stability of other modes

In Sects. 3.2 and 3.3, optimization was performed to improve the closed-loop response of the first mode of
vibration. Considering that higher vibrationmodes are also of particular importance, in this section closed-loop
response of the rotating conical shell in 8 vibration modes based on results of Table 11, in four different cases
A, B, C, and D (number of piezoelectric pairs according to Fig. 2), is drawn in Figs. 17, 18, 19, and 20.

In Fig. 17, it can be observed that the response of modes m � 1, n � 3;m � 1, n � 4; m � 2, n � 1; and
m � 2, n � 3 is oscillatory with a constant amplitude. This means that the negative velocity feedback with
the help of two sensor/actuator pairs is not able to control the vibrations of mentioned modes. Therefore, more
piezoelectric are needed to control all these modes. Figure 18 shows that the amplitude of all eight vibration
modes is decreasing and the settling time (ts) in this figure is less than in Fig. 17, as well. Therefore, the result
of increasing the number of piezoelectric pairs from 2 to 4 is the reduction of settling time and ability to control
more modes. In Figs. 19 and 20, it can be seen that vibration has been controlled well. The clear difference
between these two figures is the shorter settling time of the responses drawn in Fig. 20 compared with Fig. 19,
which means more stability of a cone with 8 piezoelectric pairs patches compared with a cone with 6 pairs of
piezoelectric patches.
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Fig. 17 Closed-loop response (w(t)) in different vibration modes for case A

Fig. 18 Closed-loop response (w(t)) in different vibration modes for case B
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Fig. 19 Closed-loop response (w(t)) in different vibration modes for case C

Fig. 20 Closed-loop response (w(t)) in different vibration modes for case D
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By observing the plotted figures in this section, it can be claimed that as the number of piezoelectric patches
enhances, sensor/actuator voltages are distributed better on the shell and as a result, the stability of the system
increases.

4 Conclusion

The aim of this paper was to find the best position for the actuator and sensor patches on a rotating truncated
conical shell made of functionally graded material in order to reduce the cost of vibration control by reducing
the required voltage or reducing the vibration damping time.Modelingwas accomplished based on the classical
theory and usingLagrange approach. In order to vibration control, negative velocitywas considered as feedback
in this order that the required voltage to control (actuator voltage) was set proportional to sensor voltage
changes rate. The optimization of the piezoelectric position was designed based on four different types of
sensor–actuator pair arrangements, where the number of pairs was 2, 4, 6, and 8. The settling time and position
of piezoelectric pairs are considered as the objective function and optimization variable, respectively. Also,
constraints, static, stability and dynamic, were considered to limit the obtained answers. The optimization was
done in two cases: 1. symmetrical layout, 2. asymmetric layout, in the first case, all the actuators/sensors pairs
are located at the same distance from the edge of cone, and in the second case, each pair has an independent
position.

In order to find the optimal position of the piezoelectric, two algorithms, SQP and PS, which have different
process to optimize, were used. It should be noted that the size of actuators/sensors pairs was investigated in
several figures. The most important results obtained from this research are as follows:

1. The optimization results illustrate that by placing the sensor and actuator in the right position on the cone,
both the settling time (time of vibration suppression) and the amount of required piezoelectric to control
the vibrations are reduced.

2. According to the symmetric optimization results, the best position for piezoelectric on the shell to control
the first mode of vibrations is in the range [L/2, L].

3. Regarding parameters such as settling time and actuator voltage, at least four pairs of sensors and actuators
are needed to have an appropriate control response.

4. In the first vibration mode, it makes no much difference if the system is controlled by 4, 6, or 8 pairs of
piezoelectric. But increasing the number of sensors and actuators increases the stability of higher modes
and decreases the settling time, as well.

5. The PS algorithm obtained absolute extremum points, while the SQP algorithm calculated the relative
extremum ones, so the PS algorithm performs better results than SQP. On the other hand, the time of
answer in the PS algorithm is more than the SQP algorithm.

6. It can be claimed that increasing the piezoelectric surface through increasing its arc improves closed-loop
response. The most desirable value for each piezoelectric arc is that the sum of those arcs is 360, which
means that the piezoelectric patches encircle the shell like a ring.
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