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Abstract This article deals with free vibration response of functionally graded cylindrical and spherical
porous shells in thermal environments with temperature-dependent material properties. The effective material
properties are determined via the rule of mixture with porosity phases. The equation of motion is developed
based on a curved 8-node degenerated shell element formulation using the principle of virtual work. Two
different material mixtures are considered, the first one is zirconium oxide and titanium alloy referred to as
ZrO2/Ti-6AL-4V, and the second one is silicon nitride and stainless steel referred to as Si3N4/SUS304. The
influence of material constituents, power-law indexes, boundary conditions, radius to thickness ratio, porosity
parameter, and temperature gradient on the natural frequencies is studied in detail. It is found that the porosity
of the constituent material has a significant consequence on the vibration response of FGM shells, especially
in high temperatures.

1 Introduction

Functionally graded (FGMs) plate and shell structures are made of materials that are characterized by a contin-
uous variation of the mechanical and thermo-physical properties through the thickness direction by combining
two different materials, usually ceramic and metal. The ceramic materials have excellent characteristics in heat
resistance with low thermal conductivity, while metal has excellent strength and toughness. In addition, FGM
structures have a continuous and smooth variation of thematerial properties fromone surface to the other, which
eliminates abrupt changes in the stress and displacement distributions. Nowadays, the metal-ceramic FGM
shell structures are widely used in many industrial applications such as aircraft, space vehicles, reactor vessels,
and other high-temperature environments scientific and engineering applications. A common phenomenon in
these advanced applications that can cause serious performance and safety problems is vibration. Vibrations
are oscillations in mechanical dynamic systems which often refer to systems that can oscillate freely without
applied forces. Due to the wide applications of functionally graded shells in high-temperature environments,
the study of dynamic behaviour of these structures in thermal conditions is of the key importance. Numerous
studies have been performed analytically on the free vibration of FGM plate/shell structures. Among them,
Huang et al. [1] examined the nonlinear vibration of FGM plates in thermal environments using HSDT. The
equation of motion was solved by an improved perturbation technique to determine the nonlinear frequencies
of functionally graded plates. Kim [2] used a theoretical method to identify vibration characteristics of FGM
plates, in which the Rayleigh–Ritz method was applied to obtain the frequency equation. Kadoli et al. [3]
analysed free vibration of functionally graded cylindrical shells. The FSDT with Fourier series expansion of
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the displacement variables was used to model the FGM shell. Matsunaga [4] extracted the natural frequencies
of higher-order theory FGM plates by using Hamilton’s principle to derive the governing dynamic equations.
Han et al. [5] worked on free vibration of FGM plate and shell structures. The FSDT shell element formulation
was based on a quasi-conforming shell element. Zhao et al. [6] studied the free vibration of functionally graded
plates using the element-free kp-Ritz method. The equation of motion was determined by the Ritz procedure to
the energy functional of the system. The vibration analysis of solar functionally graded plates with using SSDT
was performed by Shahrjerdi [7]. The equilibrium equations were derived using the energy method, and the
solution was based on Fourier series. Nguyen-Xuan et al. [8] presented an improved finite element approach
with node-based strain smoothing, applied for static, free vibration, and mechanical/thermal buckling prob-
lems of FGM plates. Kar et al. [9] investigated the free vibration responses of shear deformable functionally
graded single/doubly curved panels with higher-order shear deformation theory. In Fazzolari [10], the author
performed free vibration of functionally graded plates with temperature-dependent materials, using advanced
hierarchical higher-order equivalent single layer plate theories developed using the method of power series
expansion of displacement components. Parida et al. [11] presented higher-order shear deformation theory of
finite element model for free vibration analysis of a rotating FGM plate with thermal effect. Parida et al. [12]
studied the free vibration of a skew FGM plate in thermal environment with higher-order shear deformation
theory. Burlayenko et al. [13] generated an ABAQUS routine to study the free vibrations of FGM sandwich
plates under thermal load, using a solid brick finite element. Shakouri [14] studied the vibration of rotating
functionally graded conical shells with temperature-dependent material properties. The governing equations
were employed by using Donnel shell theory. Hong [15] analysed the nonlinear static bending and nonlinear
free vibration of 2D third-order shear deformation theory of FGM plates. Moita et al. [16] worked on the
free vibration performance of FGM axisymmetric plate/shell structures. The numerical solution was obtained
by expanding the variables in Fourier series in the circumferential direction and using conical frustum finite
elements in the meridional direction.

Porosities may appear in FGMs as a result of the manufacturing process or by design, and therefore,
it is necessary to consider the effects of porosity on the vibration performance of these highly engineered
materials. Wattanasakulpong et al. [17] presented linear and nonlinear vibration analyses of FGM elastically
end restrained porous beams. Ebrahimi et al. [18] studied the thermo-mechanical vibration behaviour of FG
porous beams by presenting Navier solution and employing a semi-analytical differential transform method.
Ghadiri et al. [19] studied the free vibration analysis of a functionally graded porous cylindrical micro-shell
under thermal effect, based on the FSDT and the modified couple stress theories. Trinh et al. [20] investigated
the fundamental frequencies of functionally graded sandwich shells with double curvature under thermo-
mechanical loadings with porosities. The Bubnov–Galerkin procedure was employed to derive the governing
equations. Talebizadehsardari et al. [21] examined the vibration of macro–micro-nano-functionally graded
porous plates and shells with introducing a closed-form solution. The governing equations were derived by
third-order plate and shell theories. Tran et al. [22] studied bending, buckling, and free vibration of a FGP nano-
shell resting on an elastic foundation. Katiyar et al. [23] presented free vibration analysis of an geometrically
imperfect and discontinuous porous functionally graded bidirectional plate resting on an elastic foundation
under thermal environment. Several other works on free vibration of FGM porous plates and shells have been
presented in recent years, see, for instance, [24–29]. However, as far as the authors know free vibrations of FGM
shell structures with temperature-dependent material properties are mainly limited to free-vibration response
of shell structures in particular cylindrical shells with the presence of porosity distribution. Therefore, as such
studies are important to the structural designers the present paper examines the free vibration response of
functionally graded porous shell structures under thermal environment with temperature-dependent material
properties using a doubly curved shell finite element. This shell element is an 8-node curved degenerated shell
element formulated using the principle of virtual displacement with thermal stresses effect. Translational and
rotary inertia effects are considered in the mass matrix formulation. The material is assumed to be porous with
temperature-dependent properties functionally graded in the thickness direction according to the power-law
distribution of volume fractions of the constituent materials. In this work, the influence of porosity distribution
with temperature gradient through-thickness direction, besides the effect of material constituents, material
gradient, boundary conditions, and radius to thickness ratio on the frequency characteristics is presented and
discussed.
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2 Material properties of an FGM

The effective properties of an FGM plate/shell are assumed to be continuously changing through the thickness
direction. The power-law function (P-FGM) [30] is commonly used to describe the gradually varying volume
fraction of the constituent materials as:

Vc(z) �
(
z

h
+
1

2

)n

(1)

where (n) stands for the power-law index. It is a non-negative real number; (h) is the shell thickness, and (z)
is the thickness direction coordinate (− 0.5 h≤ z ≤ 0.5 h).

In this study, the functional material is considered to be porous with an evenly distributed porosity. The
porosity distribution through an FGM material is depicted in Fig. 1.

In the case of a porous FGM, based on the rule of mixture, the through-thickness material properties, such
as the elasticity modulus E, Poisson’s ratio ν, mass density ρ, thermal expansion coefficient α, and thermal
conductivity K , are given in several references [31–34] by the following equation:

P(z, T ) � (Pc(T ) − Pm(T ))Vc(z) + Pm(T ) − (Pc(T ) + Pm(T ))
a

2
(2)

where Pc, Pm denote the effective material properties of the ceramic and metal phases, respectively, and (a) is
the volume fraction of porosity. However, during this investigation, we noticed that Eq. (2) provides negative
thermal conductivity (K) when approaching the ceramic-rich surface, and, in thermal analysis, this equation
provides an erroneous distribution of temperature. In order to elucidate this inaccuracy, let us consider a porous
FGMwith a porosity volume fraction (a), distributed equally in the ceramic andmetal phases, and the modified
rule of mixture reads:

P � Pm
(
Vm − a

2

)
+ Pc

(
Vc − a

2

)
, (3)

In Refs. [31–34], it is assumed that the total volume fraction of the metal and ceramic complies with the
following equation: Vm + Vc � 1, which leads to Eq. (2). This equation provides several inconsistencies in
the obtained FGM properties, especially in the through-thickness temperature distribution. For instance, if we
have a ceramic phase (Vm � 0 and Vc � 1) then, Eq. (2) yields:

P(z, T ) � Pc(T )
(
1 − a

2

)
+ Pm

(
−a

2

)
, (4)

As the thermal conductivity (K) of the metal phase is much higher than that of the ceramic phase, see Table
8, Eq. (7) provides a negative value of the thermal conductivity (K) of the porous FGM.

In order to solve this problem, let us consider a porous homogenous material with a porosity volume
fraction (a) for which Pc � Pm � P. Then, Eq. (3) yields:

P � P
(
Vm − a

2

)
+ P
(
Vc − a

2

)
� P(Vm + Vc − a) (5)

which yields:

Vm + Vc � 1 + a. (6)

Fig. 1 Porosity distribution in a FG material
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Equation (6) represents the correct correlation between the metal and ceramic volume fractions in a porous
FGM. By substituting Eq. (6) into Eq. (2), we get:

P(z, T ) � (Pc(T ) − Pm(T ))Vc(z) + Pm(T ) − (Pc(T ) − Pm(T ))
a

2
. (7)

Equation (7) represents the correct formula of the rule of mixture of porous FGMs with evenly distributed
porosity. The evenly distributed porosity is defined as P-I. For another type of porous FGM having uneven
distribution of porosities, in which the porosity increases linearly from (0) “at the metal phase” to (a) “at the
ceramic phase” is defined as P-II, the following rule of mixture is applied:

P(z, T ) � (Pc(T ) − Pm(T ))Vc(z) + Pm(T ) − (Pc(T ) − Pm(T ))
a

4

(
1 + 2

z

h

)
, (8)

Another type of porous FGM having uneven distribution of porosities, in which, the porosity decreases
linearly from (a) “at the metal phase” to (0) “at the ceramic phase” is defined as P-III, with the following rule
of mixture:

P(z, T ) � (Pc(T ) − Pm(T ))Vc(z) + Pm(T ) − (Pc(T ) − Pm(T ))
a

4

(
1 − 2

z

h

)
, (9)

The fourth type of porous FGM having uneven distribution of porosities, in which the porosity increases
linearly from (0) “at the metal phase” to (a) “at the mid surface h/2”, then decreases linearly from (a) “at the
mid surface” to (0) “at the ceramic phase” is defined as P-IV, with the following rule of mixture:

P(z, T ) � (Pc(T ) − Pm(T ))Vc(z) + Pm(T ) − (Pc(T ) − Pm(T ))
a

4

(
1 − 2

|z|
h

)
, (10)

If considering the temperature dependency of the mechanical and thermo-physical properties of the con-
stituent materials, the properties of the metal or ceramic phases are given by:

P(T ) � P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3) (11)

where T � T0 +�T is the material temperature (in Kelvin), T0 stands for the reference stress-free temperature
(usually taken as 300 K), �T denotes the temperature change, and P0, P−1, P1, P2, and P3 are the coefficients
of temperature, which are unique for each constituent.

The temperature variation is assumed to occur only in the thickness direction. Due to the smooth variation
of the effective properties of an FGM through the thickness direction, the through-thickness temperature distri-
bution is non-uniform as depicted in Figs. 2 and 3.When a heat shock passes through the FGM, the temperature
changes from slow to fast due to the functional conductivity of the material mixture. This functionality is con-
trolled by gradually varying the volume fractions of the two materials in between the two surfaces. Moreover,
the temperature distribution can be non-uniform, even for a homogenous material mixture, due to the effect of
a hierarchic porosity, as depicted in Fig. 4. The temperature can change from fast to slow or from slow to fast
according to the porosity distribution as shown in Fig. 4.

The non-uniform temperature distribution through the thickness can be determined by solving the one-
dimensional steady-state heat transfer problem [35]:

d

dz

[
K (z)

dT

dz

]
� 0, T

(
z � h

/
2
) � Tc, T

(
z � −h

/
2
) � Tm (12)

where K(z) is the thermal conductivity, evaluated using Eq. (7). Tc and Tm denote the temperature of the
ceramic-rich and metal-rich surfaces of the shell, respectively. The solution for Eq. (12) is given by:

T (z) � Tm + �T · η(z), �T � Tc − Tm , η(z) �
⎛
⎜⎝

z∫
−h/2

dz

K (z)

/ h/2∫
−h/2

dz

K (z)

⎞
⎟⎠, (13)

The integrals of Eq. (13) are evaluated using numerical integration.
To show the change in the temperature distribution between the perfect and porous FGMs in thermal

environments, the temperature distribution with the thickness coordinate in an aluminium–zirconia material
mixture is plotted in Fig. 2. Here, different power-law indexes are considered, and the porosity volume fraction
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Fig. 2 Through-thickness temperature distributions in a P-I porous FGM with different porosity volume fractions

is set as a � 0, a � 0.1, a � 0.2 and a � 0.3. In Fig. 3, different porosity volume fractions are considered, and
the power-law index is set as n � 0.5, n � 1, n � 2, and n � 5.

To show the change in the temperature distributions between the four porosity distributions P-I, P-II,
P-III and P-IV in thermal environments, the temperature distribution with the thickness coordinate in an
aluminium–zirconia material mixture is plotted in Figs. 4, 5, and 6. Here, different porosity volume fractions
are considered, and the power-law index is set as n � 0, n � 0.1, and n � 0.5.

Figures 5 and 6 show the variations of temperature with the thickness coordinate in a porous FGM with
different porosity distributions. It can be seen that the uneven porosity P-III provides a pattern of temperature
distribution similar to that due to the variation of the volume fractions of the two materials in between the
two surfaces (the power-law index). As we can see from Fig. 6, the effect of porosity P-III vanishes rapidly
with the increase of the power-law index. However, the uneven porosity P-II provides a pattern of temperature
distribution symmetric to that due to the variation of the volume fractions of the two materials in between the
two surfaces.

To show the change of material properties due to porosity in a porous FGM, the variations of Young’s
modulus with the thickness coordinate aluminum-zirconia material mixture are plotted in Figs. 7, 8, and 9
for the four porosity distributions P-I, P-II, P-III, and P-IV. Here, the different porosity volume fractions are
considered, and the power-law index is set as n � 0, n � 0.1, and n � 5.
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Fig. 3 Through-thickness temperature distributions in a porous FGM with different power-law indexes

3 Formulation of the shell finite element

To derive the formulation of the presented degenerated curved shell element in thermal environments, the
sixteen-node solid element can be degenerated into an 8-node curved shell element in few steps as shown in
Fig. 10. We are using the main shell assumption of straight normal remaining straight and inextensible after
deformation [36], and neglecting the strain energy associated with the stresses perpendicular to the middle
surface (plane stress condition).

3.1 Geometry and kinematics of the shell

The position vector of an arbitrary point “p” on the shell is determined by the iso-parametric interpolation of
the global coordinates using the nodal coordinates and direction cosines of the director vectors of all nodes of
an element “e” [37, 38]. Then, the Cartesian coordinates r � {

x y z
}T of a point “p” inside an element “e”

are given by:

r(ξ , η, ζ ) �
n∑

i�1

Ni (ξ , η) r i +
ζ

2
h

n∑
i�1

Ni (ξ , η)v3i (14)

where r i denotes the Cartesian coordinates of nodal points, ζ defines the position of the point in the thickness
direction, n is the number of element nodes, and Ni (ξ , η) is the two-dimensional interpolation function.
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Fig. 4 Through-thickness temperature distributions in a porous FGM with different porosity types; n � 0

The nodal normal vector at node (i) can be obtained by the cross product of two vectors that are tangent to
the reference surface at (i):

v3i �
n∑
j�1

(
∂N j (ξi , ηi )

∂ξ
r0 j ∧ ∂N j (ξi , ηi )

∂η
r0 j

)
(15)

where r0 j defines the position vector of a point on the reference surface. Then, the director vector is given by:
v3i � v3i‖v3i‖ .

The displacement vector of an arbitrary point “ p” inside the element “ e” having five degrees of freedom
can be obtained from the following relation:

u(ξ , η, ζ ) �
n∑

i�1

Ni (ξ , η) ui +
ζ

2
h

n∑
i�1

Ni (ξ , η)
[−v2i v1i

]{αi
βi

}
(16)

where the two orthogonal unit vectors v1i and v2i are introduced to express the director vector in terms of αi
and βi , where αi and βi are the rotation angles of the director vector v3i about the tangent vectors v1i and v2i ,
respectively.

Hence, each node has three global displacements and two rotations about the local in-plane axis, respec-
tively, û� {u v w θx θy

}T .
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Fig. 5 Through-thickness temperature distributions in a porous FGM with different porosity types; n � 0.1

3.2 Stress and strain fields

Considering that the material of the shell is linearly thermo-elastic, the stress tensor in global Cartesian
coordinates is obtained in terms of elastic strains and temperature change as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ13

σ23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� [C]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εm11

εm22

εm33

2εm12

2εm13

2εm23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εth11

εth22

εth33

2εth12

2εth13

2εth23

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where the thermal strain in the global system coordinates, using Voigt notation, can be calculated as follows:

εth � −α(T , z)�T (z) · [1 1 1 0 0 0
]T

. (18)
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Fig. 6 Through-thickness temperature distributions in a porous FGM with different porosity types; n � 0.5

There,�T (z) is the temperature change, andα(T , z) is the effective thermal expansion coefficient.Note that
α(T , z) is variable with the thickness coordinate and temperature according to Eqs. (11) and (7), respectively.
The temperature change ΔT is defined as:

�T (z) � T (z) − T0 (19)

where T0 is the reference temperature.
The Green strain in the global Cartesian system can be written in terms of displacements as:

εi j � 1

2

(
∂ui
∂ r j

+
∂u j

∂ r i

)
. (20)

After introducing finite element discretization, the linear strain vector can be expressed as: εi j � B0 û, where

the B0 is the linear strain–displacement matrix and û� {u v w θx θx
}T stands for the vector of nodal degrees

of freedom associated with the displacement field.
According to shell assumptions, the strain energy associated with the stresses along the thickness direction

is neglected. Then, since the normal stress and strain along the thickness direction are ignored in the local
convected coordinates, the following stress tensor is obtained in local coordinates, using Voigt notation:

σ̃ � {σ11 σ22 0 σ12 σ13 σ23
}T , (21)
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Fig. 7 Through-thickness elasticity moduli distribution in a porous FGM with different porosity types; n � 0

Accordingly, the linear constitutive matrix is expressed in the local coordinates by:

C̃ �

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 0 0 0 0
C12 C11 0 0 0 0
0 0 0 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎦

(22)

where

C11 � E(T , z)

1 − ν2(T , z)
, C12 � ν(T , z)C11, C44 � C55 � C66 � ks

(
1 − ν(T , z)

2

)
, (23)

The elastic modulus E(T , z) and the Poisson’s ratio ν(T , z) vary with the thickness and temperature
according to Eqs. (11) and (7). The shear correction factor ks is introduced to improve the shear distribution
across the shell thickness. A computational algorithm for the transverse shear correction factors can be found
in [39, 40]. Then, the constitutive matrix C in the global coordinates can be obtained by using the following
transformation:

C � QT C̃ Q (24)

where Q stands for the transformation matrix given in [35].
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Fig. 8 Through-thickness elasticity moduli distributions in a porous FGM with different porosity types; n � 0.1

4 Governing equations

The dynamic equilibrium equation for vibration analysis based on the virtual work principle can be written as:∫
V

δεTi j · C · εi j dV �
∫
V

δu̇T Mu̇ dV (25)

where εi j denotes the Green–Lagrange strain tensor, the right side of Eq. (25) is resulting from the element
kinetic energy.

Once again, introducing finite element discretization, Eq. (25) can be written in the following matrix form:

δuTe

(∫
V
BT
0 CB0 dV

)
� δu̇Te

(∫
V
ST ρSdV

)
, (26)

Due to thermal stresses, the element geometric stiffness matrix can be expressed as:

Kσ th �
∫
V
GT H thG dV . (27)

in which the nonlinear strain–displacement transformation G and the thermal stress Hth matrices are defined,
respectively, as:

Gû �
{

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

}T
,
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Fig. 9 Through-thickness elasticity moduli distributions in a porous FGM with different porosity types; n � 5

Fig. 10 An 8-node degenerated shell element



Free-vibration response of functionally graded porous shell structures 4889

H th �

⎡
⎢⎢⎢⎢⎣

σ th
x · I τ thxy · I τ thxz · I

τ thxy · I σ th
y · I τ thyz · I

τ thxz · I τ thyz · I σ th
z · I

⎤
⎥⎥⎥⎥⎦, I �

⎡
⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦. (28)

Finally, the free vibration equation, under thermal environment, is given by:

(
[K + Kσ th] − ω2[M]

){u} � 0 (29)

where ω known as natural frequency, u is the corresponding eigenvector, and the element stiffness matrix can
be obtained by:

K �
∫
V
BT
0 CB0 dV . (30)

The consistent mass matrix obtained from the kinetic energy including translational and rotary inertia
effects is given by:

M �
∫
V
ST ρS dV (31)

with S standing for the displacement matrix, and ρ is the density matrix defined as:

S � [ S1 S2 ... S8
]
, (32)

Si �

⎡
⎢⎢⎢⎣
Ni 0 0 −hzNi l2i hz Ni l1i
0 Ni 0 −hzNim2i hz Nim1i
0 0 Ni −hzNin2i hz Nin1i
0 0 0 Ni 0
0 0 0 0 Ni

⎤
⎥⎥⎥⎦, (33)

ρ �

⎡
⎢⎢⎢⎢⎣

ρ 0 0 ρh
/
2 0

0 ρ 0 0 ρh
/
2

0 0 ρ 0 0
ρh
/
2 0 0 ρh2

/
4 0

0 ρh
/
2 0 0 ρh2

/
4

⎤
⎥⎥⎥⎥⎦ (34)

where ρ is the effective material density and hz � ζ
2h.

5 Numerical results and discussion

In this Section, the free vibration response of functionally graded porous shell structures with temperature-
dependentmaterial properties under thermal environment is studied.The efficacy andvalidationof the presented
finite element formulation are tested for the problems for which the analytical solutions are available in the
literature. The temperature is assumed to be uniform on any surface that lies between the top and bottom
surfaces and can be varied through the thickness direction only as a nonlinear function. The stiffness matrix is
integrated using a modified 5-points reduced numerical integration scheme [41, 42] that provides a full rank
stiffness matrix with no need for hourglass control, resulting in a highly efficient shell element.
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Table 1 Non-dimensional first natural frequency of a ZrO2/Ti-6Al-4V square plate in thermal environment

Temperature fields Material Present [43]

Tb � 300 K
T c � 300 K

ZrO2 8.236 8.273
0.5 7.088 7.139
1 6.646 6.657
2 6.278 6.286
Ti-6Al-4V 5.344 5.4

Tb � 300 K
T c � 400 K
Temperature dependent

ZrO2 7.789 7.868
0.5 6.762 6.876
1 6.359 6.437
2 6.03 6.101
Ti-6Al-4V 5.213 5.322

Tb � 300 K
T c � 400 K
Temperature independent

ZrO2 8.023 8.122
0.5 6.942 7.154
1 6.522 6.592
2 6.176 6.238
Ti-6Al-4V 5.293 5.389

Tb � 300 K
T c � 600 K
Temperature dependent

ZrO2 6.577 6.685
0.5 5.936 6.123
1 5.653 5.819
2 5.441 5.612
Ti-6Al-4V 4.957 5.118

Tb � 300 K
T c � 600 K
Temperature independent

ZrO2 7.58 7.686
0.5 6.641 6.776
1 6.267 6.362
2 5.966 6.056
Ti-6Al-4V 5.189 5.284

Table 2 Non-dimensional natural frequency of an Si3N4/SUS304 square plate in thermal environment

Temperature fields Material Present [43]

Tb � 300 K
T c � 300 K

Si3N4 12.105 12.495
0.5 8.417 8.675
1 7.407 7.555
2 6.663 6.777
SUS304 5.34 5.405

Tb � 300 K
T c � 400 K
Temperature dependent

Si3N4 11.922 12.397
0.5 8.267 8.615
1 7.266 7.474
2 6.526 6.693
SUS304 5.204 5.311

Tb � 300 K
T c � 400 K
Temperature independent

Si3N4 11.986 12.382
0.5 8.313 8.641
1 7.305 7.514
2 6.561 6.728
SUS304 5.224 5.335

Tb � 300 K
T c � 600 K
Temperature dependent

Si3N4 11.538 11.984
0.5 7.949 8.269
1 6.96 7.171
2 6.225 6.398
SUS304 4.865 4.971

Tb � 300 K
T c � 600 K
Temperature independent

Si3N4 11.746 12.213
0.5 8.101 8.425
1 7.097 7.305
2 6.351 6.523
SUS304 4.986 5.104
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Fig. 11 Simply supported square FGM plate with no in-plane displacements

5.1 Square plate

In order to validate the present formulation, the numerical results of a ZrO2/Ti-6Al-4V and Si3N4/SUS304
FGM square plate are compared with the analytical solution available in the literature [43]. The materials’
“mechanical and thermo-physical” properties are taken as temperature-dependent, see Table 8 (Appendix A).

The square plate has a side length L � 0.2 m and thickness h � 0.025 m. The plate is simply supported on
all its edges with no in-plane displacements, as shown in Fig. 11. The mesh consists of 3×3 square elements.

Tables 1 and 2 show the variation of the first non-dimensional frequency of the square plate with the volume
fraction index (n) under different sets of thermal condition while porosity is not considered. For convenience,

the non-dimensional natural frequency used in the analysis is defined as ω∗ � ω
(
L2
/
h
)√(

1 − ν2m
)
ρm
/
Em

where Em , ρm , and νm are the reference values at T0 � 300 K.
Three thermal loading cases are investigated, in which the bottom surface temperature is held constant Tm

� 300 K, while the top surface temperature is taken as Tc � 300 K, 400 K, and 600 K for the first, second,
and the third loading case, respectively.

In this test, the effect of volume fraction index (n) and temperature field on the first natural frequency
is represented. The results are in good agreement with the analytical solution. It can be seen that the non-
dimensional frequencies of the FGM plate are showing a descending trend from ceramic rich to metal rich,
it is because the ceramic materials are well known for their higher stiffness than the metal ones. Besides, a
decrease in the natural frequencies can be noticed when the material properties are considered as temperature
dependent.

Tables 1 and 2 show the variation of the first four non-dimensional frequencies of the square plate with the
volume fraction index (n) under different sets of thermal condition and with different porosity indexes. Indices
in brackets (m, n) stand for the vibration mode in x and y axes.

The first mode frequencies depicted in Tables 3 and 4 are plotted in Fig. 12. It is observed that the non-
dimensional frequency with the volume fraction index for the two investigated values of porosity (a � 0.1
and a � 0.2) tends to decrease with the increase of the power-law index in all the studied thermal conditions.
Moreover, as the elasticity moduli decrease by the increase in temperature or the porosity, the non-dimensional
frequency decreases with the increase in temperature and porosity.

5.2 Cylindrical shell panel

In this example, the geometry of an FGM cylindrical panel is presented in Fig. 13. A 4×4 elements mesh is
employed for the spatial discretization. The two curved edges of the panel are free, while the straight edges
are simply supported. Free vibration analysis of a simply supported (Al/Al2O3) FGM shell was investigated
analytically in [26]. It is extended here to investigate the free vibration of a porous cylindrical FGM shell in
thermal environments.

A ceramic–metal FGM that consists of alumina and aluminum (Al/Al2O3) is considered. The material
properties of each constituent at temperature T � 300 K are listed in Table 5. Table 6 shows the obtained
results against those reported in the literature [26].



4892 B. W. Abuteir, D. Boutagouga

Ta
bl
e
3
N
on

-d
im

en
si
on

al
na
tu
ra
lf
re
qu

en
ci
es

of
Z
rO

2
/T
i-
6A

l-
4V

sq
ua
re

pl
at
e
in

th
er
m
al
en
vi
ro
nm

en
tw

ith
po

ro
si
ty

pa
ra
m
et
er

Te
m
pe
ra
tu
re

fie
ld
s

M
at
er
ia
l

M
od

e

(1
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

T
b

�
30

0
K
T
c
�

30
0
K

Z
rO

2
8.
06

2
7.
89

3
18

.5
77

18
.1
87

28
.6
44

28
.0
42

34
.5
32

33
.8
06

0.
5

6.
93

9
6.
79

2
15

.9
51

15
.6
12

24
.6
39

24
.1
16

29
.6
73

29
.0
43

1
6.
50

5
6.
36

6
14

.9
08

14
.5
86

23
.0
11

22
.5
15

27
.6
98

27
.0
99

2
6.
14

4
6.
01

2
14

.0
47

13
.7
40

21
.6
31

21
.1
59

26
.0
38

25
.4
62

T
i-
6A

l-
4V

5.
22

0
5.
09

8
12

.0
29

11
.7
46

18
.5
48

18
.1
11

22
.3
60

21
.8
34

T
b

�
30

0
K
T
c
�

40
0
K

Z
rO

2
7.
63

6
7.
48

6
17

.9
20

17
.5
57

27
.8
06

27
.2
37

33
.5
59

32
.8
70

0.
5

6.
62

4
6.
48

8
15

.4
76

15
.1
53

24
.0
28

23
.5
24

28
.9
74

28
.3
65

1
6.
22

8
6.
10

0
14

.4
91

14
.1
84

22
.4
70

21
.9
91

27
.0
82

26
.5
03

2
5.
90

5
5.
78

3
13

.6
82

13
.3
90

21
.1
52

20
.6
96

25
.4
93

24
.9
41

T
i-
6A

l-
4V

5.
10

1
4.
99

0
11

.8
10

11
.5
45

18
.2
49

17
.8
36

22
.0
04

21
.5
04

T
b

�
30

0
K
T
c
�

60
0
K

Z
rO

2
6.
49

4
6.
41

1
16

.4
30

16
.1
36

26
.0
34

25
.5
37

31
.5
59

30
.9
47

0.
5

5.
83

3
5.
73

5
14

.4
33

14
.1
48

22
.7
71

22
.3
08

27
.5
62

26
.9
96

1
5.
55

3
5.
45

7
13

.5
90

13
.3
17

21
.3
72

20
.9
30

25
.8
51

25
.3
12

2
5.
34

6
5.
25

4
12

.9
09

12
.6
50

20
.1
93

19
.7
73

24
.1
41

23
.9
00

T
i-
6A

l-
4V

4.
87

4
4.
79

0
11

.3
03

11
.0
70

17
.5
23

17
.1
44

21
.1
13

20
.6
50



Free-vibration response of functionally graded porous shell structures 4893

Ta
bl
e
4
N
on

-d
im

en
si
on

al
na
tu
ra
lf
re
qu

en
ci
es

of
Si

3
N
4
/S
U
S3

04
sq
ua
re

pl
at
e
in

th
er
m
al
en
vi
ro
nm

en
tw

ith
po

ro
si
ty

pa
ra
m
et
er

Te
m
pe
ra
tu
re

fie
ld
s

M
at
er
ia
l

M
od

es

(1
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

a
�

0.
1

a
�

0.
2

T
b

�
30

0
K
T
c
�

30
0
K

Si
3
N
4

11
.3
34

10
.6
74

26
.1
85

24
.6
56

40
.5
39

38
.1
61

48
.8
38

45
.9
75

0.
5

8.
07

0
7.
75

2
18

.5
79

17
.8
43

28
.7
42

27
.5
98

34
.6
02

33
.2
26

1
7.
14

0
6.
88

9
16

.3
91

15
.8
11

25
.3
19

24
.4
17

30
.4
76

29
.3
91

2
6.
44

5
6.
23

8
14

.7
65

14
.2
85

22
.7
40

21
.9
94

27
.3
81

26
.4
82

SU
S3

04
5.
18

1
5.
02

7
11

.9
22

11
.5
67

18
.3
49

17
.7
97

22
.1
26

21
.4
61

T
b

�
30

0
K
T
c
�

40
0
K

Si
3
N
4

11
.1
56

10
.5
01

25
.9
40

24
.4
20

40
.2
42

37
.8
77

48
.5
01

45
.6
55

0.
5

7.
92

3
7.
60

6
18

.3
90

17
.6
58

28
.5
19

27
.3
80

34
.3
56

32
.9
87

1
6.
99

9
6.
74

9
16

.2
17

15
.6
39

25
.1
15

24
.2
18

30
.2
54

29
.1
75

2
6.
30

8
6.
10

2
14

.5
99

14
.1
22

22
.5
50

21
.8
08

27
.1
76

26
.2
82

SU
S3

04
5.
04

7
4.
89

5
11

.7
71

11
.4
18

18
.1
85

17
.6
36

21
.9
52

21
.2
91

T
b

�
30

0
K
T
c
�

60
0
K

Si
3
N
4

10
.7
81

10
.1
33

25
.4
42

23
.9
35

39
.6
51

37
.3
03

47
.8
36

45
.0
10

0.
5

7.
60

5
7.
28

9
17

.9
99

17
.2
70

28
.0
72

26
.9
38

33
.8
66

32
.5
03

1
6.
69

3
6.
44

3
15

.8
50

15
.2
75

24
.7
02

23
.8
08

29
.8
06

28
.7
31

2
6.
00

7
5.
80

0
14

.2
44

13
.7
68

22
.1
53

21
.4
12

26
.7
48

25
.8
57

SU
S3

04
4.
70

8
4.
55

6
11

.3
56

11
.0
04

17
.7
10

17
.1
63

21
.4
30

20
.7
72



4894 B. W. Abuteir, D. Boutagouga

Fig. 12 Non-dimensional first natural frequency of the porous FGM square plate in thermal environments: (a), (b)

Fig. 13 Geometry of the cylindrical panel

Table 5 Material properties of (Al/Al2O3) [26]

Materials E (GPa) V ρ (Kg/m3)

Alumina 380 0.3 3800
Aluminum 70 0.3 2707

Table 6 Non-dimensional natural frequency ω∗ � ω
(
L2
/
h
)√

ρc
/
Ec for FGM panel

Source Power-law index (n)

0 0.5 1 2 5 10 ∞
Present 5.871 5.311 5.005 4.686 4.294 3.973 2.985
[26] 5.833 4.955 4.469 4.055 3.815 3.680 2.966

Herein, we investigated the free vibration behaviour of porous FG cylindricals panel under different thermal
conditions. The material properties of the constituents are chosen from Table 8. The dimensionless frequency

used in this analysis is ω∗ � 100ω h
√

ρc
/
Ec where Ec and ρc are the reference values at T0 � 300 K.

The effect of temperature, power-law index (n), and porosity coefficients on the first fundamental natu-
ral frequency with simply supported (ssss) and clamped (cccc) edges is illustrated in Figs. 14, 15, and 16,
respectively.
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Fig. 14 First non-dimensional frequency variation versus temperature (Tc) of the FG cylindrical panel: a simply supported,
b clamped

Fig. 15 First non-dimensional frequency variation versus power-law index (n) of FG panel: a simply supported, b clamped

Fig. 16 First non-dimensional frequency variation versus porosity coefficients a of FG panel for: a simply supported, b clamped
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Table 7 Dimensionless frequency of isotropic clamped spherical shell

θ Source Mode

(1,1) (2,1) (3,1) (4,1)

45° Present 1.0458 1.1621 1.5258 1.9173
[29] 1.0820 1.2942 1.6015 1.9340

60° Present 0.8921 0.9302 1.1966 1.4408
[29] 0.8987 1.0800 1.3715 1.4024

Fig. 17 Geometry and mesh of the spherical cap

The temperature field is applied by holding the bottom surface temperature at Tm � 300 K, while the top
surface is heated up to temperature Tc � 700 K. It can be observed from Fig. 14 that there is a significant
difference between the responses depending on which the material properties are considered as temperature-
dependent or not. It is clear that the effect of considering the material properties as temperature-dependent on
the natural frequency is highly affected and goes in descending trend as temperature increases.

It can be also seen that the non-dimensional frequencies decrease as the temperature of the ceramic surface
(Tc) increases. This is due to the decrease of the constituent materials′ stiffness with the temperature increases.

The effect of the power-law index (n) on the natural frequency is depicted in Fig. 15 for two boundary
conditions. The temperature field is applied by holding the bottom surface temperature at constant temperature
Tm � 300K,while the top surface temperature is held atTc � 600K. The non-dimensional frequency decreases
nonlinearly with the power-law index (n) increase. Due to the fact that Young’smodulus of the ceramicmaterial
is higher than that of the metallic material, the non-dimensional frequency becomes highly sensitive to the
power-law index (n) minor variation.

Figure 16 shows the effect of porosity factor (a) on the free vibration of the FG cylindrical panel. Generally,
the increasing of the porosity factor decreases the non-dimensional frequency. It can be noticed that the non-
dimensional frequency decreases proportionally to the porosity factor increase. Furthermore, one can notice
that taking the material properties as temperature dependent can have a significant outcome on the overall
vibration response, especially in high-temperature environments.

5.3 Spherical cap shell

In this example, the clamped spherical cap shown in Fig. 17 is studied. At first we assessed the free vibration
response of an isotropic clamped spherical cap reported in the literature [29].Material and geometric properties
of the spherical shell are taken as R � 1 m, h � 0.05 m, E � 211 GPa, ρ � 7800 kg/m3, and v � 0.3. The
spherical cap is modelled using the mesh shown in Fig. 17.

The free vibration response of the isotropic clamped spherical cap shell is represented by the non-

dimensional frequency ω∗ � ω R
√

ρ
/
E for the first four modes of vibration listed in Table 7 fort two

angles disposition (θ � 45°, 60°). Note that the number in brackets (m, n) indicates the vibration mode, with
m being the number of half-waves along the generatrix, and n is the circumferential wave number.
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Fig. 18 The first four mode shapes of an isotropic clamped spherical cap shell (θ � 45°)

The present results are found to be in good agreement with those reported by [29], and the difference
between the results at the second and the third mode is due to the different solution strategies used in the
studies. The corresponding modes shapes of the first four natural frequencies of the clamped spherical shells
(θ � 45°) are illustrated in Fig. 18.

However, no results are available in the literature concerning free vibration analysis of an FGM porous
spherical cap shell in thermal environments. We investigated the free vibration response of an FGM porous
spherical cap (θ � 45°) under different thermal fields. Two different material mixtures are considered, the
first one is the (ZrO2/Ti-6Al-4V), and the second one is the (Si3N4/SUS304). The materials′ mechanical and
thermo-physical properties are taken as temperature-dependent. Two cases of boundary conditions are also
considered: Hinged BC (hhhh): u � v � w � 0 at H � 0 and clamped BC (cccc) at H � 0 all d.o.f s � 0. For

convenience, the dimensionless frequency is defined by ω∗ � ω R
√

ρc
/
Ec where Ec and ρc are the reference

values at T0 � 300 K. Figures 19, 20, and 21 show the variation of the first dimensionless frequency ω* of a
hinged and clamped FGM spherical cap as function of temperature fields, power-law index (n), and porosity
coefficient (a), respectively.

Based on the obtained results, it can be seen that the increase in temperature gradient, power-law index
(n) or the porosity (a) leads to a decrease in natural frequencies; however, the temperature dependency of
materials’ properties can have considerable consequences on the free vibration response of the spherical
cap. Moreover, the natural frequencies decrease proportionally with the increase in porosity. This behaviour
matches the porosity contribution in the rule of mixture of Eq. (7). Meanwhile, the decrease of the natural
frequencies with the increase of the power-law index is highly nonlinear. This correlation follows the power-
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Fig. 19 Non-dimensional frequency variation versus temperature (Tc) of FGM spherical cap: a hinged, b clamped

Fig. 20 Non-dimensional frequency variation versus power-law index (n) of FGM spherical cap: a hinged, b clamped

Fig. 21 Non-dimensional frequency variation versus porosity coefficients a of FGM spherical cap: a hinged, b clamped
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Fig. 22 Variation of non-dimensional frequency of FGM porous spherical cap with (R/h) ratio for hinged and clamped BCs

law index contribution in the rule of mixture of Eq. (7). It can also be seen that this behaviour is exhibited in
the investigated plate, cylindrical and spherical shell.

The effect of radius to thickness ratio (R/h) on the dimensionless frequencyω* of hinged and clamped FGM
porous spherical caps is investigated and depicted in Fig. 22. Note that: n � 2, Tm � 300 K, T c � 600 K, and
a � 0.4. It is observed that the dimensionless frequency decreases dramatically when the ratio (R/h) increases.
We can also observe that when the ratio (R/h) increases from 5 to 25, at the beginning, the dimensionless
frequency decreases quickly, and the rate becomes gentler with further increase of the radius to thickness ratio
(R/h). This means that the rising of the curvature of the shell causes a decrease in the stiffness, which causes a
rapid decrease of the dimensionless frequency of the spherical cap. Moreover, the FGM spherical shell behaves
as a thin structure with low rigidity, and the natural frequencies become hence as steady-state motion.

6 Conclusions

In this paper, the free vibration response of functionally graded plate, cylindrical and spherical porous shells
subjected to high-temperature field with temperature-dependent material properties has been investigated. The
equation of motion is developed based on a curved 8-node degenerated shell element formulation using the
principle of virtual work. Some convergence studies are provided to assess the effectiveness and accuracy of the
present formulation. The numerical results show a significant impact of different sets of thermal environmental
conditions, different values of volume fraction index (n), porosity coefficients (a), radius to thickness ratio
(R/h), and boundary conditions on the dimensionless frequency ω* of FGM cylindrical and spherical shells. It
is shown that considering the material properties as temperature dependent has a significant consequence on
the vibration response of FGM shells. It is shown that the influence of temperature on the effective material
properties such as Young’s modulus and thermal expansion coefficient is non-negligible, especially at higher
temperatures. Moreover, the effect of the porosity is more observable at high temperatures.
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Appendix

See Table 8.

Table 8 Temperature-dependents material properties of metal and ceramic [35]

Materials Properties P0 P−1 P1 P2 P3

Silicon Nitride (Si3N4) E (Pa) 348.43×109 0 − 3.070×10−4 2.160×10−7 − 8.946×10−11

v 0.24 0 0 0 0
ρ (Kg/m3) 2370 0 0 0 0
α (K−1) 5.8723×10−6 0 9.095×10−4 0 0
K (Wm−1 K−1) 13.723 0 − 1.032×10−3 5.466×10−7 − 7.876×10−11

Stainless Steel
(SUS304)

E (Pa) 201.04×109 0 3.079×10−4 − 6.534×10−7 0
v 0.3262 0 − 2.002×10−4 3.797×10−7 0
ρ (Kg/m3) 8166 0 0 0 0
α (K−1) 12.330×10−6 0 8.086×10−4 0 0
K (Wm−1 K−1) 15.379 0 − 1.264×10−3 2.092×10−6 − 7.223×10−10

Zirconium Oxide
(ZrO2)

E (Pa) 244.27×109 0 − 1.371×10−3 1.214×10−6 − 3.681×10−10

v 0.2882 0 1.133×10−4 0 0
ρ (Kg/m3) 3000 0 0 0 0
α (K−1) 12.766×10–6 0 − 1.491×10−3 1.006×10−5 − 6.778×10−11

K (Wm−1 K−1) 1.7 0 1.276×10−4 6.648×10−8 0
Titanium Alloy
(Ti-6AL-4V)

E (Pa) 122.56×109 0 − 4.586×10−4 0 0
v 0.2884 0 1.121×10−4 0 0
ρ (Kg/m3) 4429 0 0 0 0
α (K−1) 7.578×10–6 0 6.638×10−4 − 3.147×10−6 0
K (Wm−1 K−1) 1 0 1.704×10−2 0 0
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