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Abstract We investigate the effect of planar shear inflow on the dispersion of inertial particles in the unsteady
laminar wake behind a normal flat plate and the corresponding particle deposition on the plate. Eulerian–
Lagrangian simulations are performed to solve the dilute particulate suspension flow over the plate. To explore
the effect of shear, we perform a comparative assessment between two different cases, distinguished based
on their inflow profiles, namely uniform and linear shear flow (with shear parameter K =0.1). Flow Reynolds
number based on the mean inflow velocity is 60 in each case, where the unsteady wake is characterized by
von Kármán vortex street. Three different classes of particles are tracked in each case, where each particle
class is characterized by its Stokes number (St), namely St = 0.1 (low), St = 1 (medium), St = 10 (high).
Flow visualizations show that planar shear alters the vortex shedding pattern, especially at far downstream
positions. Such changes in the wake flow lead to significant streamwise stretching and rotation of particle-
depleted void regions and adjacent particle clusters. With the help of Voronoï diagrams, we characterize fluid
shear driven changes in inhomogeneous particle distribution patterns and lateral shifts in positions of particle
clusters observed for each St-class of particles. The quantitative effect of shear on the dispersed phase statistics
of each St-class of particles is further analyzed. Such effects are not appreciable near the plate, but become
evident further downstream away from the plate. At such positions, the impact of shear on the concentration
of medium St-class particles is the most significant among all classes, where the mean particle concentration
near the wake centerline is significantly increased. Furthermore, local peaks in particle concentration profiles
and minima in particle velocity profiles shift laterally in their positions toward the low-stream region due to
the shear. The shear also causes a marginal reduction in particle deposition efficiency.

1 Introduction

Understanding the transport of tiny inertial particles suspended in laminar or turbulent carrier flow is crucial
in many diverse fields of human life. The knowledge and quantitative prediction of such two-phase flows have
significant importance in fields like respiratory health (e.g., transport of inhaled airborne particles through
animal respiratory tracts), natural flows (e.g., eolian sediment transport), environmental pollutant dispersion,
and industrial appliances (e.g., atomizers)—to name a few. Besides the relevance of particle-laden flows in
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various fields, the physics of such flows exhibits interesting features such as preferential concentration in strain-
dominated regions of the flow field [1], and turbophoretic particle migration in wall-bounded turbulent flows
[2]. Of particular interest to our study is the particle-laden flow past an obstruction (i.e., bluff body), which has
significance in a wide range of engineering applications. Some examples of applications are baghouse dust
collectors used for separating dust particles [3], particle deposition on heat exchanging components in coal-
fired plants [4], volcanic ash deposition over blades of gas turbine aero-engines, etc. The significance of such
flows explains why several studies performed so far (in a bounded or unbounded domain) focused on predicting
inertial particle deposition over an obstruction and their dispersion in the wake region of flow (see [5–14]).
Aforementioned studies considered a generic two-dimensional bluff-body obstruction to minimize uncertainty
due to geometric complexity. Before we proceed, it is useful to introduce a couple of dimensionless parameters
associated with particulate suspension flows over an obstruction that dictates their physical behavior, viz., the
flow Reynolds number (Re) and particle Stokes number (St). The flow Reynolds number (Re) is often defined
on the basis of the characteristic dimension of the bluff body (lc), characteristic (i.e., inflow) velocity (Uc),
and fluid kinematic viscosity (νf ) as Re = Uclc/νf . Flow features such as vortex shedding, forces exerted by
the fluid on the body, and dispersion of particles in the wake region are strongly dependent on Re. The particle
Stokes number (St), defined as the ratio of particle relaxation time (τp) to the characteristic flow time scale
(τf ), plays a prominent role in dictating the fluid–particle hydrodynamic interaction.

Some studies have focused on studying the motion of particles of different Stokes numbers in unsteady
flows behind a rectangular cylinder placed in a channel and their subsequent deposition over the cylinder.
Brandon and Aggarwal [5] performed simulations to study the deposition of St =0.01–5 particles over a square
cylinder in a channel at Re values ranging from 200 to 2000. They reported that Re had an insignificant effect
on particle deposition but a noticeable effect on particle dispersion and distribution. They also highlighted that
particle deposition increased rapidly with St from 0 to 1 but became less sensitive to St above unity. The effect
of blockage and aspect ratio1 of a rectangular obstruction on particle transport and deposition was studied by
Salmanzadeh et al. [6]. They found that particle deposition increased with blockage ratio; however, it was not
influenced significantly by changes in the aspect ratio. Afrouzi et al. [7] quantified the effect of the streamwise
flow pulsation amplitude on vortex shedding and particle deposition efficiency on a square cylinder. The other
studies performed in similar flow configurations include Jafari et al. [8] and Bagheri and Sabzpooshani [9].

A considerable body of literature is also devoted to study particulate suspension flows over a circular
cylinder either in a confined or unconfined situation. While investigating the particle dispersion in the wake
of a circular cylinder, Yao et al. [10] found that Re and St have considerable effects on particle dispersion.
Besides highlighting that particle dispersion increased with Re, they also elucidated the formation of organized
distinctive particle dispersion patterns in the vortex street for each St value. They found that interaction of
particleswith the vortex street was exclusive to their inertia. They also reported that small St particles (St =0.01)
could enter vortex core regions, intermediate St particles (St = O (1)) concentrated at vortex boundaries, and
large St particles (St =10) mostly preferred to stay away from the vortex street. Haugen and Kragset [11]
investigated distinct impaction modes of inertial particles (in St = 0.01−40 regime) on front- and back-sides
of a circular cylinder at Re values ranging from 20 to 6600. Zhou et al. [12] studied the effect of inertia of
particles (in St =0.01–10 regime) on their distribution in the wake of a circular cylinder at different Re. They
observed that particle distribution was strongly dependent on both Re and St. While analyzing the particle
dispersion in the flow over a circular cylinder at Re = 100, Shi et al. [13] observed clustering of particles in
the form of a bow-shock, and the shape of a cluster was found to be dependent on particle Stokes number (St).
Recently, Shi et al. [14] analyzed the organized particle motion in von Kármán vortex street from a circular
cylinder to find that the centrifuging of inertial particles from von Kármán vortex cores leads to the formation
of coherent void hole regions. Particulate flows over triangular [15] and elliptical cylinders [16] have also been
studied to a limited extent.

As noticed above, previous studies were performed on the particle-laden flow over a two-dimensional (2D)
obstruction of generic shape (square, rectangular, circular, and triangular cylinders). However, surprisingly,
the problem of particle-laden flow over a normal flat plate has received minimal attention, except for Chein
and Chung [17] and Gomes and Vincent [18]. A normal flat plate is a limiting case of a rectangular cylinder
of low aspect ratio. Nevertheless, flow over a plate is expected to evolve differently compared to a rectangular
(or square) cylinder due to the absence of an afterbody and trailing edge separation phenomenon in the former.
Similarly, flow around the plate should be different from a circular cylinder since flow separation points are
fixed at leading edges of the former, while such flow separation points vary their positions on the surface with
Re for the latter. The unique geometric shape and distinct flow patterns around the plate could bring appreciable

1 The aspect ratio for a rectangular obstruction is defined as its width-to-height ratio.
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changes in trajectories of particles in the vicinity of the body and their dispersion in the wake compared with
square or circular cylinders.

Earlier studies on flow (without particles) past a bluff body have demonstrated remarkable effects of shear
in the inflow onwake behavior. For instance, while studying the effect of linear shear inflow on vortex shedding
and wake formation from a square cylinder for different shear rates, Cheng et al. [19] discovered that shear
suppresses the vortex shedding. Furthermore, both lift and drag forces acting on the cylinder decreased with
an increase in shear rate. Lankadasu and Vengadesan [20] suggested that critical Re at which flow changes
its state (from steady to unsteady) decreased with the shear rate of linear shear inflow. In light of findings
reported in the above studies, it is intriguing to know the effect of shear in the approaching carrier flow on
the deposition and dispersion of suspended inertial particles, while no such information is available in the
literature. The proposed study is aimed toward this end. We shall consider only planar shear as the background
shear for the sake of simplicity and brevity in the present study.

We investigate the problem of particle-laden flowpast a normal flat plate in the present work using computer
simulations. For simplicity and brevity, the focus of our study is restricted to the laminar flow of dilute
suspension over the plate. A primary goal is to understand and quantify the effect of planar shear inflow on
the dispersion of particles in the laminar wake and their deposition over the plate. For such a purpose, we run
two distinct sets of simulations, one with uniform inflow and another with linear shear inflow, and present our
findings in the form of both qualitative and quantitative comparisons.

The content in this paper is organized in the following order. The numerical methodology implemented in
the code and its validation are presented in Sect. 2. We then briefly introduce the problem considered for the
present study in Sect. 3, followed by the discussion of results in Sect. 4. Concluding remarks are presented in
the final Sect. 5.

2 Numerical methodology

We use Eulerian–Lagrangian hybrid frameworks to study laminar particulate suspension flow around a normal
flat plate. The carrier phase is simulated in the Eulerian framework. It is considered to be isothermal and
Newtonian, and is governed by the incompressible Navier–Stokes equations2, which are given as

∇ · uf = 0, (1)

ρf

{
∂uf
∂t

+ uf · ∇uf

}
= −∇ p + μf∇2uf + Fib, (2)

where symbols uf and p represent the instantaneous flow velocity and pressure, respectively, while ρf and μf
represent the fluid density and viscosity, respectively. The term Fib in Eq. (2) is the direct forcing term used in
the immersed boundary method (IBM) employed for handling the effect of bluff body on the carrier flow [21].
The scalar quantity is denoted using a regular symbol, while the vector quantity is denoted using a boldface
symbol in this paper. If the subscripts f and p are present in a symbol, they denote the fluid and particle phases,
respectively. Equations (1) and (2) are solved numerically on a staggered Cartesian grid with a finite-volume
solver MGLET [22]. Convective and diffusive fluxes are discretized using the second-order accurate central
differencing scheme. Explicit third-order accurate Runge–Kutta scheme is used to advance these discretized
equations in time. This scheme is conditionally stable in nature. Therefore, time step size �tf should be below
the limit specified by the Courant–Friedrichs–Lewy (CFL) criterion. The Poisson equation for the pressure is
solved to ensure mass conservation by employing Stone’s [23] strongly implicit procedure (SIP).

The dispersed (particle) phase is simulated in the Lagrangian framework using a newly developed particle
solver LaParT. It comprises of Np number of non-reacting, solid spherical particles. Each particle considered
here is significantly denser than the fluid, with a particle-to-fluid density ratio (ρp/ρf) ≈ O(1000). Further-
more, the diameter (dp) of each particle is smaller than the characteristic hydrodynamic length scale (lc) of the
carrier flow, and therefore, it is treated as a point-particle. If uf = uf(xp, t) is the instantaneous undisturbed
fluid velocity at particle position xp(t) = xp at time t , up = up(t) is the instantaneous particle velocity at
time t , then the Reynolds number associated with any particle based on the slip velocity (uf − up) is given
by Rep = ρfdp|uf − up|/μf . The motion of a particle through the non-uniform flow is governed by the

2 Note that the two-phase mixture is treated as a dilute suspension. Thus, there is no feedback (from the dispersed phase to the
carrier phase) force term appearing in Eq. (2).
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Maxey–Riley equation [24], which is given as

mp

[dup
dt

]
= Fd + Fb + Fpg + Fam + Fbh. (3)

Terms on the right-hand side of Eq. (3) are various forces acting on the particle. These forces (from left to right)
are the Stokes drag (Fd), buoyancy (Fb), pressure-gradient (Fpg), virtual-mass (Fam), and Basset history
(Fbh). If the particle-to-fluid density ratio (ρp/ρf) ≈ O(1000), then effects of Fpg, Fam, and Fbh on particle
motion could be ignored [25]. Some studies also include the lift force term in Eq. (3), which is not present
in the original equation. Mollicone et al. [26] simulated the particle-laden turbulent flow over a bump inside
a channel. They studied the effect of the lift force3 on the mean concentration of particles of different Stokes
numbers (based on the viscous scaling). They found that the mean concentration of particles, especially those
having intermediate Stokes numbers, was significantly modified due to the lift force. Marchioli et al. [48]
analyzed the role of gravity and lift forces4 on velocity statistics and deposition rates of particles in a vertical
channel. They suggested that gravity and lift forces could quantitatively modify the dispersed phase statistics.
They also mentioned that lift force significantly influenced the particle accumulation near the wall. On the
contrary, Arcen et al. [28] reported that the inclusion of lift force5 in the equation of particle motion had an
insignificant effect on the particle phase statistics in the absence of gravity. It appears from the literature that
a widely accepted unique lift force model is still being explored. The effects of lift and near-wall forces on
phenomena such as particle dispersion statistics and particle deposition are yet to be completely known and
could be dependent on the choice of the model. Nevertheless, particles considered in the present study have
small sizes, thereby, lift forces acting on such particles are negligible. Furthermore, the gravity force acting
on a particle is not considered to isolate the Stokes drag force effect. The simplified Maxey–Riley equation
describing a particle’s motion thus only contains the inertia and Stokes drag force. It can be written as

mp

[dup
dt

]
= 3πμfdpγ (uf − up). (4)

The drag force term appearing on the right-hand side of the Eq. (4) is given using a nonlinear Stokes drag
model. The empirical correction coefficient γ included in this term accounts for the large particle Reynolds
number (Rep) effects if the latter exceeds above unity. The coefficient γ is given as γ = (1 + 0.15Re0.687p )
[29]. Equation (4) can be re-arranged as

dup
dt

= γ

τp

[
uf − up

]
, (5)

where parameter τp is the particle relaxation time given by τp = ρpd2p/18μf . The relaxation time of an inertial
particle is the time taken by a particle to respond to the changes in the velocity field of the carrier flow. An
exhaustive discussion concerning the above Eqs. (3–5) can be found in the review articles on Lagrangian
methods for dispersed two-phase flows (see Minier and Peirano [30], Subramaniam [31], and Minier [32]).
Additionally, we solve the equation of particle position, which is given by

dxp
dt

= up. (6)

The Lagrangian solver LaParT, which is one-way coupled to the Eulerian solver MGLET, is used to solve
the above Eqs. (5) and (6). In order to solve Eq. (5), we need to know the fluid velocity uf (i.e., uf(xp(t), t))
at the instantaneous particle position xp(t). Three-dimensional reconstruction of the velocity field from the
neighboring grid nodes to the instantaneous particle position is required to know uf . A second-order accurate
trilinear scheme based on 23 points for the fluid velocity interpolation is used in this study. A second-order
accurate Adams–Bashforth scheme is used to numerically integrate Eq. (5). The numerical methodology
implemented in the LaParT to solve Eqs. (5) and (6) is discussed in “Appendix A” (also see Fig. 11)).

Before proceedingwith the current problem, the Eulerian–Lagrangian solver (MGLET-LaParT) is validated
first. The deposition efficiency of particles (η) of different Stokes numbers (St =0.1, 1, 5) over a square cylinder
in a channel flow is compared against the reference data available in the literature in Fig. 1. Our simulation
results are in agreement with the reference data. An extensive discussion on the verification and validation of
MGLET-LaParT is included in “Appendix B”.

3 The lift force model used in this study is dependent on the fluid vorticity.
4 The lift force model used here considers the effect of finite particle Reynolds number, Rep.
5 The lift force is accounted using the optimum lift force model, which includes the combined effect of shear and near-wall

forces.
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Fig. 1 Comparison of particle deposition from the simulation against reference data for different St values viz., St =0.1, 1, and 5

Fig. 2 Computational domain (not to scale)

3 Problem description

3.1 Carrier fluid

We consider the laminar flow of a viscous incompressible carrier fluid over a normal thin flat plate with
a streamwise thickness of 0.02h. The current plate configuration is similar to other wake studies [33–35].
Two-dimensional (2D) view of the computational domain (in an xz-plane) and the corresponding dimensions
are shown in Fig. 2. Here, the x-, y-, and z-axes are aligned in the streamwise, spanwise, and cross-stream
directions. From now on, all geometric dimensions are expressed in terms of the plate height h (i.e., reference
length scale), and velocities are mentioned in terms of average6 inlet fluid velocity Uc (i.e., characteristic
velocity scale). The computational domain size in the x , y, and z directions is Lx = 25h, Ly = 0.25h, and
Lz = 16h, respectively (where Lx and Lz dimensions are similar to other wake studies [33–35]). Note that
the numerical solver is three-dimensional, therefore, the domain is extended along the span (y) to a minimal
extent (0.25h). We have chosen two cases for the present study, based on the fluid velocity profile at the domain
inlet viz., uniform and linear shear inflow. It is worth highlighting that the average inlet fluid velocity Uc in
both cases is the same. However, the local fluid velocity imposed at the inlet in the shear flow case increases
linearly in the cross-stream (z-) direction with a fixed shear parameter K = 0.1, which is given as

K = h

Uc

(
∂uf
∂z

)
x=0

. (7)

6 The average implies that the steady inflow fluid velocity is averaged in the cross-stream (z) direction across the full domain
height.
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Table 1 The spatial and temporal discretization

Parameter Value

Nx × Ny × Nz 368 × 5 × 260
�xmin, �xmax 0.0066h, 0.12h
�y 0.05h
�zmin, �zmax 0.025h, 0.11h
�tf 0.001h/Uc

Nx , Ny , and Nz are the numbers of grid cells used for the simulation in the streamwise (x), spanwise (y), and cross-stream (z)
directions, respectively. �xmin and �xmax are the minimum and maximum grid-cell sizes in the x-direction, while �zmin and
�zmax are the corresponding sizes in the z-direction, respectively. �y is the fixed grid-cell size in the spanwise direction. �tf is
the time step size

Table 2 Validation of the flow field solution

Re Quantity Present Saha [36] Absolute difference (%)

50 Str 0.15 0.15 0
Cd 2.13 2.47 13.8

100 Str 0.19 0.18 5.6
Cd 2.62 2.60 0.8

The term ( ∂uf
∂z )

x=0
in the above Eq. (7) is the local fluid velocity gradient at the domain inlet. The average

flow Reynolds number (Reavg) based on h and Uc can be defined as Reavg = Uch/νf and held fixed in all
our studies at 60. The flow at such a moderately low Reynolds number is two-dimensional and demonstrates
laminar vortex shedding characterized with a von Kármán vortex street on the downstream side of the plate.
The details regarding the grid size and time step size are documented in Table 1. The current mesh in x direction
is finer than that of Singh and Narasimhamurthy [33], where they performed DNS of a turbulent wake behind
a normal flat plate. The chosen grid resolution is fine enough for running the present DNS simulations.

Theboundary conditions imposed for solving the carrier floware as follows:At the inflow,uf = Uc (uniform
flow) or uf = KUc (linear shear inflow); vf = wf = 0. Additionally, ∂p/∂x = 0. At the outlet, we impose
∂uf/∂x = ∂vf/∂x = ∂wf/∂x = 0, and pressure p is set to zero. For side walls, periodic boundary conditions
are imposed. Bottom and top walls are treated as free-slip walls by setting wf = 0; ∂uf/∂z = ∂vf/∂z = 0 and
∂p/∂z = 0. The plate surface is treated assuming a no-slip boundary condition.

For the validation of the setup and procedure used to obtain the carrier flow solution, two common quantities
of engineering interests viz. Strouhal number (Str) and drag coefficient (Cd) are compared against DNS results
of Saha [36]. Here, the former Str = f h/Uc is a dimensionless frequency of the vortex shedding from the
plate ( f = frequency of vortices shed from the plate), while the latter Cd = 2Fd/ρfU 2

c bh is a dimensionless
resistance of the plate to the carrier flow (Fd = time-averaged drag force; b=spanwise plate dimension). The
absolute difference (in %) between present simulation results and reference data is also shown in Table 2. Our
simulation results show a reasonable agreement with the reference data. The difference between the present
simulation results and reference data could be due to the differences in the solution methodologies, numerical
schemes, imposed boundary conditions, computation domain size, and mesh size.

3.2 Lagrangian particles

We start seeding tiny solid spherical particles in the domain after the periodic vortex shedding is established.
Three different classes of particles are considered, wherein each particle class is characterized by the unique
particle Stokes number (St). St is obtained by normalizing the particle relaxation time τp with the characteristic
flow time scale, h/Uc. Properties of a particle for each class are shown in Table 3. We remark that the diameter
of a particle dp of any given class is significantly smaller than the hydrodynamic length scale h in the problem
(i.e., dp << h), allowing us to treat it as a point-particle. The maximum particle Reynolds number (Rep,max)
for each St-class in the uniform inflow case is also documented in Table 3. The maximum among instantaneous
Rep values of all the particles in the computational domain is averaged during a vortex shedding period to
obtain Rep,max. The particle-fluid hydrodynamic interaction is described as a one-way momentum coupling.
Four particles are seeded at each time step for each class near the domain inlet at random cross-stream (z/h-)
positions. Particles are seeded uniformly for the uniform inflow case. However, uniform and non-uniform
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Table 3 Particle properties

Parameter Class-1 Class-2 Class-3

St 0.1 (low) 1 (medium) 10 (high)
ρp/ρf 2000 2000 2000
dp/h 3.9 × 10−3 1.23 × 10−2 3.87 × 10−2

Rep,max 0.1 0.51 2.4

particle seeding methods (i.e., two different sub-cases) are considered for the shear inflow case. In the non-
uniform seeding case, the number of seed particles increases linearly in z-direction with the rate same as the
local fluid velocity to ensure a constant mass flow rate. Initial particle velocity is set equal to the local fluid
velocity. If any particle approaches the plate body such that its center is located within a distance equal to its
radius from the body surface, then the particle is considered to be deposited on the body and removed from
the simulation. In other words, we assume a perfect absorption condition between a particle and the contacting
plate’s surface. Further, any particle crossing the computation domain boundary is removed from the simulation.
The selected particle seeding rate ensures that nearly 105 particles are present in the computational domain in
uniform and shear inflow cases. Since MGLET-LaParT is a 3D solver, we do not make any two-dimensional
simplification while solving particle phase equations (even if the distribution of particles is 2D).

4 Results and discussion

In this Section, results obtained from our simulation primarily focusing on the effects of the planar shear inflow
on the dispersed phase transport and corresponding statistical quantities are discussed. We first discuss the
deposition of particles on the plate. A comparison of instantaneous particle distribution observed in uniform
inflow with shear inflow case is then discussed. The latter part of our discussion highlights how shear inflow
influences particle dispersion statistics. In any comparative assessment between uniform and shear inflow
cases, uniform particle seeding method can be assumed for each case if not specified explicitly. Dispersed
phase results are reported after ensuring that the entire computation domain is completely occupied with
particles in any given case. After the injection of particles in the computation domain, simulations are run for
90 and 180 h/Uc time duration for the uniform and shear inflow cases, respectively.

4.1 Particle deposition

Particles released near the inlet are transported downstream via the carrier flow. Of such particles being
transported, a small fraction of particles that impact any face of the plate is considered deposited. In both
uniform and shear inflow cases, we observe that a large proportion of such particles belonging to any given
St-class deposits on the front face of the plate by the impaction mechanism. Particles rarely deposit on the side
and lee faces at Re=60. The deposition efficiency of particles (η) for each St-class is documented in Table 4.
Here, η is the fraction of particles (in %) deposited on the plate to the total number of particles approaching
the plate through the projected area of the plate at the inlet. From Table 4, it is clear that η increases with
particle Stokes number St in both uniform and shear inflow cases. Low St-class particles adapt to the local fluid
motion quickly. Thus, a small fraction of seeded particles approaching the plate whose cross-stream positions
are very close to the longitudinal centerline is deposited. The rest moves around the plate following the local
fluid motion. On the contrary, the motion of high St-class particles is hardly affected by the local flow owing
to their large inertia. A large fraction of such particles approaching the plate through its frontal projected area
is deposited on the plate. The deposition behavior of the medium St-class particles is in between low and high
St-classes. These qualitative observations for the uniform inflow case are consistent with previous studies on
particle deposition over a square cylinder obstruction placed in the channel flow (see Brandon and Aggarwal
[5], Afrouzi et al. [7], Bagheri and Sabzpooshani [9]). The presence of linear shear does not substantially affect
particle deposition. Nevertheless, a marginal decrease in particle deposition efficiency is observed for high
St-class (i.e., St = 10). The local flow field on the upstream side of the plate becomes a little asymmetric about
the longitudinal centerline in the shear inflow case. Thus, trajectories of particles approaching the plate from
its bottom side are slightly shifted away from the plate. In effect, more particles escape from the bottom side
than the top, resulting in a slight reduction in the particle deposition efficiency, especially for high St-class. We
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Table 4 Particle deposition efficiency (η)

St Uniform inflow Planar shear inflow: uniform particle seeding Planar shear inflow: non-uniform particle seeding

η RSD η RSD η RSD

0.1 0.3 10.7 0.3 8.3 0.3 6.4
1 59.0 0.3 58.4 0.5 58.9 0.2
10 96.8 0.2 96.1 0.3 95.3 0.2

η values documented here are averaged in time over 30 h/Uc duration after reaching a stationary state. Furthermore, the corre-
sponding relative standard deviations (RSD) of η values (expressed in %) are also documented in the next column to represent
the statistical noise. Here, RSD is the ratio of the standard deviation of η to its mean multiplied by 100

also provide supplementary videos to aid readers in visualizing the motion of particles of different St-classes
in the vicinity of the plate for both cases.

4.2 Instantaneous particle distribution

Here, we discuss the shear inflow effect on the time evolution of the instantaneous distribution of particles.
With this aim, the instantaneous distribution of representativemediumSt-class particles (i.e., St =1) at different
time instants during a vortex shedding period is shown in Fig. 3. The evolution of particle distribution in time
with uniform inflow case (shown in instantaneous snapshots a–e) is compared against the linear shear inflow
(f–j). Here, two successive snapshots are spaced apart by Ts/4 (uniform inflow case) or Tu/4 (shear inflow
case) in time, where Tu ≈ 6h/Uc and Ts ≈ 6.2h/Uc are times required to complete one shedding cycle in
uniform and shear inflow case, respectively. Contours of instantaneous spanwise fluid vorticity magnitude
(color background) are also superimposed on the corresponding particle distributions in each snapshot. We
specifically focus our attention on the von Kármán vortex street region formed downstream of the plate shown
in snapshots of Fig. 3. It is evident here that the collective motion of particles is highly organized in both
uniform and linear shear inflow cases, albeit particle distribution patterns are distinctly different. Particles are
localized at the peripheral regions of vortices in both cases. The expulsion of particles from such regions of
high vorticity magnitude leads to the formation of void regions, which are transported downstream alongside
their encapsulating particle clusters. The instantaneous flow field and particle distribution pattern observed
in the uniform inflow case qualitatively resemble those in previous studies performed on dilute particulate
suspension flows over a circular cylinder (Zhou et al. [12], Shi et al. [14]). Nonetheless, a comparison of the
present pattern with Zhou et al. [12] at the same Re=60 also suggests a few notable qualitative differences
(owing to the differences between the bluff-body geometry), which are worth highlighting. For instance, the
first leaf-shaped (particle-depleted) void region forms relatively closer to the bluff-body in the present case than
observed in Zhou et al. [12] since vortices are detached nearer to the body than the latter. As such void regions
are transported further downstream to get a balloon-shaped appearance, adjacent void regions (having opposite
orientations) are separated by a very thin dense cluster of particles in the present case (uniform inflow). On
the contrary, adjacent void regions observed in Zhou et al. [12] are sufficiently spaced apart by a thick layer
of particles. However, patterns observed in the shear inflow case have not been noticed in earlier studies and
appear quite peculiar. The effect of shear in the inflow on void regions and peripheral particle clustering pattern
is less appreciable in a region close to the plate on its downstream (5 ≤ x/h ≤ 10). This is understandable
since the carrier flow topology in this region is not drastically modified due to the shear effect. As such
particle-depleted void regions and peripheral particle clusters are transported further away from the plate in
the downstream direction (x/h ≥ 10), they undergo significant increases in their areas in both cases. In the
uniform inflow case, we observe that positions of such void regions are streamwise staggered, and sizes of void
regions located on either sides of longitudinal centerline but close to each other are not significantly different.
In the shear inflow case, on the contrary, void regions located on the high-velocity side are much larger in sizes
compared to nearby voids on the low-velocity side. Furthermore, the evolution of shapes of void regions during
the transport in the shear inflow case is quite distinct from the uniform inflow. The progressive deformation
and rotation of void regions during their transport in the shear inflow case are more pronounced than in the
uniform inflow due to shear effects. In the uniform inflow case, void regions and peripheral particle clusters
evolve from leaf-like shapes to balloon-like shapes while undergoing a slight rotation about the spanwise (y)
axis. On the contrary, such regions are compressed in a cross-stream direction and stretched streamwise while
subjected to a significant rotation to become oval in shapes in the shear inflow case. Such massive changes in
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Fig. 3 Instantaneous snapshots of distribution of particles with Stokes number unity at five different time instants in a vortex
shedding cycle: a–e uniform inflow, f–j planar shear inflow. Here Tu and Ts are vortex shedding periods for uniform and planar
shear inflow cases, respectively. Particle distributions are superimposed over the spanwise vorticity h
y/Uc

the evolution of void regions and clusters of particles during their transport are dictated by similar changes in
von Kármán vortices at corresponding regions caused by the shear effect. The massive stretching and rotation
of clusters of particles formed at boundaries of vortices increase their concentration at regions located far away
from the plate on its downstream side near the longitudinal centerline. Another remarkable observation from
Fig. 3 is the displacement of void regions in the cross-stream direction toward the low-velocity stream, which
suggests us that the dispersion of particles in the cross-stream direction is modified due to shear effects. The
evolution of particle distribution in time in the non-uniform particle seeding sub-case with the shear inflow is
quite similar to the uniform particle seeding and thus not shown here.

As seen in Fig. 3, medium St-class particles are non-uniformly distributed in the carrier flow, especially
in von Kármán vortex street. To understand how shear affects the distribution of particles of different inertia,
we explore the particle Stokes number (St) effect on their instantaneous distribution. For such a purpose,
Voronoï analysis has emerged as a powerful tool to characterize and quantify the aforementioned non-uniform
distribution of inertial particles [13,14,37–39]. Unlike the conventional tools to analyze the clustering of
particles, we do not have to select an arbitrary length scale to construct a Voronoï diagram. This powerful
feature of a Voronoï diagram makes it a more robust and flexible tool over the other conventional options (see
Monchaux et al. [37] for a detailed discussion). We construct such Voronoï diagrams for analyzing the 2D
distributions of particles (in the xz-plane) in the domain for different St-classes. For each diagram, the entire
area of the computational domain projected on the xz-plane (i.e., Lx × Lz) is partitioned into many Voronoï
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Fig. 4 Voronoï diagrams for instantaneous particles distribution: a–c uniform inflow, d–f planar shear inflow. Diagrams are shown
for the three cases of particles Stokes numbers, viz., a, d St =0.1, b, e St =1, and c, f St =10

cells (polygons). Each Voronoï cell corresponds to a unique particle such that its area is inversely proportional
to the local particle concentration. In Fig. 4, Voronoï diagrams to characterize the distribution of particles of
different St values for both uniform and planar shear inflow cases are shown. The magnified views of the
interface between dense and less dense particle concentrations are also shown in panels above each of the
Subfigures (a-f). Mutually connected Voronoï cells having visibly large areas locally forming groups on either
sides of the longitudinal centerline—suggesting particle-depleted void regions—could be easily identified for
each particle class. The non-uniformity in distribution of areas of Voronoï cells for particles of St =1, and
10 is evident indicating significant in-homogeneity in local particle distribution. The stretching and rotation
of particle-depleted void regions and peripheral particle clusters in shear inflow case are substantially large
compared with uniform inflow for all particle classes. Thus, local particle concentration away from the plate
on its downstream (x/h ≥ 10) is influenced due to shear effects in all the cases. The presence of shear in the
inflow impacts differently on each St-class of particles.

• During the transport of low St-class particles, the streamwise positions of particle-depleted void regions
formed on either side of the wake centerline are staggered in the uniform inflow case. On the contrary,
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Fig. 5 Voronoï diagrams for instantaneous particles distribution for the planar shear inflowwith the non-uniform particle seeding.
Diagrams are shown for the three cases of particles Stokes numbers, viz., a St =0.1, b St =1, and c St =10

such a staggered arrangement is disturbed in the shear inflow case due to shear effects. Furthermore, shear
in the inflow also increases the spacing between void regions formed on either side of the wake centerline.

• The impact of shear on the distribution and local concentration of particles is maximum for the medium
St-class among all the particle classes. The effect of shear on transport of medium St-class particles causes
nearby void regions to remain in proximity on their upstream sides while opposite ends to spread away
from each other in the cross-stream direction.

• The transport of high St-class particles is characterized by a behavior similar to the medium St-class, but
with the exception that void regions from either side of the longitudinal symmetry axis merge into one
another.

Unlike the uniform flow case, the transport of particle-depleted void regions with the shear inflow is not
symmetric about the longitudinal symmetry axis for all the three St-classes. Such void regions while being
transported downstream progressively shift laterally toward the low-velocity side of the flow. The shift is
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large for particle of Stokes numbers (St) 1 and 10. Voronoï diagrams are also shown separately in Fig. 5 for
different St-classes of particles for the planar shear inflow and non-uniform particle seeding. The alikeness of
these diagrams with ones shown for uniform particle seeding (Fig. 4d–f) suggests that the method of particle
seeding does not affect the qualitative distribution of particles of any given St-class. However, Voronoï cells’
sizes increase in z-direction in the uniform particle seeding sub-case; they do not vary in the corresponding
direction in the non-uniform particle seeding sub-case.

4.3 Particle dispersion statistics

The effect of shear inflowondispersion statistics of three different St-classes of particles is explored here.All the
statistical quantities vary along x- and z-directions. They are obtained by time-averaging instantaneous samples.
Statistical samples are recorded for nearly eight vortex shedding cycles, where two consecutive samples are
separated by 0.01h/Uc in time. The frontal area of the computational domain (Lx × Lz) is partitioned into a
2D mesh comprising many rectangular elements to calculate the particle dispersion statistics. The statistical
mesh uses 125 streamwise divisions of uniform thicknesses (in domain length) and 200 cross-stream divisions
of equal heights (in domain height). It is ensured that reported statistics are not sensitive to chosen numbers of
slabs and blocks. We compare cross-stream (z-) profiles of particle dispersion statistics obtained in the uniform
inflow against the linear shear inflow (with the uniform particle seeding) at five chosen streamwise positions:
x/h =4.5 (near the plate on its upstream side); x/h = 5.5, and 7.1 (near the plate on its lee side); x/h =14.5,
and 22.5 (away from the plate on its downstream side). Note that the standard deviations (σ ) are represented
using error bars superimposed over the cross-stream profile of a statistical quantity. The length of each error bar
is 2σ . The variation of mean particle concentration (C/Cavg) in the z-direction is shown at various streamwise
positions (x/h) in Fig. 6. For obtaining mean normalized particle concentration (C/Cavg), first, the average
number of particles within a mesh element is divided by the area of the element to obtain local average particle
concentrationC .C is then further divided by average particle concentration in all the elements,Cavg to estimate
C/Cavg. It is evident from Fig. 6 that the shear inflow in conjunction with uniform random seeding of particles
causes the mean particle concentration to increase from the high-speed to low-speed stream region. On the
contrary, there is no suchglobalmeanparticle concentration gradient in the cross-streamdirection in the uniform
inflow case. The influence of shear on mean particle concentration is not significant at streamwise positions
near the plate. However, significant changes are observed in the mean particle concentrations for all St-classes
at farther downstream positions from the plate (i.e., x/h =14.5, and 22.5). To understand such modifications, it
is convenient to focus on one of such streamwise positions for the ease of comparative assessment. To this aim,
we fix our attention at the farthest downstream position from the plate (x/h =22.5). For low St-class particles,
it is noticed that the lateral extent of high particle concentration region is increased in the shear inflow case
near the longitudinal centerline. Nonetheless, changes in concentration of such low inertia particles are less
substantial. However, for medium St-class particles, we observe that two local peaks symmetrically positioned
on either side of the longitudinal centerline in the uniform inflow case have diminished in the shear inflow.
Both diminished peaks in the latter case show a lateral shift toward the slow-stream side. This is due to the
lateral displacement of von Kármán vortices in the shear inflow case, which causes the adjacent dense particle
clusters to shift toward the slow-stream side. Furthermore, the diminished peak observed in the shear inflow
case in the low-speed stream region is larger than in the high-speed region. This may appear a bit counter-
intuitive at first sight since the strengths and sizes of counter-clockwise vortices in the low-speed region are
lower than clockwise vortices in the high-speed region. However, it becomes comprehensible after noting
that the availability of a large number of particles on the low-speed side facilitates augmenting the local peak
concentration. A remarkable effect of shear for medium St-class particles is the formation of the high particle
concentration region close to the wake centerline. This effect is due to the streamwise stretching of vonKármán
vortices and peripheral thin dense clusters of medium St-class particles in the shear inflow case discussed in
Sect. 4.2. We do not observe significant quantitative changes in particle concentration near the wake centerline
in case of high St-class particles since their distribution is less affected (owing to their sluggish response)
by such changes in vortical structures. However, the lateral shift in the positions of peaks in concentration
profile toward low-speed stream is observed similar to the medium St-class, where the peak on the low-speed
side is larger than at high-speed side due to the reasons discussed recently. Overall, the influence of shear
to bring changes in mean particle concentration is maximum for medium St-class (i.e., St = 1) particles. In
Fig. 6, we have also included C/Cavg profiles for the non-uniform particle seeding sub-case (see Fig. 6c).
The mean particle concentration gradient observed in the domain for the uniform particle seeding sub-case
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Fig. 6 Cross-stream profiles of mean normalized particle concentration (C/Cavg): a uniform inflow, b planar shear inflow with
uniform particle seeding, c planar shear inflowwith non-uniform particle seeding. Profiles are shown for particles of three different
Stokes numbers (St), viz., 0.1, 1, and 10 at five different x/h positions

(see Fig. 6b) is absent for the non-uniform particle seeding (see Fig. 6c). Such profiles in both sub-cases
are qualitatively similar for any given St-class of particles, irrespective of the nature of the particle seeding.
However, quantitative differences are observed in profiles between the two sub-cases at streamwise positions
far downstream from the plate (x/h =14.5, and 22.5), especially for the medium and high St-class particles.
A remarkable observation is that two local peaks of unequal magnitudes in the C/Cavg profile positioned on
either side of the wake centerline in the uniform seeding sub-case become comparable in the non-uniform
seeding sub-case.

In Fig. 7, cross-stream profiles of mean Voronoï cell area normalized using its average value (i.e., A+) in
the domain are shown. A Voronoï cell area (A+) represents the reciprocal of the local particle concentration,
and thus, the shear effect on the concentration of particles can be visualized in a different form here with
similar observations discussed recently.

The effect of shear on the mean particle velocity (normalized with average inflow velocity,Uc) components
is shown in Fig. 8 for all St-classes. Cross-stream profiles of streamwise (Up/Uc) and cross-stream (Wp/Uc)
components of the normalized mean particle velocity (shown in Fig. 8a, c, respectively) in the uniform inflow
case are compared with corresponding profiles in the planar shear inflow (Fig. 8b, d). We first look at profiles
of velocity components for the uniform inflow case (Fig. 8a, c). Here, streamwise velocities (Up) of low and
medium St-classes of particles approaching the plate (i.e., x/h = 4.5) are decreased, while cross-stream
velocities (Wp) are increased. When some of such particles, which are not deposited on the plate, travel further
in the streamwise direction from x/h =5.5 to 7.1 (in the region where vortices remain attached), appreciable
changes in their velocity components are observed. Here, the behavior of small St-class particles in the near-
wake region is worth highlighting. When low St-class particles traveling closely around the plate reach the
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Fig. 7 Cross-stream profiles of mean normalized Voronoï cell area (A+): a uniform inflow, b planar shear inflow with uniform
particle seeding, c planar shear inflowwith non-uniformparticle seeding.Here, normalizedmeanVoronoï cell area A+ is expressed
as A+ = ANp/(Lx Lz). Profiles are shown for particles of three different St, viz., 0.1, 1, and 10 at five different x/h positions

peripheral region of a growing vortex attached to the plate, they are brought inward into the wake region of
the plate. Such particles get trapped between two oppositely rotating vortices attached to the plate. Some of
the trapped particles approach the plate due to their negative streamwise velocity (i.e., x/h =5.5). However,
particles traveling around the attached vortex that has grown are not trapped since the grown vortex is pushed
downstreamby the opposite vortex. Such particles are ejected in the cross-streamdirection, but their streamwise
velocities are decreased (i.e., x/h =7.1). Medium St-class particles also show similar behavior in the wake
region at x/h =7.1. However, the motion of particles from the high St-class appears to be ballistic (St =10)
without significant changes in their velocities. Furthermore, such particles have an insignificant cross-stream
velocity at any streamwise position. It is worth mentioning that high St-class particles close to the longitudinal
centerline travel faster than low and medium St-class particles at streamwise positions far away from the plate.
This behavior is due to the fact that the peripheral regions of von Kármán vortices located away from the
wake centerline travel much faster than near ones. Since the motion of low and medium St-class particles is
strongly coupled to von Kármán vortices, their streamwise momentum is retarded as they approach near the
wake centerline during their cross-stream movement. On the contrary, the streamwise momentum of sluggish
high St-class particles is hardly decreased. While taking a comparative look, we observe that the streamwise
component of the mean particle velocity,Up, increases in the cross-stream (z-) direction due to the shear in the
inflow (Fig. 8a, b). It is worth noting that the shear has a modest effect on the cross-stream particle velocity,
Wp (Fig. 8c, d). The shear impacts the streamwise particle velocity away from the plate on its downstream side
(i.e., x/h =14.5, and 22.5). The position of the local minima in streamwise velocity observed at the centerline
in the uniform inflow case is shifted in the cross-stream direction further toward the low-speed stream in the
shear inflow. The shift is again due to the cross-stream displacement of von Kármán vortices and adjacent
particle clusters due to shear effects.

The drag force acting on a particle is directly dependent on the particle slip velocity, and thus, we explore
the statistical behavior of particle slip velocity and discuss how it is influenced due to the shear in the inflow.We
obtain suchmean particle slip velocity (�U) by averaging the instantaneous particle slip velocity�u = uf−up
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Fig. 8 Mean particle velocity cross-stream profiles: a, c uniform inflow, b, d planar shear inflow. a, b Streamwise component
(Up). c, d Cross-stream component (Wp). Profiles are shown for three different particle Stokes numbers (St) 0.1, 1, and 10

in time, where uf and up are instantaneous local fluid and particle velocities, respectively. Thus, negative slip
velocity suggests that particles travel faster than the local fluid and vice-versa. The effect of shear in the inflow
on mean particle slip velocity cross-stream profiles is shown for all three particle classes in Fig. 9. We first
focus on the uniform inflow case profiles (Fig. 9a, c). In general, it is observed that low St-class particles
(St =0.1) mimic the local fluid motion, and thus, their slip velocities (�U and �W ) are insignificant. On
the contrary, magnitudes of slip velocities (�U and �W ) of medium and high St-class particles increase
significantly with an increase in St from 1 to 10. Depending on their streamwise positions, such particles travel
faster or slower than the local fluid near the plate. For instance, such particles approaching the plate from its
upstream side (x/h =4.5) travel faster than the local fluid in the streamwise direction (�U < 0) but lag behind
the latter in the cross-stream direction (�W > 0). The motion of such particles further downstream but close
to the plate (x/h =5.5, and 7.1) is characterized with drastic changes in both components of their slip velocity.
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Fig. 9 Cross-stream profiles of mean particle slip velocity: a, c uniform inflow, b, d planar shear inflow. a, b Streamwise
component (�U ). c, d Cross-stream component (�W ). Profiles are shown for three different particle Stokes number (St) cases,
viz., 0.1, 1, and 10

As they travel further downstream in the vortex street (i.e., x/h =14.5, and 22.5), their mean streamwise
slip velocities change but no significant changes in the cross-stream component are observed. Especially, the
streamwise motion of medium and high St-class particles traveling near the longitudinal centerline is faster
than the local fluid. While taking a comparative look to understand the overall effect of shear, we observe that
profiles of the mean particle slip velocities at streamwise positions near the plate (x/h =4.5, 5.5, and 7.1) are
not impacted drastically due to shear. However, at streamwise positions away from the plate (x/h =14.5, and
22.5), shear in the inflow affects the mean streamwise particle slip velocity (�U ), where regions with�U < 0
show a considerable shift in their positions along the cross-stream direction from the longitudinal centerline
(Fig. 9a) toward the low-stream side (Fig. 9b). This is understandable since similar lateral shifts are observed
in vortices and particle clusters at corresponding regions due to the shear effect. However, we do not observe
any substantial change in the corresponding cross-stream component (�W ).
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Fig. 10 Cross-stream profiles of normalized mean particle acceleration: a, c uniform inflow, b, d planar shear inflow. a, b
Streamwise component (Ap,x h/U2

c ). c, d Cross-stream component (Ap,zh/U2
c ). Profiles are shown for three different particle

Stokes numbers (St), viz., 0.1, 1, and 10

To gain further knowledge about the dynamics of particle motion, we also explore the statistics of particle
acceleration at different critical streamwise positions in Fig. 10. Here, comparisons of mean streamwise Ap,x ,
and cross-stream Ap,z particle accelerations profiles between uniform (Fig. 10a, c), and shear inflow (Fig. 10b,
d) cases are shown. In both cases, particle motion is characterized by a substantial acceleration and deceleration
at streamwise positions near the plate. It is observed that particles first accelerate while traveling over and
below the plate (x/h =4.5) but decelerate after entering the wake region (x/h =7.1). When such particles
reach streamwise positions far away from the plate, they do not have significant acceleration (x/h =14.5 and
22.5). A comparison of profiles between uniform and shear inflow cases suggests no substantial effect of the
shear in the inflow on the statistics of streamwise and cross-stream particle acceleration.
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We remark that the particle velocity, slip velocity, and acceleration statistics for the uniform and non-
uniform seeding sub-cases are the same. Therefore, the profiles for the planar shear inflow with non-uniform
particle seeding are not included in the corresponding Figures.

5 Concluding remarks

In this paper, we have studied the effect of shear in the inflow on the dispersion of tiny inertial particles
and their deposition over a normal flat plate. A hybrid Eulerian–Lagrangian framework is adopted to solve
the laminar flow of dilute particulate suspension over the plate. All simulations are performed using a newly
developed solver MGLET-LaParT, and numerical methodology implemented in the solver is discussed in
detail. The effect of shear in the inflow is assessed by directly comparing uniform inflow and planar shear
inflow cases. Particles are seeded uniformly across the computation domain inlet for the former. In contrast,
uniform and non-uniform particle seeding methods have been used separately in two different sub-cases for
the latter. The shear parameter K for the latter case is limited to 0.1. The flow Reynolds number Reavg based
on the average inflow velocity is fixed at 60 in both cases. At such a low Reynolds number, the carrier flow
demonstrates a periodic von Kármán vortex street in the wake from the plate. Particles of three different classes
are considered for each set of the above simulations, where each distinct particle class is represented by its
unique Stokes number (St), viz., 0.1 (low St-class), 1 (medium St-class), and 10 (high St-class). We observe
that the evolution of shapes and sizes of von Kármán vortices shed from the plate is affected due to the shear
effects. Such changes in the flow topology result in a significant deformation and rotation of particle-depleted
void regions and adjacent particle clusters at corresponding regions. Some key findings from the present study
can be summarized as follows:

(i) The presence of linear shear in the approach flow causes a marginal reduction in deposition efficiency of
high St-class particles (St =10).

(ii) For the shear inflow with the uniform particle seeding, an intuitive effect of shear that directly affects the
dispersed phase transport is that the population of slow-moving particles is more significant than of faster
particles. Overall, there is a mean particle concentration gradient in the domain whose direction is opposite
to the inflow velocity gradient. However, such a mean particle concentration gradient does not exist for the
non-uniform particle seeding.

(iii) Wefind that shear in the inflow, albeit characterizedwith amoderate shear parameter (K =0.1), significantly
changes distribution and dispersion of particles, especially at streamwise positions away from the plate.
Such changes are triggered by streamwise stretching and rotation of particle-depleted void regions and
adjacent particle clusters during their downstream transport away from the plate. Furthermore, such void
regions and particle clusters shift toward low-stream regions due to shear effects. The extent of such lateral
shift increases with St from 0.1 to 10. The qualitative distribution of particles in the shear inflow case is
not influenced by the choice of the particle seeding method.

(iv) The impact of shear on the local mean concentration of particles is dependent on their inertia (St). A
dramatic impact is observed on medium St-class particles (i.e., St =1). This is evident from the shift in
peak mean particle concentration regions located away from the longitudinal centerline (on either side) to
the centerline region.

(v) The effect of shear on particle velocity statistics (e.g., Up and Wp; �U and �W ) is not noticeable at
streamwise positions near the plate. However, quantitative changes in the profiles are evident at streamwise
positions far away from the plate. A remarkable observation at any such position is that the local minima
observed Up or �U profiles shift appreciably toward the low-speed stream from the centerline. However,
we do not find any substantial effect of shear on the particle acceleration statistics.

(vi) The choice of particle seeding method (i.e., uniform/non-uniform) in the shear inflow case leads to quanti-
tative differences in the concentration profiles of the medium and high St-class particles. Such quantitative
differences in the velocity and acceleration statistics are not observed.

The above findings suggest that even a modest shear in the approaching flow could substantially impact
the dispersed phase transport. The current outcome may find application in particle segregation and collection.

The methodology used in this study can be extended to study turbulent flows of particulate suspension.
If a turbulence model is used (instead of DNS) to solve the carrier flow, then additional models for particle
dispersion are needed. The feedback from the particle phase to the fluid (i.e., two-way coupling) will be taken
into account in future to solve flow with a large volume fraction and mass loading of the dispersed phase.
The particle deposition model used in the present study can be extended to a deposition-collision model that
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would account for the probability of a particle rebound in addition to the deposition. Such a particle deposition-
collision model will have to consider the additional factors, such as the contact force (e.g., van der Wals force),
friction force, and material elastic behavior properties (see Bouris et al. [40],Tong et al. [41]). The present
methodology can be extended to study particles relatively lighter than the ones considered in the present study
(i.e., particle-to-fluid density ratio (ρp/ρf) ≤ O(10)) by including the additional forces, such as added-mass
and Basset history in the equation of particle motion.
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Appendix A: LaParT details

See Fig. 11.

Fig. 11 Algorithm for the proposed Eulerian–Lagrangian solver MGLET-LaParT
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Fig. 12 Stencil for trilinear interpolation

1. Identifying the nearest stencil (neighbor search)

The first step in the algorithm is to identify the appropriate stencil (containing the velocity component data
and their corresponding positions) encapsulating a particle for each velocity component. We again emphasize
that the positions used to compute and store the velocity component field (i.e., uf , vf , and wf ) are staggered in
relation to those for the pressure field (p) in the respective directions (i.e., x , y, and z). The sequential search
method is used to identify the host stencil.

2. Three-dimensional (3D) interpolation

We obtain the fluid velocity (uf(xp, t)) at the particle position (xp) by interpolating the velocity field data
available at nodes of the identified stencil. The choice of the interpolation scheme is important since it affects
the accuracy of numerically computed particle variables (e.g., particle trajectory) and the computation cost.
We expect that the interpolation scheme should be at least second-order accurate.7 The scheme should be
easy to implement and affordable in terms of computational cost. Thus, we have implemented the trilinear
interpolation based on 23 points [42] in the LaParT.

The interpolated value gT L(xp, yp, zp) is constructed from scalar values (i.e., uf , vf , and wf ) located at 23

grid nodes at any interior position (xp, yp, zp) within a rectangular 3D stencil. This stencil is formed by a
bounding pair of constant x-, y-, and z-planes in each direction as shown in Fig. 12. The interpolated value
gT L(xp, yp, zp) by making use of the trilinear scheme is given as

gT L(xp, yp, zp) =
8∑

i=1

Wi fi (8)

where the index of the corner point i varies from 1 to 8, fi is the scalar value at the corner point, and Wi is its
corresponding weight used in the interpolation (shown in Fig. 12). This scheme is computationally inexpensive
and second-order accurate.

Here, we bring to the reader’s attention that the velocity component is interpolated independently of the
other components for any interpolation scheme. In other words, the incompressibility of the velocity field is
not enforced in the interpolation scheme. This non-conservative nature of the interpolation can induce the
non-physical clustering of particles due to numerical artifacts (see [16,43]). Nevertheless, we use a fine grid
resolution to minimize such effects.

3. Numerical integration

An explicit second-order Adams–Bashforth scheme is used to integrate Eq. (5) numerically. Particle velocity
at the new, i.e., (n + 1)th time step by making use of Adams–Bashforth scheme is given using Eq. (9). Here,
the solution at the first time step is computed using the first-order Euler’s scheme,

un+1
p = unp + γ�tp

τp

[
3

2
(unf − unp) − 1

2
(un−1

f − un−1
p )

]
. (9)

7 This requirement is due to the fact that the present Eulerian solverMGLET uses spatially second-order accurate discretization
schemes to compute fluxes.
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The particle position is updated according to Eq. (10) as

xn+1
p = xnp + �tp

[
3

2
un+1
p − 1

2
unp

]
. (10)

The scheme is conditionally stable. We can not exactly estimate the �tp value to ensure that the numerical
integration of Eqs. (5) and (6) is stable since these equations contain a term uf(xp, t), which is not known
apriori (see [44]). Jacobs et al. [45] mention that an approximate value of�tp (for stable numerical integration)
can be given by

�tp < σpτp (11)

where the constant σp is equal to unity. Using Eq. (11), the value of �tp can be selected according to the τp
value. However, as noted by Kontomaris et al. [46],�tf required to satisfy the CFL criterion to solve the carrier
phase equations is lower than �tp required for the stable computation of the dispersed phase equations. We
use the same time step size value for both the carrier and dispersed phase (i.e., �tf = �tp) in turbulent flow
simulations. This conservative approach leads to a �tp value which is at least one order of magnitude smaller
than the particle relaxation time τp and, thus, sufficiently small for the stable computation of the dispersed
phase equations.

Regarding the boundary condition, if any particle approaches the body or a domain boundary, then an
appropriate boundary condition is applied. For instance, if any particle crosses the boundary of the computation
domain, then it would not be tracked further for the computation.

Appendix B: Verification and validation

1. Verification of LaParT

The verification of the numerical accuracy of schemes implemented in the Lagrangian solver using canonical
numerical tests is discussed in test cases 1.1 and 1.2. The Lagrangian solver is isolated from the Eulerian solver,
and numerical tests are performed on the former. The carrier phase velocity field (described using analytical
expressions) is directly assigned to the Eulerian grid nodes without solving the Navier–Stokes equations. The
motion of a particle in such tests can be determined analytically. Therefore, a direct comparison between
numerical and analytical solutions can be made to quantify the numerical errors associated with any scheme.
In the verification test 1.3, the carrier and dispersed phases are solved using MGLET-LaParT.

1.1. Particle in a steady sinusoidal flow

We track an inertia-free particle in a steady 2D sinusoidal flow (in xz-plane). This test problem is the same
as that used by Marchioli et al. [27] to verify the order of accuracy of the interpolation based on the Taylor-
series expansion. Prior to them, Kontomaris et al. [46] also had used the present problem for testing various
interpolation schemes. The purpose of this test is to quantify the errors associated with an interpolation scheme
and confirm its order of accuracy. The sinusoidal velocity field in this problem is described by uf = A1 and
wf = A2sin(kx x) (in m/s) where A1 = A2 = 0.025 are constants (in m/s) and kx = π is the wavenumber. The
particle is located at xp(0) = −0.8 and zp(0) = 0.75 (both inm) in the beginning. The particlemotion is tracked
in the time interval of 0−100 s. An equidistant grid is used. The time step size used for the computation is
�tp = 0.01s to ensure that the numerical integration is stable and time stepping errors are small. A comparison
of particle trajectory8 during the period of 0− 100 s for the interpolation scheme shows a good agreement (in
Fig. 13a) with that determined analytically using expressions given inMarchioli et al. [27]. Letw f n,i andw f a,i
be the numerically computed and analytically determined value of the undisturbed fluid velocity at particle
position at i th time step, then the root-mean-square (rms) error in the interpolation of the fluid velocity9 εrms,w f
over N number of time steps is given as

εrms,w f =
√∑N

i=1(|w f n,i − w f a,i |)2
N

. (12)

8 The trajectory of an inertia-free particle is computed by solving Eq. (6) where up(t) = uf (xp, t).
9 Only the wf component of the fluid velocity is considered for the error estimation because the other components are spatially

uniform.
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(a) (b)

Fig. 13 A single inertia-free particle in a steady, spatially varying sinusoidal flow. a Comparison of particle paths computed from
the simulation against those using analytical expressions, b verification of the order of the fluid velocity interpolation scheme

(a) (b)

Fig. 14 A single inertial particle in a uniform, transient flow. a Comparison of particle trajectory computed from the simulation
against those using analytical solution, b global error (εrms) in particle velocity (up) and displacement (xp) versus time step size
(�tp)

Furthermore, we define a grid resolution parameter R to describe the characteristic length scale of the flow λ in
comparison to the grid cell thickness �x as R = λ/�x , where λ = 2π/kx . We consider four different grids:
coarse R = 8, coarse-medium R = 16, medium R = 32, and fine R = 64. As shown in Fig. 13b, the rms
error in the fluid velocity interpolation εrms,w f decreases as the grid resolution improves. We confirm that the
trilinear interpolation scheme implemented is second-order accurate (i.e., εrms,w f decreases at the rate R−2).

1.2. Particle in a spatially uniform but temporally varying flow

This test comprises tracking the motion of an inertial particle in a spatially uniform but temporally varying
velocity field in a sinusoidal fashion, as done in Jacobs et al. [45]. The flow velocity field is given by uf =
sin(kt t) where kt = 16π . The particle is displaced only in the x-direction. We set the particle initial position
xp(0) and velocity up(0) to zero. The particle is tracked during the time window between 0 and 1s. Five
different values of the particle Stokes number St =0.1, 0.5, 1, 5, and 10 are considered. Here, the particle
relaxation time τp is normalized using the characteristic flow time scale τf to obtain St, where τf =1 s in
this problem. The numerically computed instantaneous particle positions xp(t) match those computed using
analytical expressions, as shown in Fig. 14a. (We refer to Jacobs et al. [45] for the analytical expressions of
xp(t).) This match explains that the effect of τp on the particle trajectory is captured accurately in the numerical
integration. We compute the rms error (εrms) in the calculation of the particle velocity (up) and position (xp) for
different time step sizes�tp = 10−2, 10−3, 10−4, and 10−5 for a particle with St = 1, as shown in Fig. 14b. It is
noticed that εrms decreases with a decrease in�tp, implying the implemented numerical scheme is convergent.
The numerical solutions of particle position and momentum are first- and second-order accurate, respectively.
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Fig. 15 Distribution of particles with very low inertia (i.e., St =0.005) in the unsteady laminar flow over a normal flat plate

1.3 Low inertia particles in the unsteady non-uniform flow

The hydrodynamic response of very low inertia particles to the non-uniform flow is expected to be similar to
fluid particles (tracers). Therefore, such tracer-like particles should be distributed uniformly in the unsteady
non-uniform flow. The present test verifies that the spatial distribution of tracer-like particles obtained from the
numerical solution is consistent with the expected physical behavior. The confirmation would assure that the
schemes implemented in LaParT respect the incompressibility constraint. To this end, the unsteady laminar
wake behind a normal flat plate is considered a representative non-uniform test flow case. The Reynolds
number for the flow based on the uniform inflow velocity (Uc) and plate height (h) is 60, where the unsteady
wake behind the plate is characterized with a von Kármán vortex street. Particles with St =0.005 (representing
significantly low particle inertia) are injected homogeneously near the inlet. A snapshot of the instantaneous
distribution of particles in the computation domain taken at t = 40 h/Uc (from the beginning of the particle
injection) is shown in Fig. 15.We confirm that the instantaneous spatial distribution of such tracer-like particles
is homogeneous throughout the domain, which agrees with the expected physical behavior.

2. Validation of MGLET-LaParT

We discuss the validation of MGLET-LaParT using the benchmark particle-laden turbulent flow case of Mar-
chioli et al. [47], where the results of five research groups using different numerical procedures have been
documented. We consider the results of TUD and UUD groups for the comparison purpose. The flow con-
figuration and test setup used in our simulation are the same as those of the benchmark validation test and
summed up briefly again for the reader’s convenience. The validation test investigates the pressure-driven tur-
bulent channel flow of a dilute suspension that comprises many monodispersed, small-sized inertial particles.
The friction Reynolds number of the flow, based on the half-channel height h, and friction velocity u∗, is
Re∗ = ρfu∗h/μf =150. Here, the friction velocity is obtained using ρf and the mean wall shear stress τw as
u∗ = √

τw/ρf . The channel is positioned such that the Cartesian co-ordinate10 axes x , y, and z are aligned
in the streamwise, spanwise, and wall-normal directions, respectively. Hereafter, simulation parameters given
in the wall-units will be denoted using symbols accompanied by a superscript +. Such simulation parameters
are scaled using the viscous length lv = νf/u∗, time τv = νf/u2∗, and velocity scales u∗. Periodic boundary
conditions are imposed in the homogeneous x- and y-directions. The smooth flat walls positioned at z = 0 and
z = 2h in the inhomogeneous z-direction are treated by imposing the no-slip and non-penetration condition
on the carrier fluid. The channel dimensions are Lx = 12.56h (L+

x = 1885), Ly = 6.28h (L+
y = 942.5),

and Lz = 2h (L+
z = 300) in the x−, y−, and z− directions, respectively. The constant grid-cell dimensions

in the x− and y− directions are �x+ = 9.82 and �y+ = 4.91, respectively. The grid is stretched in the
z− direction, where �z+min = 0.36, and �z+max = 4.06 are, respectively, the minimum (near the wall) and
maximum grid-cell dimensions (channel center).

The dispersed phase comprises small-sized, denser-than-fluid, spherical particles. We consider three differ-
ent cases, each with a unique particle Stokes number Stv (i.e., 1, 5, and 25), where Stv is given as Stv = τp/τv.
Particle properties in each case are documented in Table 5. We have homogeneously injected a total of 105

particles (in each Stv case) into the statistically stationary turbulent carrier flow. Particles are randomly posi-
tioned in x- and y-directions with a uniform spacing in the z-direction. The periodic domain is considered for a

10 The origin of the co-ordinate system is located at (0,0,0).
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Table 5 Particle properties

Parameter Case-1 Case-2 Case-3

Stv 1 5 25
ρp/ρf 769.23 769.23 769.23
dp 1.02 × 10−3h 2.28 × 10−3h 5.10 × 10−3h
τp (s) 6.67 × 10−3 3.33 × 10−2 0.17
d+
p 0.15 0.34 0.77

(a) (b)

(c) (d)

Fig. 16 Root-mean-square of velocity fluctuations. a fluid, and particles with b Stv =1, c Stv =5, d Stv =25

particle in the streamwise (x) and spanwise (y) direction. If a particle approaches the smooth flat wall such that
the distance between its geometric center and the wall is less than its radius, then this condition is considered as
the particle-wall collision event. Such a particle is rebounded back elastically in the domain after the collision.
In Fig. 16, a comparison of root-mean-square (rms) fluctuations in the streamwise (u+

i,rms), spanwise (v
+
i,rms),

and wall-normal (w+
i,rms) velocity components of our simulation with benchmark groups is shown for the fluid

(i = f ; see Fig. 16a) and particle phases (i = p; see Fig. 16b–d). With an increase in particle inertia from
Stv =1 to 25, u+

p,rms values of benchmark results in the near-wall region become larger compared to u+
f,rms. On

the other hand, v+
p,rms and w+

p,rms values get smaller in magnitude than v+
f,rms and w+

f,rms, respectively, with an
increase in Stv. This trend is captured in our simulations. Furthermore, a quantitative comparison of profiles
for Stv =1 (Fig. 16b), Stv =5 (Fig. 16c), and Stv =25 (Fig. 16d) suggests that our simulation results are in a
good agreement with the benchmark data.

References

1. Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Phys. Fluids A 3(5), 1169–1178 (1991)
2. Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O.: Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci.

32(3), 565–568 (1975)
3. Simon,X.,Bémer,D.,Chazelet, S., Thomas,D.,Régnier,R.:Consequences of high transitory airflowsgenerated by segmented

pulse-jet cleaning of dust collector filter bags. Powder Technol. 201(1), 37–48 (2010)



Planar shear flow effects on particle dispersion 4639

4. Pan, Y., Si, F., Xu, Z., Romero, C.E., Qiao, Z., Ye, Y.: DEM simulation and fractal analysis of particulate fouling on coal-fired
utility boilers’ heating surfaces. Powder Technol. 231, 70–76 (2012)

5. Brandon, D.J., Aggarwal, S.: A numerical investigation of particle deposition on a square cylinder placed in a channel flow.
Aerosol Sci. Technol. 34(4), 340–352 (2001)

6. Salmanzadeh, M., Rahnama, M., Ahmadi, G.: Particle transport and deposition in a duct flow with a rectangular obstruction.
Part. Sci. Technol. 25(5), 401–412 (2007)

7. Afrouzi, H.H., Sedighi, K., Farhadi, M., Moshfegh, A.: Lattice Boltzmann analysis of micro-particles transport in pulsating
obstructed channel flow. Comput. Math. Appl. 70(5), 1136–1151 (2015)

8. Jafari, S., Salmanzadeh, M., Rahnama, M., Ahmadi, G.: Investigation of particle dispersion and deposition in a channel with
a square cylinder obstruction using the lattice Boltzmann method. J. Aerosol Sci. 41(2), 198–206 (2010)

9. Bagheri, M., Sabzpooshani, M.: On the importance of the history force in dispersion of particles in von Kármán vortex street.
Adv. Powder Technol. 31(9), 3897–3909 (2020)

10. Yao, J., Zhao, Y., Hu, G., Fan, J., Cen, K.: Numerical simulation of particle dispersion in the wake of a circular cylinder.
Aerosol Sci. Technol. 43(2), 174–187 (2009)

11. Haugen, N.E.L., Kragset, S.: Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. J.
Fluid Mech. 661, 239 (2010)

12. Zhou, H., Mo, G., Cen, K.: Numerical investigation of dispersed gas-solid two-phase flow around a circular cylinder using
lattice Boltzmann method. Comput. Fluids 52, 130–138 (2011)

13. Shi, Z., Jiang, F., Strandenes, H., Zhao, L., Andersson, H.I.: Bow shock clustering in particle-laden wetted cylinder flow. Int.
J. Multiph. Flow 130, 103332 (2020)

14. Shi, Z., Jiang, F., Zhao, L., Andersson, H.I.: Clusters and coherent voids in particle-laden wake flow. Int. J. Multiph. Flow
141, 103678 (2021)

15. Ghafouri, S., Alizadeh, M., Seyyedi, S., Afrouzi, H.H., Ganji, D.: Deposition and dispersion of aerosols over triangular
cylinders in a two-dimensional channel; effect of cylinder location and arrangement. J. Mol. Liq. 206, 228–238 (2015)

16. Wang, H., Agrusta, R., van Hunen, J.: Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell
methods with application in geodynamic modeling. Geochem. Geophys. Geosyst. 16(6), 2015–2023 (2015)

17. Chein, R., Chung, J.: Particle dynamics in a gas-particle flow over normal and inclined plates. Chem. Eng. Sci. 43(7),
1621–1636 (1988)

18. Gomes, M.S., Vincent, J.H.: The effect of inertia on the dispersion of particles in the flow around a two-dimensional flat
plate. Chem. Eng. Sci. 57(8), 1319–1329 (2002)

19. Cheng, M., Tan, S., Hung, K.: Linear shear flow over a square cylinder at low Reynolds number. Phys. Fluids 17(7), 078103
(2005)

20. Lankadasu, A., Vengadesan, S.: Onset of vortex shedding in planar shear flow past a square cylinder. Int. J. Heat Fluid Flow
29(4), 1054–1059 (2008)

21. Peller, N., Duc, A.L., Tremblay, F., Manhart, M.: High-order stable interpolations for immersed boundary methods. Int. J.
Numer. Meth. Fluids 52(11), 1175–1193 (2006)

22. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004)
23. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer.

Anal. 5(3), 530–558 (1968)
24. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889

(1983)
25. Armenio, V., Fiorotto, V.: The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13(8), 2437–2440

(2001)
26. Mollicone, J.-P., Sharifi, M., Battista, F., Gualtieri, P., Casciola, C.M.: Particles in turbulent separated flow over a bump:

Effect of the Stokes number and lift force. Phys. Fluids 31(10), 103305 (2019)
27. Marchioli, C., Armenio, V., Soldati, A.: Simple and accurate scheme for fluid velocity interpolation for Eulerian–Lagrangian

computation of dispersed flows in 3D curvilinear grids. Comput. Fluids 36(7), 1187–1198 (2007)
28. Arcen, B., Tanière, A., Oesterlé, B.: On the influence of near-wall forces in particle-laden channel flows. Int. J. Multiph.

Flow 32(12), 1326–1339 (2006)
29. Schiller, L., Naumann, A.: Fundamental calculations in gravitational processing. Z. Ver. Dtsch. Ing. 77, 318–320 (1933)
30. Minier, J.-P., Peirano, E.: The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352(1–3), 1–214 (2001)
31. Subramaniam, S.: Lagrangian-Eulerian methods for multiphase flows. Prog. Energy Combust. Sci. 39(2–3), 215–245 (2013)
32. Minier, J.-P.: Statistical descriptions of polydisperse turbulent two-phase flows. Phys. Rep. 665, 1–122 (2016)
33. Singh, A., Narasimhamurthy, V.D.: DNS of wake from perforated plates: aspect ratio effects. Prog. Comput. Fluid Dyn.

21(6), 355–368 (2021)
34. Narasimhamurthy, V.D., Andersson, H.I.: Numerical simulation of the turbulent wake behind a normal flat plate. Int. J. Heat

Fluid Flow 30(6), 1037–1043 (2009)
35. Narasimhamurthy, V.D., Andersson, H.I., Pettersen, B.: Steady viscous flow past a tapered cylinder. Acta Mech. 206(1),

53–57 (2009)
36. Saha, A.K.: Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19(12), 128110 (2007)
37. Monchaux, R., Bourgoin, M., Cartellier, A.: Analyzing preferential concentration and clustering of inertial particles in

turbulence. Int. J. Multiph. Flow 40, 1–18 (2012)
38. Nilsen, C., Andersson, H.I., Zhao, L.: A Voronoï analysis of preferential concentration in a vertical channel flow. Phys. Fluids

25(11), 115108 (2013)
39. Fong, K.O., Amili, O., Coletti, F.: Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid

Mech. 872, 367–406 (2019)
40. Bouris, D., Papadakis, G., Bergeles, G.: Numerical evaluation of alternate tube configurations for particle deposition rate

reduction in heat exchanger tube bundles. Int. J. Heat Fluid Flow 22(5), 525–536 (2001)



4640 H. P. Mahamure et al.

41. Tong, Z.-X., Li, M.-J., He, Y.-L., Tan, H.-Z.: Simulation of real time particle deposition and removal processes on tubes by
coupled numerical method. Appl. Energy 185, 2181–2193 (2017)

42. Wagner, R.:Multi-linear interpolation. BeachCities Robotics (2008). http://rjwagner49.com/Mathematics/Interpolation.pdf.
Accessed 18 October 2018

43. Meyer, D., Jenny, P.: Conservative velocity interpolation for PDF methods. Proc. Appl. Math. Mech. 4(1), 466–467 (2004)
44. Rouson, D.W.: A direct numerical simulation of a particle-laden turbulent channel flow (1998)
45. Jacobs, G.B., Kopriva, D.A., Mashayek, F.: Towards efficient tracking of inertial particles with high-order multidomain

methods. J. Comput. Appl. Math. 206(1), 392–408 (2007)
46. Kontomaris, K., Hanratty, T., McLaughlin, J.: An algorithm for tracking fluid particles in a spectral simulation of turbulent

channel flow. J. Comput. Phys. 103(2), 231–242 (1992)
47. Marchioli, C., Soldati, A., Kuerten, J., Arcen, B., Taniere, A., Goldensoph, G., Squires, K., Cargnelutti, M., Portela, L.:

Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international
collaborative benchmark test. Int. J. Multiph. Flow 34(9), 879–893 (2008)

48. Marchioli, C., Picciotto, M., Soldati, A.: Influence of gravity and lift on particle velocity statistics and transfer rates in
turbulent vertical channel flow. Int. J. Multiph. Flow 33(3), 227–251 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

http://rjwagner49.com/Mathematics/Interpolation.pdf

	Planar shear flow effects on particle dispersion over a normal flat plate
	Abstract
	1 Introduction
	2 Numerical methodology
	3 Problem description
	3.1 Carrier fluid
	3.2 Lagrangian particles

	4 Results and discussion
	4.1 Particle deposition
	4.2 Instantaneous particle distribution
	4.3 Particle dispersion statistics

	5 Concluding remarks
	Acknowledgements
	References




