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Abstract In this paper, we investigate the effects of temperature and magnetoelastic load, on the free vibration
of an elastomer sandwich beam with magnetorheological (MR) core and functionally graded material (FGM)
constraining lamina under high temperature environment. This sandwich beam is named FGMR beam in
this paper. The material properties of the functionally graded material layers are assumed to be temperature-
dependent and vary continuously through-the-thickness according to a simple power-law distribution in terms
of the volume fractions of the constituents. Also, it is assumed that the beam may be clamped, hinged, or free
at its ends and is subjected to one-dimensional steady-state heat conduction in the thickness direction. The
classical Hamilton’s principle and the assumed mode method are used to set up the equations of motion. The
convergence of the method is examined and the accuracy of the results is verified by comparing the results with
those available. In fact, the aim of this study is to investigate the effect of some parameters on the dynamic
behavior of a sandwich beam with magnetorheological core and FGM constraining layers under temperature
environment. First, the effects of magnetic field intensity on natural frequency and modal loss factor of the
FGMR beam are studied. Subsequently the influence of temperature distribution on the vibration of FGMR
sandwich beam is shown for different boundary condition and volume fraction index. Finally, the effect of the
slenderness ratio on the fundamental frequency is presented. The results show that themodal characteristics are
significantly influenced by the applied magnetic field, volume fraction index, temperature change, slenderness
ratio, and the end support conditions.

1 Introduction

Sandwich structures have been used for many applications in structural engineering such as wind turbine
blades, space vehicles, helicopter blades, airplanes, and road transport vehicles. However, they have some
limitations such as constant frequency and damping properties.

Smart materials are a kind of functional material which can respond to the environmental excitations in a
controlled fashion.Magnetorheological (MR)materials are smartmaterialswhose rheological properties can be
controlled by the application of external electric/magnetic fields. They have been studied in several researches
especially in the last decades [1–12]. The mechanical properties of these materials such as damping factor and
shear modulus can be modified by changing the magnetic field intensity; then, the vibration characteristics of
the structure can be changed by applying an appropriate magnetic field intensity.
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MR elastomers (MREs) can sustain large deformations in tension, compression and shear modes due to
solid features and flexible texture. Their handling and storage are easier under the actuation of the magnetic
field, and they show quicker response than MR fluids [13]. Yalcintas and Dai [14] investigated the vibration
control capabilities of adaptive structures based on MR and ER (Electro-Rheological) materials, and show
that by using the MR material, the natural frequencies are almost two times higher than those for ER-based
structures. Nayak et al. [15] studied the dynamic analysis and parametric instability of the magnetorheological
elastomer (MRE) sandwich beams subjected to a periodic axial load andmagnetic field under various boundary
conditions. They reported 30% greater vibration reduction of an MRE-embedded cantilever sandwich beam
in comparison to that of a sandwich beam with a viscoelastic material core.

The theoretical and experimental investigation of the dynamic characteristics and instability of the MRE
sandwich beams subjected to a periodic axial load and magnetic field was presented by Li et al. [16] and Nayak
et al. [17, 18] too. Other theoretical and experimental investigation with special emphasis on the research and
development of MRE devices and their applications was presented [19–22]. Navazi et al. [23] investigated
the dynamic characteristics of a doubly tapered magnetorheological rotating sandwich beam based on the
Euler–Bernoulli theory and reported the effects of different parameters such as rotating speed, magnetic field
and taper ratio.

The free vibration analysis of a rotating MRE-based sandwich beam with rectangular cross section along
the edgewise direction is studied by Bornassi et al. [24]. In this study the elastic skins of the beam are analyzed
using the Euler–Bernoulli beam theory and the shear strains in the MRE layer are considered for developing
the dynamic model of the system. In addition to the effects of rotary and bending inertia of this layer are
investigated and finally, the effects of different parameters on the natural frequencies and damping capability
of the MRE sandwich beam are presented.

Recently, de Souza Eloy et al. [25] studied numerically and experimentally the free and forced vibration
of sandwich beams with carbon/epoxy composite skin and a honeycomb core filled with MR elastomer in the
various proportions of magneto/elastomer under several magnetic field intensities. The experimental results
showed that the natural frequencies and vibration amplitude of the sandwich beam shifted by applying a
magnetic field.

Although investigation of the effects of magnetoelastic loads is one of the important issue in dynamic
behavior of magnetorheological sandwich beam, there are few researcher that analyzed the vibration charac-
teristics of this type of beam by considering the magnetoelastic load effects [26, 27]. Rokn-Abadi et al. [28]
investigated the effects of magnetoelastic loads on free vibration characteristics of the magnetorheological-
based sandwich beam. For these means, the structural governing equations are derived using the Hamilton
principle and solved by the finite element method. They studied the effects of variation in the parameters such
as magnetic field intensity and the thickness of the core and top layers on the deviation of the first natural
frequency and the corresponding loss factor.

In recent years, functionally gradedmaterials (FGMs) have attracted considerable interest as heat-shielding
materials for various advanced purpose [29–31]. Functionally graded materials are advanced composites, and
their mechanical properties vary smoothly from one surface to the other. Unlike fiber-matrix composites which
have a mismatch of mechanical properties across an interface of two discrete materials bonded together and
may result in rebounding at high temperature, gradually varying the material properties of FGMs can avoid
or remove this problem [32]. Moreover, FGMs allow for spatial optimization by grading the volume fractions
of two or more constituents to improve the response of structures. If properly designed, FGMs can offer
various advantages such as reduction of thermal stresses, minimization of stress concentration or intensity
factors and attenuation of stress waves. Hence, FGMs have gained potential applications in a wide variety
of engineering components or systems which include the rocking-motor casing, armor plating, heat-engine
components, packaging encapsulants, thermoelectric generators, and human implants, just to name a few [33].

Ke and Wang [34] showed that the effect of the size of materials on dynamic stability of FG microbeams
can only be considered when the length scale parameter has the same value as that of beam thickness. Piovan
and Machado [35] suggested that dynamically unstable regions of thin wall FG beams vary inversely with
elastic stiffness. Kolakowski [36] did inspection about the dynamic stability of trapezoidal FGM beams. The
relation between static and dynamic bucklings of structure and primary and secondary local buckling was
given. Fazzolari [37] examined vibration and stability of FG beams. Using different mathematical theories,
various material parameters were taken into account to study frequency and buckling load of FG beams. At
2018 Zhang et al. [38] presented an overview of the existing literature on stability, buckling, and free vibration
analysis of FGM carried out by numerous authors in the past decade.
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Besides, using the functionally graded materials (FGM) on structural elements in high temperature envi-
ronments can help to effectively reduce the possible failures that are induced by thermo or combined thermo-
mechanical loadings. Thesematerials that made from amixture ofmetals and ceramics, are one of the advanced
composites [39].

A novel analytical model based on combined (cubic, sinusoidal and exponential) higher order quasi-3D
formulation developed to examine flexural and free vibrational response on the various FG-plate resting on
elastic foundation by Bouafia et al. [40]. The analytical solution obtained on the basis of the both Hamilton’s
principle and Navier’s technique. In this work the parametric studies performed to show the effects of the
material distribution, inhomogeneity index, elastic foundation parameters, geometry and dimension ratios on
displacements, stresses and naturel frequencies of the simply supported FG-plates.

Kouider et al. [41] presented an original four-variable quasi-3D shear deformation theory for the static and
free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Their
formulation which takes into account both the transverse shear and normal deformation, predicted the natural
frequencies with the same degree of accuracy as that of 3D elasticity solutions and given a good result of
displacements and stress compared with others Quasi-3D theories.

Several theoretical and experimental studies have been done to analyze the mechanical behavior of FGM
structural beam too [42, 43], but there are few studies about vibration analysis of functionally graded adaptive
sandwich structures with electrorheological or magnetorheological fluid core [44].

The investigation of bending response of a simply supported functionally graded (FG) viscoelastic sandwich
beamwith elastic core resting on Pasternak’s elastic foundations is presented byZenkour et al. [45]. In this study
the numerical results for deflections and stresses obtained using the refined sinusoidal shear deformation beam
theory and the effects of material distribution, span-to-thickness ratio, foundation stiffness and time parameter
are investigated. Allahverdizadeh et al. [46–48] studied the Vibration characteristics of Functionally Graded
Electro-Rheological (FGER) sandwich beams. They presented the effects of functionally graded materials
volume fraction index, rotating speed, electric field and thickness of the viscoelastic core on the natural
frequencies and modal loss factors of the FGER beam.

On the other hand, there is a lot of research about the vibration characteristics and behavior of functionally
graded sandwich plates [49–56], and beams in thermal environment [57, 58].

Tahir et al. [59] investigated the wave propagation of porous functionally graded sandwich plate in a
hygrothermal environment by using the six different porosity models to express the porosities’ distribution
factor and uniformity. Their numerical results obtained by solving an eigenvalue problem and eventually, the
effects of core-to-thickness ratio, FGM power index, porosity volume fraction, temperature, and moisture
change illustrated and discussed. In the same year, the bending behavior of an advanced functionally graded
ceramic–metal plate subjected to a hygrothermo-mechanical load and resting on a viscoelastic foundation
studied by using a simple higher-order integral shear deformation theory by Mudhaffar et al. [60]. A three-
parameter viscous foundation model used to study the bending response utilizing the damping coefficient in
addition to Winkler’s and Pasternak’s parameters for the first time in their work. Another similar work done by
Merazka et al. [61] resting on elastic foundations and the effects of the temperature, moisture concentration,
elastic foundation parameters, shear deformation, geometrical parameters, and power-law-index on the dimen-
sionless deflections, axial and transverse shear stresses of the FG-plate presented and discussed. Zaitoun et al.
[62] presented the buckling response of a functionally graded sandwich plate on a viscoelastic foundation and
exposed to hygrothermal conditions. They showed a parametric study of the effect of the damping coefficient
along with the aspect ratio, moisture condition, power-law index, and temperature variation over the buckling
temperature of the FG sandwich plate on the viscoelastic foundation.

Xiang and Yang [63] investigated the free and forced vibration of a laminated FGM Timoshenko beam of
variable thickness under heat conduction. Numerical results in their work are presented in both tabular and
graphical forms for various laminated functionally graded beams, showing that vibration frequencies, mode
shapes and dynamic response are significantly influenced by the thickness variation, temperature change,
slenderness ratio, volume fraction index, the thickness of the functionally graded layer, and the end support
conditions. The thermo–mechanical vibration of FG sandwich beams under variable elastic foundation was
studied by Pradhan and Murmu [64]. In their study, the Euler–Bernoulli beam theory was adopted and the
DQMwas used to solve the governing differential equations. free vibration of a FG beam subjected to thermal
environment based on a unified higher order shear deformation theory were studied by Mahi et al. [65]. Shen
and Wang based on a higher-order shear deformation beam theory, investigated the vibration and nonlinear
bending of FG material beams resting on elastic foundations in thermal environments [66]. The free vibration
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of functionally graded beams with various boundary conditions resting on a two-parameter elastic foundation
in a thermal environment is studied using the third order shear deformation beam theory by Zahedinejad [67].

However, to the best of our knowledge, there are few available studies in the literature to analyze the
mechanical and dynamical behavior of FGM structural with viscoelastic core and functionally graded material
constraining layer under heat condition. Therefore, the investigation of the FGMR sandwich beam in the sense
of vibration analysis and heat condition, is the main purpose of the present work. Jonson and Mohanty [68]
analyzed the buckling and free vibration of a sandwich plate with viscoelastic core and functionally graded
material constraining lamina under high temperature environment. They used the first-order shear deformation
theory and various parametric studies such as effect of aspect ratio, core thickness ratio and volume fraction
index on static and dynamic behavior of the sandwich plate are examined. Simultaneously, the influence of
porosity on the flexural and free vibration responses of functionally graded plates in thermal environment by
using a new mathematical model to incorporate the effects of porosity in the FGM plate are studied by Gupta
and Talha [69].

In this paper the effect of temperature and magnetoelastic loads on free vibration of a FGMR elastomer
sandwich beam under heat conduction is studied. For this purpose, first, the method of combining the two type
of materials (FGM and MRE) that use simultaneously in beam structure will be studied. Then, how to extract
the governing equations of this type of beam will be explained. In the following, the effect of some parameters
on dynamic behavior of a sandwich beam with MR core and FGM constraining layers under temperature
environment will be studied by solving the equations and examining the results.

The thermal gradient due to one-dimensional through-thickness steady heat conduction is considered. The
governing equations of motion of the system are achieved using assumed modes method and Hamilton’s
principle, and the frequencies are obtained by eigenvalue analysis. Finally, the results are validated with the
analytical and numerical studies in the literature.

In the following, first, the effects of magnetic field intensity on natural frequency and modal loss factor
of the FGMR beam are studied. Then, the influence of temperature distribution on the vibration of FGMR
sandwich beam is shown for different boundary condition and volume fraction index. Finally, the effect of
slenderness ratio on fundamental frequency of FGMR beam is presented.

The results show that the dynamic behavior is significantly influenced by the effects of FGM distribution,
applied magnetic field, the temperature and magnetoelastic loads, for different boundary conditions.

2 Dynamic model of sandwich beam

We consider a sandwich beam with three layers, the elastomer core and two functionally graded (FGM) layers,
as shown in Fig. 1. The core is made of magnetorheological elastomer, and the face layers are graded from
ceramic to meatal. So that the top and bottom surface of sandwich beam is made of pure ceramic. The beam
has a length L and a width B. The vertical position of the bottom, the two interface between the layers and the
top are denoted by h0, h1, h2 and h3, respectively. The bottom, top and core layer thicknesses are hb, ht and
hc, respectively.

To investigate the dynamic behavior of the sandwich beam, according to Fig. 2, it will be assumed that
shear strains in the face plates are negligible and that longitudinal direct stresses in the core are negligible.
The thickness of all layers is very small compared to the length of the beam and there is no slippage and
delamination between the FGM layers and the magnetorheological elastomer layer. Transverse direct strains

Fig. 1 Configuration of functionally graded beam with MR core
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Fig. 2 Kinematic relationships of deflected beam [71]

in both core and face plates are also neglected, so that the transverse displacement w at a section does not vary
along the beam’s thickness [70].

In Fig. 2, the ub, ut and uc are the longitudinal displacements of the mid-plane of the bottom, top and core
layers, respectively, in the x-direction.

It is also assumed that the displacement field relationships, strain–displacement relations and constitutive
equations are linear. The geometric nonlinear model is usually recommended when the large deformation is
between ten or fifteen percent of the beam length. According to the dimensions of the beam and the transverse
displacement in this paper, the use of a linear model can be justified.

On the other hand, the investigation of the free vibration and linear natural frequencies is the purpose of
this study. Therefore, a linear model in which the nonlinear curvature terms have been omitted, will be used.

2.1 Displacement fields

According to the mentioned assumptions, the longitudinal and transverse displacements of the top and bottom
layers at a material point (x, z) can be expressed as [72]:

ub(x , zb, t) � ub(x , t) − zb
∂w

∂x
(x , t), (1)

ut(x , zt , t) � ut(x , t) − zt
∂w

∂x
(x , t), (2)

wt(x , zt , t) � wb(x , zb, t) � w(x , t). (3)

In the above equations, t represents the time and the zb, zt are the local distance from mid-plane of bottom
and top layers, respectively.

From the geometry of the deflected beam (Fig. 2), the shear strain in the MRE core can be expressed as
[70]

γc � ∂w

∂x
+

∂uc
∂z

, (4)

where

∂uc
∂z

� (hb + ht)

2hc

∂w

∂x
+

(ut − ub)

hc
. (5)

Using Eqs. (4) and (5), the shear strain of the core layer can be rewritten as

(γc)xz � ∂w

∂x
+

∂uc
∂z

� S

hc

∂w

∂x
+

(ut − ub)

hc
, (6)
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where S � hc + ((hb + ht)/2). In the pre-yield region, the MR materials exhibit viscoelastic behavior, which
can be explained by the linear viscoelastic theory as

τ � G∗
cγ , (7)

where τ is the shear stress and G∗
c is the complex modulus. So, the field-dependent complex modulus can be

obtained from [73]

G∗
c � G

′
(1 + ηc), (8)

where G
′
and ηc are the shear storage modulus and the loss factor of the viscoelastic material, respectively.

Eventually the linear strain associated with the displacements in any FGM layer can be defined as

(εxx )b � ∂ub(x , t)

∂x
− zb

∂2w(x , t)

∂x2
, (9)

(εxx )t � ∂ut(x , t)

∂x
− zt

∂2w(x , t)

∂x2
, (10)

where the b and t subscripts are pertinent to the bottom and top layers, respectively.
The normal stressσx is given by the linear elastic constitutive law according to functionally gradedmaterials

(FGM), as [56]

(σxx )i � Ei (zi )

1 − ν2i

[
(εxx )i − α(zi )
T (zi )

]
, i � t , b, (11)

where E , ν, α and
T are the elasticmodulus, Poisson’s ratio, coefficient of thermal expansion and temperature
change, respectively.

2.2 Sandwich FGM beam

The material composition of the two FGM layers follows a power law distribution along the z-axis so that the
volume fractions of the material phases involved in both layers is given by [46]:

V (1)(z) �
(

z
hb

+ 1
2

)e
, h0 ≤ z ≤ h1,

V (2)(z) � 0, h1 ≤ z ≤ h2,

V (3)(z) �
(

z
ht
+ 1

2

)e
, h2 ≤ z ≤ h3,

(12)

where e is the nonnegative volume fraction index and V (n)(z) is the volume fractions of the ceramic at each
layer. An effective generic material property P(n) of FGM layer n (n � 1, 3), such as the coefficient of thermal
expansion α, the coefficient of thermal conductivity κ , and the modulus of elasticity E, can be defined as [56]

P(n)(z, T ) � Pm(T ) + (Pc(T ) − Pm(T ))V (n)(z). (13)

In which the subscripts m and c refer to the metal and ceramic constituents, so that Pm and Pc denote the
temperature-dependent properties of the metal and ceramic, respectively.
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2.3 Thermal conditions

Consider a sandwich beamwith FGMandMR layers in which the temperature of the bottom and top surfaces of
this beam are Tb and Tt , respectively (Fig. 1). As the FGmaterials are most commonly used in high temperature
environments in which significant changes in material properties are to be expected, the material properties
of an FGM beam layers are both position and temperature-dependent. Note that the material properties of the
MR layer are not dependent to temperature. Thus, it is essential to consider this temperature-dependence for
reliable and accurate prediction of the structural response. The material properties are temperature-dependent
and are obtained using the following expression [31]:

P(T ) � P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3), (14)

In which T � T0 + 
T , T0 �300 K (room temperature), and 
T is the temperature change. Also theP0,
P−1,P1, P2 and P3 are temperature-dependent coefficient and are unique to each constituent. The temperature
field assumed to be uniformover the beamsurface. Suppose that the beamonly is subjected to a one-dimensional
temperature change
T in the thickness direction. The ceramic-rich top surface in h3 is exposed to temperature
Tt and the ceramic-rich bottom surface in h0 is held at temperatureTb. The nonlinear temperature distribution
along the thickness can be obtained by solving the steady-state heat transfer equation as [49]

− d

dz

[
κ
dT

dz

]
� 0 (15)

with the following thermal boundary conditions:

T (z)
∣
∣z�hc/2+ht � Tt , T (z)

∣
∣z�−(hc/2+hb) � Tb. (16)

Also the continuity requirements at the two FGM substrate interfaces are

T (1)
∣
∣z�−hc/2 � T (2)

∣
∣z�−hc/2 , T (2)

∣
∣z�hc/2 � T (3)

∣
∣z�hc/2 , (17a)

κ(1) dT

dz

∣∣
z�−hc/2

� κ(2) dT

dz

∣∣
z�−hc/2

, κ(2) dT

dz

∣∣
z�hc/2

� κ(3) dT

dz

∣∣
z�hc/2

, (17b)

where (T (1), T (2), T (3)) and (κ(1), κ(2), κ(3)) are the temperature distribution and thermal conductivity coef-
ficients of the lower FGM layer, the MR substrate, and the upper FGM layer, respectively. Using the above
boundary conditions, the temperature distribution can be written as [74]

T (n)(z) � Tb + (Tt − Tb)�
n , n � 1, 2, 3, (18)

where

�1 �
∫ z
h0

(
1/κ (1)(z)

)
dz

∑3
n�1

∫ hn
hn−1

(
1/κ (n)(z)

)
dz

, h0 ≤ z ≤ h1, (19a)

�2 �
∫ h1
h0

(
1/κ (1)(z)

)
dz +

∫ z
h1

(
1/κ (2)(z)

)
dz

∑3
n�1

∫ hn
hn−1

(
1/κ (n)(z)

)
dz

, h1 ≤ z ≤ h2, (19b)

�3 �
∫ h1
h0

(
1/κ (1)(z)

)
dz +

∫ h2
h1

(
1/κ (2)(z)

)
dz +

∫ z
h2

(
1/κ (3)(z)

)
dz

∑3
n�1

∫ hn
hn−1

(
1/κ (n)(z)

)
dz

, h2 ≤ z ≤ h3, (19c)

The temperature at the positions h1 and h2 is T1 and T2 respectively (Fig. 1) and is as follows

T1 � Tb + (Tt − Tb)

∫ h1
h0

(
1/κ (1)(z)

)
dz

∑3
n�1

∫ hn
hn−1

(
1/κ (n)(z)

)
dz

, (20)

T2 � Tb + (Tt − Tb)

∫ h1
h0

(
1/κ (1)(z)

)
dz +

∫ h2
h1

(
1/κ (2)(z)

)
dz

∑3
n�1

∫ hn
hn−1

(
1/κ (n)(z)

)
dz

. (21)
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2.4 Governing equations and analysis method

To derive the equations of motion of the FGMR-based sandwich beam, Hamilton’s principle is applied. This
method is expressed as [10]

∫ t2

t1
δ(U − T +W )dt � 0, (22)

where t is the time, t1 and t2 are the initial and end times, respectively. Furthermore, δ is the first variation and
T, U, and W indicate kinetic energy, potential energy, and external work done by the magnetoelastic loads,
respectively. The total strain energy of the FGRM beam can be represented as

U � Ud +UT, (23)

where Ud is the strain energy due to the mechanical stresses and UT is the strain energy caused by the initial
stresses due to temperature rise. For the strain energy due to the mechanical stresses we have

Ud � 1

2

∫ L

0

∫

A
(σxxεxx + τxzγxz)dAdx . (24)

By using Eqs. (9), 10 and (11) for the FGM layers, and Eqs. (6) and (7) for the MR layer, and applying
integrations in the lateral direction (y direction), this equation can be expressed as follows:

(25)

Ud � B

2

[

D1
t

∫ L

0

(
∂ut
∂x

)2

+ D1
b

∫ L

0

(
∂ub
∂x

)2

+
(
D3
t + D3

b

) ∫ L

0

(
∂2w

∂x2

)2

− 2D2
t

∫ L

0

∂ut
∂x

∂2w

∂x2

− 2D2
b

∫ L

0

∂ub
∂x

∂2w

∂x2

]

dx +
1

2

∫ L

0
G∗

c Acγc
2dx ,

where the coefficients Di
t and Di

b (i � 1, 2, 3) are given in the Appendix.
The strain energies due to the thermal load can be expressed as [49]

UT � 1

2

∫ L

0

∫

A

(
− E(z, T )α(z, T )

1 − ν(z, T )

T (z)dxx

)
dAdx , (26)

where

dxx �
(

∂ub(x , zb, t)

∂x

)2

+

(
∂ut(x , zb, t)

∂x

)2

+

(
∂w(x , t)

∂x

)2

. (27)

By applying integrations in the lateral direction, this equation can be expressed as follow

(28)

UT � B

2

[

�1
t

∫ L

0

(
∂ut
∂x

)2

+ �1
b

∫ L

0

(
∂ub
∂x

)2

+
(
�3

t + �3
b

) ∫ L

0

(
∂2w

∂x2

)2

− 2�2
t

∫ L

0

∂ut
∂x

∂2w

∂x2

− 2�2
t

∫ L

0

∂ub
∂x

∂2w

∂x2
+

(
�1

t + �1
b

) ∫ L

0

(
∂w

∂x

)2
]

dx ,

where the coefficients�i
t and�i

b (i � 1, 2, 3) are given in the Appendix. The total kinetic energy of the FGRM
beam can be represented as

T � T1 + T2, (29)

where T1 is the kinetic energy that arises from the edgewise bending motion and longitudinal deformation of
the bottom and top FGM layers that can be expressed as

T1 � 1

2

∫ L

0

∫

A
ρi (zi )

((
∂ui (x , zb, t)

∂t

)2

+

(
∂w(x , t)

∂t

)2
)

dAdx , i � t , b, (30)
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where ρb and ρt are the mass density of bottom and top of the FGM layers, respectively. By expanding the
equation and applying integrations in the lateral direction (y-direction), we get

(31)

T1 � B

2

[

F1
t

∫ L

0

(
∂ut
∂t

)2

+ F1
b

∫ L

0

(
∂ub
∂t

)2

+
(
F1
t + F1

b

) ∫ L

0

(
∂w

∂t

)2

+
(
F3
t + F3

b

) ∫ L

0

(
∂2w

∂t∂x

)2

− 2F2
t

∫ L

0

∂ut
∂t

∂2w

∂t∂x
− 2F2

b

∫ L

0

∂ub
∂t

∂2w

∂t∂x

]

dx .

The coefficients Fi
t and Fi

b (i � 1, 2, 3) are given in the Appendix.
The kinetic energy due to rotational deformation and transverse displacement of the MR segment can be

expressed as

T2 � 1

2

∫ L

0

∫

A
ρc Ic

(
∂γc

∂t

)2

dAdx +
1

2

∫ L

0

∫

A
ρc

((
∂w(x , t)

∂t

)2
)

dAdx , (32)

where ρc and Ic are the mass density and the second moment of inertia of the MR layer, respectively.
The applied magnetic field can yield magnetoelastic loads in the top and bottom layers. The non-

conservative work done owing to the magnetoelastic loads is given by [20]

Wnc �
∫ L

0

(
ntut + nbub + (mt + mb)

∂w(x , t)

∂x

)
dx , (33)

where nt and nb are the magnetoelastic force, and mt and mb are the magnetoelastic distributed moment in the
top and bottom skins, respectively, which can be expressed as [20]

ni � B2
0bhi
μei

(
∂2ui
∂x2

)
, i � b, t , (34)

mi � B2
0bhi
μ0

(
π

2ln x
L−x

(
∂ui
∂x

)
− hi

2π
ln

x

x − L

(
∂2w

∂x2

)
+

∂w

∂x

)

− B2
0bh

3
i

12μei

(
∂3w

∂x3

)
, i � b, t , (35)

where B0 is the magnetic field intensity, μ0 is the permeability of the air gap and μei (i � b, t) is the average
permeability of ceramic and metal at any FGM layers, respectively.

By substituting the potential energy, kinetic energy, and the work done by the magnetoelastic loads into
Hamilton’s principle (22), the governing equation for the FGMR sandwich beam under heat conduction can
be expressed.

In the following, assumed mode method is used to solve the coupled equations by using the following
relationships for transverse and longitudinal displacements:

w(x , t) �
Nw∑

i�1

ψi (x)ηi (t), (36)

ub(x , t) �
∑Nub

i�1
ϕi (x)δi (t), (37)

ut(x , t) �
∑Nut

i�1
ϕi (x)εi (t), (38)

where ψi (x) and ϕi (x) are, respectively, the transverse and longitudinal principle vibration mode shape of the
Euler–Bernoulli beam, and ηi (t), δi (t) and εi (t) are the generalized coordinates of the system. Nw, Nub and
Nut are the number of corresponding modes used in transverse and longitudinal direction.

By substituting Eqs. (36)–(38) into Eq. (22) and after some manipulations, the global governing equations
of the sFGMR sandwich beam are obtained as

Mq̈ +Kq � 0, (39)
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where q �
[
η1 · · · ηNw , ε1 · · · εNut

, δ1 · · · δNub

]
is the vector of generalized coordinates and M and K are the

structural mass and stiffness matrices, respectively, that are defined as

M �
⎡

⎣
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤

⎦, K �
⎡

⎣
K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤

⎦. (40)

The expressions for the mass and stiffness matrices of the above equation are given in the Appendix.
Assuming harmonic motion r � r∗

0exp(ipt), where r∗
0 and p are the eigenvectors and eigenvalues of the

system and i � √−1, the equation of motion of the beam is transformed into a standard eigenvalue problem
as

K r∗
0 � p2Mr∗

0. (41)

Eventually, the natural frequency and modal loss factor of the FGRM beam can be obtained as

ω �
√
Re

(
p2

)
, (42)

η � Im
(
p2

)

Re
(
p2

) . (43)

3 Validation

To investigate the behavior and determine the effect of magnetoelastic loads and temperature dependency on
the vibration and damping behavior of FGMR sandwich beam, a computer code was developed. To evaluate
the accuracy of the code, the results from this study are verified by comparing the results with those available
in the literature for several cases.

First of all, the first three natural frequencies of MRE-embedded cantilever sandwich beam with magne-
toelastic effects are compared with analytical (Nayak et al. [15]) and finite element method results (Nayak
et al. [18] and Rokn-Abadi et al. [28]) in Table 1.

The comparisons show that the natural frequencies obtained by the present method are in good agreement
with the numerical and analytical existing results but there is still a slight difference. The relative difference in
the values of the free vibration natural frequencies determined with the use of different reference for this type
of cantilever sandwich beam is equal to 0.06% and increases to 3.7% for the first frequency and is equal to
0.01% that increases to 6.1% for the second natural frequency. The differences for the three natural frequency
are from 0.04 up to 8.09%. There are no significant differences in the frequency values obtained from the
proposed description and from other available references. This could be due to the solve method or to consider

Table 1 Comparison of the first three natural frequencies for different magnetic field intensities

Magnetic field
intensity,B0
(T )

Mode Natural frequencies (Hz) Differences

Present study Analytical-
Nayak et al.
[15]

FEM-Nayak
et al. [18]

FEM-Rokn
Abadi et al.
[28]

Ref [15] Ref [18] Ref [28]

0 1 14.25 14.43 14.47 14.18 − 0.18 − 0.22 0.07
2 51.45 51.84 51.97 51.03 − 0.39 − 0.52 0.42
3 104.43 105.05 105.32 103.41 − 0.62 − 0.89 1.02

0.2 1 15.65 15.77 15.93 15.57 − 0.12 − 0.28 0.08
2 58.83 59.15 59.86 58.42 − 0.32 − 1.03 0.41
3 121.07 121.12 122.95 119.61 − 0.05 − 1.88 1.46

0.4 1 16.62 16.64 17.10 16.61 − 0.02 − 0.48 0.01
2 65.10 65.15 67.32 64.67 − 0.05 − 2.22 0.43
3 134.60 135.02 140.82 133.77 − 0.42 − 6.22 0.83

0.6 1 17.16 16.87 17.82 17.11 0.29 − 0.66 0.05
2 67.10 67.11 71.51 66.91 − 0.01 − 4.41 0.19
3 139.33 139.73 151.60 138.44 − 0.4 − 12.27 0.89
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Table 2 Comparison of the first four natural frequencies for three different boundary conditions

Mode number Natural frequencies (Hz) Differences

Present analysis Nayak et al. [17] Rokn abadi et al. [28] Ref. [17] Ref. [28]

Clamped-free
1 33.75 33.75 33.74 0.00 0.03
2 199.36 199.12 198.95 0.12 0.20
3 514.65 513.17 512.25 0.29 0.47
4 914.59 909.95 907.48 0.51 0.77
Simply supported
1 57.12 57.14 57.11 − 0.03 0.02
2 219.43 223.91 219.25 − 2.04 0.08
3 464.59 465.93 463.88 − 0.29 0.15
4 766.89 772.3 764.75 − 0.70 0.28
Clamped–clamped
1 34.64 34.66 34.33 − 0.06 0.89
2 93.39 93.52 94.44 − 0.14 − 1.12
3 178.18 178.47 180.47 − 0.16 − 1.28
4 284.70 285.81 289.47 − 0.39 − 1.67

Table 3 Dimensionless natural frequencies of laminated FGMbeams under heat condition (L/H � 10, Tt � Tb � 50 ◦C, e � 2)

Boundary condition Natural frequencies (Hz)

Mode number ω1 ω2 ω3 ω4 ω5

Cantilever Present analysis 0.108 0.658 1.679 1.874 3.652
Xiang and Yang [63] 0.110 0.655 1.624 1.708 3.069
Difference − 1.8 0.46 3.4 9.7 19

Hinged–hinged Present analysis 0.310 1.215 1.775 2.790 4.881
Xiang and Yang [63] 0.306 1.161 1.624 2.424 3.952
Difference 1.3 4.6 9.3 15.1 23.5

Clamped–clamped Present analysis 0.631 1.634 3.013 3.481 5.161
Xiang and Yang [63] 0.644 1.644 2.951 3.249 4.448
Difference − 2.01 − 0.6 2.1 7.1 16.02

number of terms of total kinetic and potential energy equations. Also the key approximation involved in the
Guyan reduction that all of the inertia of slave coordinates are ignored.

In the second investigation, the first four natural frequencies of the MR sandwich beam are compared
with those reported by Nayak et al. [17] and Rokn abadi et al. [28] for three different boundary conditions;
clamped-free, simply supported, and clamped–clamped boundary conditions. Comparison of these results and
their difference show in Table 2. It is seen that the natural frequencies obtained by the present work have a
good agreement with the results in the literature.

In Table 3 another validity of the present formulations for the FGM beam under heat condition is demon-
strated by comparing the non-dimensional natural frequency corresponding to the first and fifth modes under
cantilever, hinged–hinged and clamped–clamped conditions with considering the elastic core for the sandwich
beam [63]. The constituent material properties of the FG beam have been chosen from this reference. For Tim-
oshenko beam theory and for used value of index volume fraction in this reference, good agreement is observed
between the results of the present work and Ref. [63], especially for low frequencies. Using the Timoshenko
beam theory and stocky beam model [75] in this reference causes higher differences at high frequencies.

4 Results and discussion

The vibration characteristics of the FGRM sandwich beam are influenced by various parameters such as the
magnetic field intensity, temperature changes, the geometry of the beam, volume fraction index of FGM
layers, boundary conditions, and thickness of any layer. The free vibration of the FGMR sandwich beam with
elastomer core in the edgewise direction, is studied in this section. The FG material chosen in this study is a
mixture of Titanium alloy (Ti–4V–6Al) and Zirconia (ZrO2) as presented in Table 4 [67].
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Table 4 Temperature-dependent coefficients of elastic modulus E (Pa), coefficient of thermal expansion α (K−1), mass density
ρ (Kg/m3), thermal conductivity κ (W/mK ), and Poisson’s ratio ν, of FGM layers [67]

Properties P0 P−1 P1 P2 P3

ZrO2 (ceramic)
E 244.27e+9 0.0 − 1.371e−3 1.214e−6 − 3.681e−10
α 12.766e−6 0.0 − 1.491e−3 1.006e−5 − 6.778e−11
ρ 3000 0.0 0.0 0.0 0.0
ν 0.2882 0.0 1.133e−4 0.0 0.0
κ 1.7 0.0 1.276e−4 6.648e−8 0.0
Ti–4V–6Al (metal)
E 122.56e+9 0.0 − 4.586e−4 0.0 0.0
α 7.5788e−6 0.0 6.638e−4 − 3.14e−6 0.0
ρ 4429 0.0 0.0 0.0 0.0
ν 0.2884 0.0 1.121e−4 0.0 0.0
κ 1.0 0.0 1.704e−2 0.0 0.0

Table 5 Geometry and properties of the FGMR elastomer sandwich beam

Parameter Value and unit

Length (L) 30 cm
Width (b) 4 cm
Top layer thickness (ht) 0.5 mm
Base layer thickness (hb) 2.5 mm
Core layer thickness (hc) 2.5 mm
MRE layer density (ρc) 3500 kg/m3

Thermal conductivity of MRE layer (κc) 61 W/mK
Permeability of FG layers (μe) 1.2×10–6

Permeability of air gap (μ0) 4π ×10–7

Table 6 Convergence study of the natural frequencies for cantilever FGRM sandwich beam (B0 � 0, 
T � 0, e � 2)

Mode no Number of modes

n � 1 n � 2 n � 3 n � 4 n � 5 n � 6 n � 7 n � 8

1 27.83 27.48 27.43 27.40 27.40 27.40 27.40 27.40
2 4875.19 125.30 124.18 124.03 123.94 123.94 123.94 123.94
3 4856.53 330.70 313.66 313.18 312.82 312.82 312.82
4 4856.15 619.37 595.52 593.37 591.32 591.32
5 4856.15 1142.70 979.45 974.32 973.78
6 4856.14 1639.85 1485.85 1212.45
7 4856.13 3403.50 3221.56
8 4856.13 3845.45

The other temperature independent parameters and material properties of the FGMR beam are listed in
Table 5.

For the core layer, a natural rubber-based MRE containing 80% iron particles directed along the magnetic
field lines (z-axis) is used in this study. The shear storage modulus and loss factor of the MR elastomer used
in this investigation are presented as [18]

G
′ �

(
−6.9395B6

0 − 9.1077B5
0 + 71.797B4

0 − 93.422B3
0 + 38.778B2

0 + 2.43B0 + 2.7006
)
MPa, (44)

ηc � 5.3485B6
0 − 17.787B5

0 + 22.148B4
0 − 12.185B3

0 + 2.3522B2
0 + 0.1526B0 + 0.228. (45)

The first eight natural frequencies and loss factors of the cantilever sandwich beam are, respectively,
presented in Tables 6 and 7 for different number of modes to study the convergence of the results. It can be
seen that about eight modes are sufficient to reach the desired convergence.
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Table 7 Convergence study of the loss factors for cantilever FGRM sandwich beam (B0 � 0, 
T � 0, e � 2)

Mode no Number of modes

n � 1 n � 2 n � 3 n � 4 n � 5 n � 6 n � 7 n � 8

1 0.021 0.018 0.016 0.015 0.015 0.015 0.015 0.015
2 0.082 0.026 0.018 0.014 0.011 0.011 0.011 0.011
3 0.054 0.017 0.012 0.010 0.008 0.008 0.008
4 0.034 0.010 0.009 0.007 0.004 0.004
5 0.029 0.008 0.006 0.003 0.002
6 0.019 0.004 0.002 0.001
7 0.011 0.002 0.0009
8 0.009 0.0003

Fig. 3 Variation of the first natural frequencies (a) and first loss factors with applied magnetic field (B0) for different values of
volume fraction index and Cantilever condition

4.1 Effect of magnetic field intensity

The effects of magnetic field intensity on natural frequency and modal loss factor of the FGMR beam are
studied in this section. Variation of the first natural frequencies and first modal loss factor with applied
magnetic field and different values of volume fraction index for clamped-free (cantilever), simply supported,
and clamped–clamped boundary conditions are indicated in Figs. 3, 4, and 5, respectively. It is obvious that
the natural frequencies and modal loss factors increase with increasing the magnetic field intensity from 0
to 0.6 Tesla. Also, the volume fraction index of the FGM layers has significant effect on the vibrational
characteristics of the sandwich beam. The increase in the volume fraction index causes the increase in the
volumetric percentage of metallic constituent in the FGM layers. This causes that the natural frequencies
decrease by increasing volume fraction index, but the natural frequencies increase by increasing volume
fraction index, for every boundary condition.

Also, for simply supported boundary condition, the loss factor reaches about ninety percent of its maximum
value at about 0.23 Tesla, for each volume fraction index. This point can be useful and important for design,
especially reaching a high magnetic field intensity is not possible.

4.2 Effect of temperature and slenderness ratio

In this section the influence of temperature distribution on the vibration of FGMR sandwich beam has been
shown for different boundary condition and volume fraction index. It is assumed that the temperature of the
bottom surface is constant and equal to ambient temperature (T � 300K) and the temperature of the top surface
changes only. As is evident from Figs. 6, 7 and 8 for clamped-free, simply supported, and clamped–clamped
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Fig. 4 Variation of the first natural frequencies (a) and first loss factors with applied magnetic field (B0) for different values of
volume fraction index and simply supported condition

Fig. 5 Variation of the first natural frequencies (a) and first loss factors with applied magnetic field (B0) for different values of
volume fraction index and clamped–clamped condition

boundary conditions, when the top surface temperature increases from 300 to 600 K, the first fundamental
frequencies decrease with increasing temperature since the stiffness deteriorates in this process. Also, as
is evident from the figures, the natural frequencies decrease by increasing volume fraction index, for each
boundary condition.

Also the effect of the slenderness ratio on the fundamental frequency of the FGMR beam is presented in
Fig. 9. The results are presented for cantilever, clamped–clamped and hinged–hinged FGRM sandwich beams.
As expected, the beam with a smaller slenderness ratio has a higher fundamental frequency.

5 Conclusions

In this study, the effects of temperature dependency and magnetoelastic loads on the free vibration of an
FGMR elastomer sandwich beam with magnetorheological core and Functionally Graded Material (FGM)
constraining lamina under high temperature environment, are investigated. The material properties of FGM
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Fig. 6 Variation of the first natural frequencies with variation of top surface temperature for different values of volume fraction
index and cantilever condition (B0 � 0.4)

Fig. 7 Variation of the first natural frequencies with variation of top surface temperature for different values of volume fraction
index and simply supported condition (B0 � 0.2)

layers are assumed to be temperature-dependent and vary continuously through-the-thickness according to a
simple power-law distribution in terms of the volume fractions of the constituents. Also, it is assumed that the
beam may be clamped, hinged, or free at its ends and is subjected to one-dimensional steady heat conduction
in the thickness direction. The classical Hamilton’s principle and the assumed mode method are used to set
up the equations of motion and the modal frequencies and loss factors of the three-layer sandwich beam are
obtained by eigenvalue analysis of the system. The results are validated in comparison with the existing results
in the literature. Finally, the effects of the applied magnetic field, volume fraction index, temperature change,
and slenderness ratio are studied for different boundary conditions.

It was demonstrated that the magnetic field changes the stiffness and damping properties of the sandwich
beam. Therefore, the natural frequencies and themodal loss factors of the system can be controlled by changing
the intensity of magnetic field. Also it was concluded that the temperature rise has more significant effect on
the frequency parameters.
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Fig. 8 Variation of the first natural frequencies with variation of top surface temperature for different values of volume fraction
index and clamped- clamped condition (B0 � 0.2)

Fig. 9 Effect of the slenderness ratio on the first frequency of FGMR beam under heat condition (Tb=300, 
T=50, B0=0.3, e=1)

The other most important points are summarized as follows:

The natural frequencies and corresponding modal loss factors of FGRM sandwich beam, increases with the
increase in the magnetic field intensities for each amount of volume fraction index and boundary condition.
The rise in the external temperature reduces the fundamental frequencies for simply-supported, Cantilever,
and clamped–clamped boundary conditions of FGRM beam.
For all boundary conditions, the frequency decreases as increases in the volume fraction index, whereas

the mode loss factors increase. So, the volume fraction is an essential parameter in structural component
design.
The beam slenderness ratio, and the end support condition significantly affect the dynamic behavior of

FGRM sandwich beam. The beam with a smaller slenderness ratio has a higher fundamental frequency.

Concluding it can be said that the sandwich beam or panel structure that made of FGM and MR materials
has two functional performances. One, due to the magnetorheological material and them properties, we can
control of vibration behavior in the turbomachine’s blades. On the other hand, due to ceramic in the functionally
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graded materials as heat-shielding materials we can prevent damage to the middle layer. Also, due to the metal
in the functionally graded materials, we can reduce the possible failures induced bymechanical load or fatigue.

Generally, it can be said that using the functionally graded material and MR material simultaneously
on sandwich structural elements in the high temperature environments reduces the possible failures that are
induced by thermo or combined thermo-mechanical loadings.

Appendix

The coefficients of the potential and kinetic energies of the functionally graded layers;

D1
i �

∫ hi /2

−hi /2

(
Ei (zi , Ti )

1 − ν2i (zi , Ti )

)

dzi , i � t , b,

D2
i �

∫ hi /2

−hi /2

(
Ei (zi , Ti )

1 − ν2i (zi , Ti )

)

zidzi ,

D3
i �

∫ hi /2

−hi /2

(
Ei (zi , Ti )

1 − ν2i (zi , Ti )

)

z2i dzi , (46)

�1
i �

∫ hi /2

−hi /2

(
− E(zi , Ti )α(zi , Ti )

1 − ν(zi , Ti )

T (zi )

)
dzi , i � t , b,

�2
i �

∫ hi /2

−hi /2

(
− E(zi , Ti )α(zi , Ti )

1 − ν(zi , Ti )

T (zi )

)
zidzi ,

�3
i �

∫ hi /2

−hi /2

(
− E(zi , Ti )α(zi , Ti )

1 − ν(zi , Ti )

T (zi )

)
z2i dzi , (47)

F1
i �

∫ hi /2

−hi /2
ρi (zi , Ti )dzi , i � t , b, c,

F2
i �

∫ hi /2

−hi /2
ρi (zi , Ti )zidzi ,

F3
i �

∫ hi /2

−hi /2
ρi (zi , Ti )z

2
i dzi . (48)

The coefficients of the mass matrices for the FGMR beam:

M11 � (
B

(
F3
t + F3

b

)
+ ξ1S

2)
∫ L

0
ψ

′
iψ

′
jdx +

(
B

(
F1
t + F1

b

)
+ ξ3

)∫ L

0
ψiψ jdx ,

M12 � ξ1S
∫ L

0
ψ

′
iϕ jdx ,

M13 � −ξ1S
∫ L

0
ψ

′
iϕ jdx ,

M21 � ξ1S
∫ L

0
ϕiψ

′
jdx ,

M22 � (
BF1

t + ξ1
)∫ L

0
ϕiϕ jdx ,

M23 � −ξ1

∫ L

0
ϕiϕ jdx ,

M31 � −ξ1S
∫ L

0
ϕiψ

′
jdx ,

M32 � −ξ1

∫ L

0
ϕiϕ jdx ,
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M33 � (
BF1

b + ξ1
)∫ L

0
ϕiϕ jdx . (49)

The coefficients of the stiffness matrices for the FGMR beam:

K11 � B
(
D3
t + D3

b + �3
t + �3

b

)
L∫

0

ψ ′′
i ψ ′′

j dx +
(
B

(
�1

t + �1
b

)
+ ξ2S

2)
L∫

0

ψ ′
iψ

′
jdx

− ξ8

L∫

0

(
ln

1

L − x

)
ψ ′′
i ψ ′

jdx + ξ9

L∫

0

ψ ′
iψ

′
jdx − ξ10

L∫

0

ψ ′′′
i ψ ′

jdx ,

K12 � ξ2S
∫ L

0
ψ

′
iϕ jdx − 2B

(
D2
t + �2

t

)∫ L

0
ψ

′′
i ϕ

′
jdx ,

K13 � −ξ2S
∫ L

0
ψ

′
iϕ jdx − 2B

(
D2
b + �2

b

)∫ L

0
ψ

′ ′
i ϕ

′
jdx ,

K21 � ξ2S
∫ L

0
ϕiψ

′
jdx + ξ6

∫ L

0

(
ln

1

L − x

)−1

ϕ
′
iψ

′
jdx ,

K22 � B
(
D1
t + �1

t

)∫ L

0
ϕ

′
iϕ

′
jdx + ξ2

∫ L

0
ϕiϕ jdx + ξ4

∫ L

0
ϕ

′ ′
i ϕ jdx ,

K23 � −ξ2

∫ L

0
ϕiϕ jdx ,

K31 � −ξ2S
∫ L

0
ϕiψ

′
jdx + ξ7

∫ L

0

(
ln

1

L − x

)−1

ϕ
′
iψ

′
jdx ,

K32 � −ξ2

∫ L

0
ϕiϕ jdx ,

K33 � B
(
D1
b + �1

b

)∫ L

0
ϕ

′
iϕ

′
jdx + ξ2

∫ L

0
ϕiϕ jdx + ξ5

∫ L

0
ϕ

′ ′
i ϕ jdx . (50)

where

ξ1 � ρc Ic
h2c

, ξ2 � G∗
c Ac

h2c
, ξ3 � ρcAc, ξ4 � B2

0 Bht
μet

, ξ5 � B2
0 Bhb
μeb

, ξ6 � πB2
0Bht

2μ0
,

ξ7 � πB2
0Bhb
2μ0

, ξ8 � B2
0 B

(
h2b + h2t

)

2πμ0
, ξ9 � B2

0 B(hb + hb)

μ0
, ξ10 � B2

0 B

12

(
h3b
μeb

+
h3t
μet

)

. (51)
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