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Abstract In this article, the dynamic characteristics of a circular inclusion in an inhomogeneous piezoelec-
tric/piezomagnetic half-spacewith propagating anti-plane shearwaves are studied. The exponential distribution
of material parameters along the coordinate axis is considered. The Helmholtz equation includes variable coef-
ficients due to inhomogeneity. First, the Helmholtz equation is transformed into standard form by introducing
new variables. Next, integral equations with respective boundary conditions are composed and solved by
orthogonal function expansion and effective truncation techniques. Obtained results enable to understand the
influence on the dynamic stress concentration factor as well as the electric and magnetic field intensities under
proper conditions. The conclusions of this article are verified by comparing the analytical solutions to the ones
obtained by finite element method.

1 Introduction

Functionally graded materials play an important role in the design of sensors in aerospace and marine engi-
neering. The mechanical–electric–magnetic coupling effects in piezoelectric/piezomagnetic materials enable
to realize the exchange of mechanical vibration and alternating current. This makes piezoelectric materials
widely used in residents’ life and industry. Piezoelectric/piezomagnetic composite structures such as beams,
plates, shells, and columns can contain all kinds of defects caused by processing technology and polling.
These defects lead to the concentration of dynamic stress around them, which aggravates the defect problem
for functionally graded materials as compared to that for common materials. Moreover, concentration of the
intensities of electric and magnetic fields near the defects takes place, which not only leads to the failure
of the structure and fracturing in the linking sections of different materials, but also to electric leakage and
magnetic breakdown. However, despite a large number of studies of the statics properties of homogeneous
piezoelectric/piezomagneticmaterials, there are only limited studies devoted to the dynamic properties of inho-
mogeneous materials because the corresponding governing equations are very complex, and the Helmholtz
equation includes variable coefficients. The innovation of this article is that this complex problem is addressed
by using separation of variables, and the effects of different parameters are analyzed and discussed.

A large number of studies [1–21] is devoted to the problems of defects, among which the elastic wave
problem is a hot research topic. Since Pao and Mow [1] analyzed an elastic wave in the whole space by
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separating the time variable, elastic wave theory was gradually improved and widely used in engineering.
Wang [2] examined the dynamic electromechanical behavior of interacting interfacial cracks between two
piezoelectricmedia under anti-planemechanical loading.Guo et al. [3–5] studied the dynamic characteristics of
on initially stressed piezoelectric/piezomagnetic plate under elastic wave. Bymeans of stiffnessmatrixmethod,
Hamdi Ezzin et al. [6–8] calculated the phase velocity in piezoelectric/piezomagnetic materials subjected to
different elastic waves under magnetoelectric open circuit and short circuit conditions. Shi [9] used the transfer
matrix method to study the coupling of elastic shear waves and electromagnetic waves in one-dimensional
piezoelectric/piezomagnetic composites. With the aid of the integral equation method, Singh et al. [10, 11]
investigated the characteristics of Love-type waves scattered through on irregular surface in piezoelectric
composite structures. They also focused on the reflection of plane waves at the surface of a piezothermoelastic
fiber-reinforced composite (PTFRC) half-space by classical dynamical coupled theory, Lord–Shulman theory,
and Green–Lindsay theory. Song et al. [12, 13] investigated the dynamic problem of a cavity located near the
horizontal boundary. Hui et al. [14–16] studied the dynamic stress around a cavity in piezoelectric bi-material
media.

In recent years, the dynamic properties of inhomogeneousmedia including the piezoelectric/piezomagnetic
half-space were studied. Manolis et al. [17] analyzed the amplitude of seismic displacement induced by anti-
plane strain wave motion in an inhomogeneous geological region containing tunnels by BEM computation.
Mahanty et al. [18] explored the effect of initial-stress, heterogeneity, and anisotropy on the propagation
of SH-type, Rayleigh-type, and Love-type waves in a semi-infinite medium with a distinct initially stressed
heterogeneous anisotropic layer by separate variable method. Nazarov [19] investigated the interaction of
powerful and weak longitudinal acoustic waves in microscopically inhomogeneous media both experimentally
and theoretically.With the help of “directional-ellipse”method, StanChiriţă et al. [20] obtained inhomogeneous
plane wave solutions in the framework of the linear theory of poroelastic materials. Yang et al. [21] addressed
the problems of dynamic stress induced by wave propagation in an inhomogeneous right-angle plane with a
circular cavity by applying the theory of complex functions and the image principle.

In this article, scattering of SH-waves by a circular inclusion in an inhomogeneous piezoelec-
tric/piezomagnetic half-space is investigated. The inhomogeneity of materials leads to the first-order partial
derivatives of variables x and y in the Helmholtz equation. Therefore, the variable separation method is applied
to transform the Helmholtz equation into the standard form. Moreover, the series expansion and the image
methods are used to perform the calculation. Finally, the dynamic stress concentration factor (DSCF), the elec-
tric field intensity concentration factor (EFICF), and the magnetic field intensity concentration factor (MFICF)
around the circular inclusion are obtained and discussed.

At present, Mori–Tanaka model is widely used. However, this model is applicable only in micromechanics.
In this paper, however, the wave problem is studied in the framework of macromechanics, so that the scope of
research is different. Since most of the distribution functions that represent non-uniformity can be expanded
into trigonometric series and trigonometric functions can be converted into exponential ones by the Euler
formula, the exponential function distribution model has a high engineering significance. This paper provides
a theoretical method for obtaining the non-uniform distributions in the form of exponential functions. This
method establishes a theoretical basis for the analysis of distribution functions composed by addition ofmultiple
exponential functions with the aid of superposition method.

Thederivationof the formulas inRef. [18] is basedon the integral transformationmethod,while the formulas
in this paper is constructed byGreen’s functionmethod,which is the difference between the researchmethods in
the two articles. This paper studies piezoelectric/piezomagnetic materials, while Ref. [21] investigates ordinary
materials, which is the difference between the research objects in the two articles. In particular, due to the
effect of mechanical–electric–magnetic coupling, the derivation of the formulas in this paper is more complex
than that in Ref. [21], and the model in this paper contains inclusions, which is lack of Ref. [18]. In summary,
the research in this article has a certain significance.

2 Theoretical model

We consider two piezoelectric/piezomagnetic right-angle spaces are joined together to form a half-space and
subjected to the impact of SH wave. The two-dimensional model is located in xoy-plane, and the polarized
direction is along the z-axis, as shown in Fig. 1. All media in the model are transverse isotropic materials.
The Medium I is a homogeneous and isotropic piezoelectric right-angle space containing a circular cavity.
The Medium II is a right-angle space composed of piezomagnetic material with an inhomogeneity.
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Fig. 1 Model of a piezoelectric/piezomagnetic half space with a circular inclusion

Table 1 Material parameters

Medium Parameter

Body density Elastic
coefficient

Piezoelectric
coefficient

Piezomagnetic
coefficient

Dielectric
constant

Permeability Magnetoelectric
coefficient

Medium I ρI
0 cI440 eI150 – κ I

110 μI
110 t I110

Medium II ρII cII44 – hII15 κ II
11 μII

11 t11
Medium III ρIII cIII44 eIII15 – κ III

11 μIII
11 t11

Note that the magnetoelectric coefficients of the Medium II and III are equal

The horizontal boundaries of the Medium I and II are BH , and the common vertical interface between them is
BV .
The Medium III is an inhomogeneous piezoelectric circular inclusion with the boundary Bin .
The geometric parameters of this model are as follows:
The radius of boundary Bin :a.
The distance between the center of the circular inclusion and the horizontal boundary BH :h.
The distance between the center of the circular inclusion and the vertical interface BV :d .
The material parameters of this model are shown in Table 1.
The material parameters of a piezoelectric/piezomagnetic medium are assumed to have an exponential distri-
bution along the x- and y-axis. Note that the superscripts I, II, and III are ignored:

c44(x , y) � c440e
2(px+qy), e15(x , y) � e150e

2(px+qy), h15(x , y) � h150e
2(px+qy),

κ11(x , y) � κ110e
2(px+qy), t11(x , y) � t110e

2(px+qy),μ11(x , y) � μ110e
2(px+qy),

ρ(x , y) � ρ0e
2(px+qy),

(1)

where the parameters c440, e150, h150, κ110,μ110, t110, and ρ0 are material constants, e2(px+qy) is an inhomoge-
neous factor, and p ≤ 0 and q ≥ 0 represent the powers of the exponential function, respectively. The physical
meaning of the latter are the gradients of material parameters along the x- and y-axis, respectively.

The following assumptions were made to simplify calculations:

1. For the Medium I,p1 � 0 and q1 � 0, so that the inhomogeneous factor is e2(p1x+q1y) � 1, meaning that
the Medium I is homogeneous.

2. For the Medium II,p2 < 0, q2 � 0 and the inhomogeneous factor is e2p2x . This assumption is consistent
with reality. In particular, when x → +∞ in the right-angle space, e2p2x → 0, the piezomagnetic material
becomes a homogeneous medium at this, and the material parameters do not become infinite.

3. For Medium III,p3 < 0 and q3 > 0 in the inhomogeneous factor e2(p3x+q3y). Because the values of
coordinates x and y for the circular inclusion (i.e., the Medium III) are finite, the material parameters do
not tend to infinity.

A special case is defined below.
Subcase: when ρIII � 0, the Medium III degenerates into a circular cavity. In this case, p3 � 0 and

q3 � 0. If the center of the circular cavity is chosen on the horizontal boundary, the cavity is simplified into a
semicircular hollow.

The expressions corresponding to the special case of the Medium III are presented in detail in Sect. 4.4.
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3 Governing equations and boundary conditions

3.1 Governing equations

The derivation of the governing equation requires decoupling of the equilibrium and constitutive equations,
which is a lengthy process. At this, the variables f and ζ are introduced. The detailed derivation is shown in
Part I of the Appendix,

f � e150u − κ110φ − t110ϕ,

ζ � h150u − t110φ − μ110ϕ.
(2)

Equations (3) are obtained as a result of complex derivation, However, they still contain the powers of the
exponential function p and q:

∇2u + 2

(
p
∂u

∂x
+ q

∂u

∂y

)
� 1

c2SH

∂2u

∂t2
,

∇2 f + 2

(
p
∂ f

∂x
+ q

∂ f

∂y

)
� 0,

∇2ζ + 2

(
p
∂ζ

∂x
+ q

∂ζ

∂y

)
� 0.

(3)

Here, cSH �
√
cm
/
ρ0 is the wave velocity, and cm � c440 +

e2150μ110+h2150κ110−2h150e150t110
κ110μ110−t2110

is the equivalent

elastic constant, respectively.
Obviously, the first Eq. (3) contains the second derivative of time. However, only the steady-state problem

of elastic wave is analyzed in this article. Therefore, a variable substitution method is applied to eliminate the
influence of time factor e−iωt .

By introducing the variable u � we−iωt , the first Eq. (3) can be simplified as follows:

∇2w + 2

(
p
∂w

∂x
+ q

∂w

∂y

)
+ k2w � 0 (4)

where k � ω
/
cSH represents wave numbers and ω is the frequency of the plane shear wave, respectively.

In order to eliminate the powers of the exponential function p and q , the solutions of Eq. (3) can be assumed
in the following form by using the separation of variables method:

w � W (x , y)e−(px+qy), f � f0(x , y)e
−(px+qy), ζ � ζ0(x , y)e

−(px+qy) (5)

,
By substituting Eq. (5) into Eqs. (3) and (4), the following equations are obtained:

∇2W + k20W � 0,∇2 f0 + (ik′)2 f0 � 0,∇2ζ0 + (ik′)2ζ0 � 0 (6)

,
Here, k0 � √

k2 − p2 − q2, k2 − p2 − q2 > 0, k′ � √
p2 + q2, and f0 and ζ0 represent electric and magnetic

field parameters, respectively. The variable W satisfies the Helmholtz equation.
Since the Laplace operator satisfies the relation ∇2(•) � ∇ · (∇(•)), the physical meaning of the first Eq. (6)
is that it describes the spread of the elastic wave in time and space.
For the Medium I, k′ � 0,p1 � 0, and q1 � 0. Therefore, the second and third Eq. (6) degenerate into Laplace
equation as follows:

∇2 f0 � 0,∇2ζ0 � 0 (7)

Equations (7) mean that the gradient fields of the variables f0 and ζ0 are non-source and the vibration frequency
is zero.
By means of Cramer’s Rule, variables φ and ϕ in Eq. (2) can be expressed as follows:

φ � a1w + b1 f + c1ζ ,

ϕ � a2w + b2 f + c2ζ.
(8)
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where:
a1 � μ110e150−t110h150

μ110κ110−t2110
, b1 � −μ110

μ110κ110−t2110
, c1 � t110

μ110κ110−t2110
,

a2 � κ110h150−t110e150
μ110κ110−t2110

, b2 � t110
μ110κ110−t2110

, c2 � −κ110
μ110κ110−t2110

.

Each field contains the time factor e−iωt , which is omitted to simplify the calculation. Therefore, u in Eqs.
(8) and (9) may be replaced by w.

In the complexplane, the inhomogeneous factor is e2(px+qy) � ep(η+η̄)−q(η−η̄)i , and the constitutive equation
can be expressed as follows:

τr z � ep(η+η̄)−q(η−η̄)i
[
M1

(
∂w

∂η
eiθ +

∂w

∂η̄
e−iθ

)
+ M2

(
∂ f

∂η
eiθ +

∂ f

∂η̄
e−iθ

)
+ M3

(
∂ζ

∂η
eiθ +

∂ζ

∂η̄
e−iθ

)]
,

τθ z � ep(η+η̄)−q(η−η̄)i i

[
M1

(
∂w

∂η
eiθ − ∂w

∂η̄
e−iθ

)
+ M2

(
∂ f

∂η
eiθ − ∂ f

∂η̄
e−iθ

)
+ M3

(
∂ζ

∂η
eiθ − ∂ζ

∂η̄
e−iθ

)]
,

Dr � ep(η+η̄)−q(η−η̄)i
(

∂ f

∂η
eiθ +

∂ f

∂η̄
e−iθ

)
, Dθ � ep(η+η̄)−q(η−η̄)i i

(
∂ f

∂η
eiθ − ∂ f

∂η̄
e−iθ

)
,

Br � ep(η+η̄)−q(η−η̄)i
(

∂ζ

∂η
eiθ +

∂ζ

∂η̄
e−iθ

)
, Bθ � ep(η+η̄)−q(η−η̄)i i

(
∂ζ

∂η
eiθ − ∂ζ

∂η̄
e−iθ

)
(9)

where M1 � c440 + a1e150 + a2h150, M2 � b1e150 + b2h150, and M3 � c1e150 + c2h150, respectively.

3.2 Boundary conditions

To study the dynamic behavior of piezoelectric/piezomagnetic materials considered in this paper, the boundary
conditions on the horizontal boundary BH , vertical boundary BV , and boundary Bin should be formulated.

1. The boundary conditions on the horizontal boundary BH imply mechanical stress-free, electrical open
circuit and magnetic short circuit state:⎧⎪⎨

⎪⎩
τ Iyz

∣∣∣
y�h

� 0, DI
y

∣∣∣
y�h

� 0 , BI
y

∣∣∣
y�h

� 0

τ IIyz

∣∣∣
y�h

� 0, DII
y

∣∣∣
y�h

� 0 , BII
y

∣∣∣
y�h

� 0
(10)

.
2. The conditions on the boundary Bin describe the continuous stress, electric, and magnetic fields:⎧⎪⎪⎨

⎪⎪⎩
wI
∣∣
r�a � wIII

∣∣
r�a , τ

I
r z

∣∣
r�a � τ IIIr z

∣∣
r�a

φI
∣∣
r�a � φIII

∣∣
r�a , D

I
r

∣∣
r�a � DIII

r

∣∣
r�a ,

ϕI
∣∣
r�a � ϕIII

∣∣
r�a , B

I
r

∣∣
r�a � BIII

r

∣∣
r�a .

(11)

3. At the vertical interface BV the stress, electric, and magnetic fields are continuous as well.

4 Physical fields caused by SH-wave

4.1 SH-wave

SH-waves are the simplest plane shear waves, which are widely used for nondestructive testing and underwater
detection. In this paper, the characteristics of propagation of SHwaves in piezoelectric/piezomagneticmaterials
are studied. The incident wave is considered as a vibration source. This wave is reflected and refracted at the
vertical interface resulting in induction of elastic, electric, and magnetic fields.

We consider the steady-state time-harmonic displacement, electric, and magnetic waves incident in the
piezoelectric/piezomagnetic half-space at an angle α0 to the horizontal plane as shown in Fig. 2.

According to [2], the incident wave wi satisfying the boundary conditions Eq. (10) on the horizontal
boundary BH generates the electric potential φi and magnetic potential ϕi expressed as follows:

wr � w1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
,
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Fig. 2 SH-wave in a piezoelectric/piezomagnetic half space

φr � φ1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
,

ϕr � ϕ1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
, (12)

Note that the superscript i refers to the incident wave.
Similarly, the electric potential φr and magnetic potential ϕr caused by the reflected wave wr are obtained

as follows:

wr � w1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
,

φr � φ1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
,

ϕr � ϕ1

{
exp

{
ik1
2

[
(η − hi)e−iβ + (η̄ + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − hi)eiβ + (η̄ + hi)e−iβ

]}}
, (13)

where the reflection angle β � π − α0. Here, the superscript r refers to the reflected wave.
Since the refracted wave w f propagates in Medium II composed of inhomogeneous piezomagnetic mate-

rials, in order to make it satisfy the governing Eq. (6), it is necessary to introduce the complex variable

e−p2x � e− p2(η+η̄)
2 as the product factor which describes the inhomogeneity. Therefore, the physical meaning

of Eq. (14) of this paper is different from that of Eqs. (12)–(13) in [2]

w f � e− p2(η+η̄)
2 w2

{
exp

{
ik02
2

[
(η − hi)e−iα2 + (η̄ + hi)eiα2

]}
+ exp

{
ik02
2

[
(η − hi)eiα2 + (η̄ + hi)e−iα2

]}}
,

φ f � e− p2(η+η̄)
2 φ2

{
exp

{
ik02
2

[
(η − hi)e−iα2 + (η̄ + hi)eiα2

]}
+ exp

{
ik02
2

[
(η − hi)eiα2 + (η̄ + hi)e−iα2

]}}
,

ϕ f � e− p2(η+η̄)
2 ϕ2

{
exp

{
ik02
2

[
(η − hi)e−iα2 + (η̄ + hi)eiα2

]}
+ exp

{
ik02
2

[
(η − hi)eiα2 + (η̄ + hi)e−iα2

]}}
,

(14)

Here, k02 �
√
k22 − p22, k

2
2 − p22 > 0, and α2 represents angle of refraction, respectively. Note that the

superscript f refers to the refracted wave.
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Fig. 3 Reflection of the scattering wave at a vertical interface

The variables introduced above should satisfy the continuity conditions on the vertical boundary BV(x � 0):⎧⎪⎪⎨
⎪⎪⎩

wi + wr � w f , τ ixz + τ rxz � τ
f
xz ,

φi + φr � φ f , Di
x + Dr

x � D f
x ,

ϕi + ϕr � ϕ f , Bi
x + Br

x � B f
x .

(15)

With the help of Cramer’s Rule, Eq. (15) can be solved, and the relationships between all parameters can be
obtained:

w1 � w1(w0,φ0,ϕ0),w2 � w2(w0,φ0,ϕ0),φ1 � φ1(w0,φ0,ϕ0),

φ2 � φ2(w0,φ0,ϕ0),ϕ1 � ϕ1(w0,φ0,ϕ0),ϕ2 � ϕ2(w0,φ0,ϕ0), (16)

The detailed expressions are shown in the Part III of the Appendix.

4.2 Scattering wave

When the incident wave wi propagates to the circular inclusion (i.e., the Medium III) that can be regarded as
an obstacle, the diffraction and scattering of the wave occurs, and the scattered wave ws propagates from the
center of the Medium III as the emission origin. Therefore, the variable η′ � η + d is introduced to create a
new coordinate system x ′o′y′ with the center of Medium III as the origin, as shown in Fig. 1.

The transformations of coordinates between the two coordinate systems look as follows:{
x ′ � x + d ,

y′ � y.
(17)

As shown in Fig. 3, the scattered wave ws is reflected and refracted at the vertical interface BV (x ′ � d).
However, the expressions for the reflected and refracted waves caused by ws are very complicated, so that
only the approximate formulas can be obtained.

The image method is applied for mathematical simplicity and to eliminate the influence of ws on the
vertical interface, as shown in Fig. 4. At this time, the shear stress caused byws is zero at the vertical boundary.
Moreover, the scattered wave ws also satisfies the boundary conditions (10) on the horizontal boundary BH .
Since the Medium I is homogeneous piezoelectric material, the factor e2(px+qy) can be omitted.

Based on the above analysis, the expression for the scattered wave ws can be constructed as follows:

ws �
+∞∑

n�−∞
An

4∑
j�1

S( j)n (18)

where S(1)n � H (1)
n (k1

∣∣η′∣∣)[η′/∣∣η′∣∣]n , S(2)n � H (1)
n (k1

∣∣η′
1

∣∣)[η′
1

/∣∣η′
1

∣∣]−n , S(3)n � (−1)nH (1)
n (k1

∣∣η′
2

∣∣)[η′
2

/∣∣η′
2

∣∣]n ,
S(4)n � (−1)nH (1)

n (k1
∣∣η′

3

∣∣)[η′
3

/∣∣η′
3

∣∣]−n , η′
1 � η′ − 2hi ,η′

2 � η′
1 − 2d ,η′

3 � η′ − 2d .
Note that the superscript s refers to the scattered wave.

The electric potential φs and magnetic potential ϕs induced by the scattered wave ws are obtained as follows:

φs � aI
1w

s + bI1 f
s + cI1ζ

s ,ϕs � aI
2w

s + bI2 f
s + cI2ζ

s ,
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Fig. 4 The image of the scattering wave

f s �
∞∑
n�1

⎡
⎣Bn

4∑
j�1

ϕ
( j)
1n + Cn

4∑
j�1

ϕ
( j)
2n

⎤
⎦, ζ s �

∞∑
n�1

⎡
⎣Dn

4∑
j�1

ϕ
( j)
1n + En

4∑
j�1

ϕ
( j)
2n

⎤
⎦ (19)

where ϕ
(1)
1n � η′−n ,ϕ(2)

1n � (η̄′ + 2hi)−n , ϕ
(3)
1n � (−1)n(η̄′ − 2d)−n ,ϕ(4)

1n � (−1)n(η′ − 2d − 2hi)−n , ϕ
(1)
2n �

η̄′−n ,ϕ(2)
2n � (η′ − 2hi)−n , ϕ

(3)
2n � (−1)n(η′ − 2d)−n ,ϕ(4)

2n � (−1)n(η̄′ − 2d + 2hi)−n , aI1 � μI
110e

I
150

μI
110κ

I
110−t2110

,

bI1 � −μI
110

μI
110κ

I
110−t2110

,cI1 � t110
μI
110κ

I
110−t2110

, aI2 � −t110eI150
μI
110κ

I
110−t2110

, bI2 � t110
μI
110κ

I
110−t2110

, cI2 � −κ I110
μI
110κ

I
110−t2110

.

This assumption of Eq. (19) is plausible because the physical variables f s and ζ s do not tend to infinity at
η′ → +∞ and η̄′ → +∞.
Thus, the total displacement field wI, total electric field φI, and total magnetic field ϕI in the Medium I are
obtained by the superposition method:

wI � wi + wr + ws ,φI � φi + φr + φs ,ϕI � ϕi + ϕr + ϕs (20)

,
Similarly, the total displacement field wII, total electric field φII, and total magnetic field ϕII of the Medium II
are obtained as follows:

w I I � w f , φ I I � φ f , ϕ I I � ϕ f (21)

,

4.3 Standing wave

When the piezoelectric material is subjected to the shear wave, the standing wave is formed in the circular
inclusion (i.e., the Medium III). Due to the inhomogeneity of the Medium III, the factor e−(p3x ′+q3y′) �
e−p3(

η′+η̄′
2 )−q3(

η′−η̄′
2i ) should be introduced.

The expression of the standing wave in Medium III can be established as follows:

wst � Wste
−p3

(
η′+η̄′
2

)
−q3

(
η′−η̄′
2i

)
,Wst �

+∞∑
n�−∞

Rn Jn(k03
∣∣η′∣∣)[η′/∣∣η′∣∣]n (22)
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where k03 �
√
k23 − p23 − q23 and k23 − p23 − q23 > 0.

Equations (22) are based on the assumption that the standing wave consists of two types of waves:

1. The wave propagating outward the center of the Medium III, and
2. The wave converging toward the center of the Medium III.

The two scenarios mentioned above are described by the terms Jn(k03
∣∣η′∣∣)[η′/∣∣η′∣∣]n in Eqs. (22).

Therefore, Eqs. (22) describe the distribution of waves in Medium III. Since both waves mentioned above
are related to the center of Medium III, the coordinate system x ′o′y′ is adopted. Note that the superscript st
refers to the standing wave.

The complex variable ik′ is equivalent to k in the first Eq. (6). Therefore, the expressions for electric
potential φst and magnetic potential ϕst induced by the standing wave wst can be written as follows:

φst � aIII1 wst + bIII1 f st + cIII1 ζ st ,

ϕst � aIII2 wst + bIII2 f st + cIII2 ζ st ,

f st � f st0 e
−p3

(
η′+η̄′
2

)
−q3

(
η′−η̄′
2i

)
, ζ st � ζ st

0 e
−p3

(
η′+η̄′
2

)
−q3

(
η′−η̄′
2i

)
,

f st0 �
+∞∑

n�−∞

[
LnH

(1)
n (ik′

3

∣∣η′∣∣) + TnH
(2)
n (ik′

3

∣∣η′∣∣)][η′/∣∣η′∣∣]n ,

ζ st
0 �

+∞∑
n�−∞

[
UnH

(1)
n (ik′

3

∣∣η′∣∣) + VnH
(2)
n (ik′

3

∣∣η′∣∣)][η′/∣∣η′∣∣]n . (23)

Here: k′
3 �

√
p23 + q23 ,

aIII1 � μIII
110e

III
150

μIII
110κ

III
110−t2110

,bIII1 � −μIII
110

μIII
110κ

III
110−t2110

,cIII1 � t110
μIII
110κ

III
110−t2110

,

aIII2 � −t110eIII150
μIII
110κ

III
110−t2110

,bIII2 � t110
μIII
110κ

III
110−t2110

,cIII2 � −κ III110
μIII
110κ

III
110−t2110

.

Since the complex variables η′ and η̄′ for the Medium III are finite, the variables f st and ζ st cannot be
infinite, and all the terms H (1)

n (•) and H (2)
n (•) are the solutions for φst and ϕst .

The total displacement field wIII, total electric field φIII, and total magnetic field ϕIII in the Medium III are
obtained by the superposition method:

wIII � wst ,φIII � φst ,ϕIII � ϕst (24)

According to the boundary condition (11) on the boundary Bin , the equations to find the unknown coef-
ficients An ,Bn ,Cn ,Dn ,En ,Rn ,Ln ,Tn ,Un , and Vn are obtained. The details of the calculations are presented in
Part I of the Appendix.

4.4 Special case related to medium III

At ρIII � 0, Medium III degenerates into a circular cavity. In this case, p3 � 0 and q3 � 0.
Because no elastic field can be formed in the air in the cavity, the electric potentialφc andmagnetic potential

ϕc of the air can be obtained as follows:

φc � − 1

κc
0
f c,ϕc � − 1

μc
0
ζ c,

f c � F0 +
+∞∑
n�1

(Fnη
′ n + Xn η̄

′ n), ζ c � Y0 +
+∞∑
n�1

(Ynη
′ n + Zn η̄

′ n). (25)

Here, κc
0 � 8.85 × 10−12F/m is the dielectric constant of air, and μc

0 � 12.566 × 10−7H/m is the
permeability of air, respectively.

At η′ → 0 and η̄′ → 0, f c and ζ c have finite values, so that the terms (•)−n in Eq. (25) should be omitted.
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5 Green’s function method and calculation index

5.1 Brief introduction of Green’s function

InSect. 4.2,weuse the imagemethod to simplify the calculation of the scatteredwave.However, this assumption
does not correspond to reality. In order to obtain the real distribution of elastic, electric, and magnetic fields,
the Green’s function method is used.

The total displacement field wt , total electric field φt and total magnetic field ϕt in the Medium I are the
superpositions of Green’s functions and SH-wave:

wt � w I +
∫ +∞

0
f1(r

′′
0 , θ

′′
0 )G

I
w(r

′′
0 , θ

′′
0 , r

′′, θ ′′)dr ′′
0 , θ ′′

0 � −π
/
2 ,

φt � φ I +
∫ +∞

0
f3(r

′′
0 , θ

′′
0 )G

I
φ(r

′′
0 , θ

′′
0 , r

′′, θ ′′)dr ′′
0 , θ ′′

0 � −π
/
2 ,

ϕt � ϕ I +
∫ +∞

0
f5(r

′′
0 , θ

′′
0 )G

I
ϕ(r

′′
0 , θ

′′
0 , r

′′, θ ′′)dr ′′
0 , θ ′′

0 � −π
/
2 .

(26)

Here, GI
w,G

I
φ , and GI

ϕ are obtained by Green’s function method and represent displacement, electric
potential and magnetic potential in the Medium I, respectively. The variable (r ′′, θ ′′) is the polar coordinate in
the system having the top of the right-angle region as the origin; the variable (r ′′

0 , θ ′′
0 ) represents the coordinates

of the point source.
The details of the calculations are provided in Part II of the Appendix.

5.2 Dynamic stress concentration factor

DSCF is a dimensionless coefficient, which characterizes variation of dynamic stress at each position of
the boundary Bin . After the position is defined by variables (r ′′, θ ′′), the DSCF in the points above can be
calculated by introducing the complex variables η � r ′′eiθ ′′

, η̄ � r ′′e−iθ ′′
. When DSCF of a certain location of

the boundary Bin is relatively large, this location is prone to damage and fracture. Therefore, DSCF indicates
the structural strength to a certain extent. The tangential shear stress around the Medium III can be expressed
as follows:

τθ z � τ Iθ z +
∫ +∞

0
f1(r

′′
0 ,β1)

cI440
r ′′
0

∂GI
w(r

′′
0 ,β1; r ′′, θ ′′)
∂θ ′′ dr ′′

0

+
∫ +∞

0
f3(r

′′
0 ,β1)

eI150
r ′′
0

∂GI
φ(r

′′
0 ,β1; r ′′, θ ′′)
∂θ ′′ dr ′′

0 , (27)

The DSCF can be expressed as follows:

τ ∗
θ z � ∣∣τθ z

/
τ0
∣∣ (28)

where β1 � −π
/
2, and τ0 � ik1(cI440w0 + eI150φ0) is the amplitude of the shear stress induced by incident

waves, respectively.
The expression for DSCF contains three contributions:

1. dynamic stress induced by SH-wave,
2. dynamic stress caused by the external forces, and
3. dynamic stress produced by the external electric potential.

5.3 Electric field intensity concentration factor

The dimensionless EFICF characterizes the change of electric potential at each position of the boundary Bin .
The EFICF can be obtained by a combination of the integral equation and complex function methods. When
EFICF of a certain position of boundary Bin is relatively large, the boundary is prone to leakage. Therefore,
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EFICF reflects the safety of piezoelectric/piezomagnetic material. The electric field intensity can be expressed
as follows:

Eθ � i

(
∂φI

∂η′′ e
iθ ′′ − ∂φI

∂η̄′′ e
−iθ ′′

)
+ i

∫ +∞

0
f3(η

′′
0)

(
∂GI

φ

∂η′′ e
iθ ′′ − ∂GI

φ

∂η̄′′ e
−iθ ′′

)
d
∣∣η′′

0

∣∣, (29)

The EFICF is expressed as follows:

E∗
θ � ∣∣Eθ

/
E0
∣∣ (30)

where E0 � ik1φ0 is the amplitude of the electric potential of the incident wave.
The expression of EFICF contains two parts:

1. electric potential induced by SH-wave, and
2. external electric potential.

5.4 Magnetic field intensity concentration factor

The dimensionless MFICF characterizes the magnetic induction intensity at each position of the boundary
Bin . The MFICF can be calculated by the superposition of different physical fields. If MFICF is too large,
magnetic breakdown damaging thematerial structure will occur at the boundary Bin due to too strongmagnetic
field. Therefore, MFICF is an important index of piezoelectric/piezomagnetic material. The MFICF can be
expressed as follows:

Hθ � i

(
∂ϕI

∂η′′ e
iθ ′′ − ∂ϕI

∂η̄′′ e
−iθ ′′

)
+ i

∫ +∞

0
f3(η

′′
0)

(
∂GI

ϕ

∂η′′ e
iθ ′′ − ∂GI

ϕ

∂η̄′′ e
−iθ ′′

)
d
∣∣η′′

0

∣∣ , (31)

The MFICF is expressed as follows:

H∗
θ � ∣∣Hθ

/
H0
∣∣ (32)

where H0 � ik1ϕ0 is the amplitude of the magnetic potential caused by incident waves.
The expression of MFICF contains two contributions:

1. magnetic potential caused by SH-wave, and
2. external magnetic potential.

6 Numerical examples and analysis

6.1 Verification of the method

Figure 5 presents the distribution of DSCF around as circular inclusion influenced by SH-wave under the
extreme condition of eI150 � 0, κ I

110 � 0, μI
110 � 0, t I110 � 0;hII150 � 0, κ II

110 � 0, μII
110 � 0, t II110 � 0,

and ρIII
0 � 0.The numerical examples in this article can be degenerated into a circular cavity in an elastic

bi-material half-space, which is revealed in the case reported in [14]. At the parameters of media identical to
those in [14], our results have a good agreement with those from the references above.

As can be seen from Fig. 6, in which the Medium I is shown in green color and the Medium II in red color,
respectively, the contact points of these media merge to make the stress transfer between them effective. We
constructed a model for finite element calculations with hexahedral mesh elements for calculation accuracy.
When the parameters of this model are set in accordance with the numerical example considered above, the
results provided by both methods are almost identical. This means that the methods applied in this article are
correct and valid.

Fourier series expansion was applied to the wave functions presented in this article. The number of terms in
the series expansion was increased by one until the difference between two consecutive calculation results was
less than 10−12. Such approach ensures the accuracy of the expression for the wave function and convergence
of calculation results. In the finite element calculations, the quality of the mesh was verified first. The irregular
mesh was preprocessed to normalize its size and shape. In this way, the influence of the irregular mesh on
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Fig. 5 Verification of the method in this article

Fig. 6 Comparison of finite element method

the computational convergence was eliminated. Second, a smaller substep was set in the iterative calculations,
leading to the decrease of the increment caused by inhomogeneity at each calculation step. This procedure
enabled to guarantee the convergence of the iterative calculations.

In this Section, the value of DSCF, EFICF, and MFICF is provided as well as the effects of free boundary,
and frequency of SH-wave, and different combinations of material parameters are discussed. The values of the
dimensionless parameters obtained in numerical examples in this article are as follows:h∗ � h

/
a, d∗ � d

/
a,

and b∗ � b
/
a.The parameters of common piezoelectric/piezomagnetic materials are shown in Tables 2 and

3.
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Table 2 Parameters of piezoelectric material

Parameters Materials

PZT-7 PZT-5A PZT-5H PZT-4 BaTiO3

κ11 (×10−9 C2/Nm) 17.1 8.107 15.06 6.46 9.82
e15 (C/m2) 13.5 12.3 17 12.7 11.4
c44 (×109 N/m2) 25 21.1 23 25.6 43.9
ρ (×103 kg/m3) 7.8 7.75 7.5 7.5 5.7
μ11 (×10−6 NS2/C2) 5 5 5 5 5

Here, κ0 � 8.85×10−12 F/m) is the dielectric constant of air

Table 3 Parameters of piezomagnetic material

Parameters Materials

CoFe2O4 Terfenol-D

κ11 (×10−9 C2/Nm) 0.08 15.04×107

c44 (×109 N/m2) 45.3 5.99
ρ (×103 kg/m3) 5.3 9.23
μ11 (×10−6 NS2/C2) 157 3.976
h (N/Am) 550 167.665

Here, μ0 � 12.566 × 10−7 H/m is the permeability of air

Table 4 Powers of exponential functions

Medium I p1 � 0,q1 � 0

Medium II p2 � −0.003,p2 � 0
Medium II p3 � −0.003,q3 � 0.002

Among these parameters, the position h∗, d∗ and b∗ of the circular inclusion are geometry parameters, and
the frequency k1a of the incident wave is a loading parameter. In this article, the Medium I is PZT-7 material
by default. When the power of the exponential function p2 � 0, the Medium II becomes a homogeneous
CoFe2O4 material by default. When the power of the exponential function p3 � 0 and q3 � 0, the Medium
III becomes a homogeneous PZT-5A material by default. In the calculations, the value of the magnetoelectric
coefficient t110 is set to 5 × 10−12(NS/VC) by default.

The power coefficients of the exponential functions are shown in Table 4.
As was noticed above, piezoelectric/piezomagnetic materials are widely used in engineering [1]. At this,

various kinds of defects are formed in these materials during manufacture and exploitation. The numerical
examples described in this article have engineering implications. For example, the model presented here
is a simplified model of inhomogeneous piezoelectric/piezomagnetic composite plates with irregular defects,
which may be caused by the production process or dislocation of piezoelectric/piezomagnetic laminates during
pressing. When such a plate is subjected to dynamic load, its behavior and properties can be approximately
described by the model presented in this article.

6.2 Case1: Propagation of SH-wave in an inhomogeneous piezoelectric/piezomagnetic half-space

Figure 7 shows the distribution of DSCF (τ ∗
θ z) around a circular inclusion at different values of k1a under

incident SH-wave. At h∗ � 40, the value of τ ∗
θ z decreases with the value of k1a because of higher probability

of resonance at low frequencies.τ ∗
θ z reaches the maximum value of 2.63 (θ � −90◦) at k1a � 1 and h∗ � 20.

When the incident wave frequency is k1a � 0.1 and h∗ � 40, τ ∗
θ z reaches the maximum value of 3.87

(θ � −90◦), which exceeds the respective value at k1a � 1 and h∗ � 20 by more than 30%.The maximum
value of τ ∗

θ z in both examples(h∗ � 20 and h∗ � 40) is obtained at θ � −90◦. So, the damage of high
frequency is significant, and this angle value θ � −90◦ should be given especial attention.
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Fig. 7 Distribution of DSCF around a circular inclusion versus k1a under incident SH-wave

Fig. 8 Distribution of maximum value of DSCF around a circular inclusion versus k1a under incident SH-wave

In order to further analyze the influence of k1a on DSCF (τ ∗
θ z), Fig. 8 presents the variation curve of DSCF

with k1a.
Figure 8 shows the distribution of the maximum value of DSCF (τ ∗

θ z) around a circular inclusion varying
as k1a under incident SH-wave. Apparent oscillations in the curves can be seen from this Figure. These
oscillations are particularly strong in the range of k1a from 0.1 to 5. The upper limit of the maximum value of
τ ∗
θ z is about 4.

Figure 9 presents the distribution of DSCF (τ ∗
θ z) around a circular inclusion versus different incident angles

of SH-wave. It can be seen from Fig. 9a that the curves are symmetrical and τ ∗
θ z is the largest at α0 � 0◦.

When the incident angle α0 � 90◦,τ ∗
θ z is the smallest, so that this angle is optimum. Figure 9b shows the stress

distribution curve at α0 � 0◦, and τ ∗
θ z reaches the maximum value of 5.45(θ � −102◦).

Figure 10 shows the distribution of EFICF (E∗
θ ) around a circular inclusion varying as k1a under incident

SH-wave. Compared with DSCF, E∗
θ has a smaller value. The curve is almost symmetrical at h∗ � 20, and

E∗
θ reaches the maximum value of 0.19 × 10−3 (θ � −93◦). At h∗ � 40, E∗

θ reaches the maximum value of
0.29 × 10−3 (θ � 112◦). Therefore, the influence of h should not be ignored.

Figure 11 presents the distribution of EFICF (H∗
θ ) around a circular inclusion varying as k1a under incident

SH-wave.H∗
θ is smaller as compared to DSCF. At h∗ � 40 and k1a � 0.1, H∗

θ reaches the maximum value
of 0.11 × 10−4 (θ � −86◦). Low frequencies are more likely to induce resonance. Obviously, H∗

θ in the two
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Fig. 9 Distribution of DSCF around a circular inclusion versus incident angles of SH-wave

Fig. 10 Distribution of EFICF around a circular inclusion at different values of k1a under incident SH-wave
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Fig. 11 Distribution of MFICF around a circular inclusion versus k1a under incident SH-wave

Fig. 12 Distribution of DSCF (τ ∗
θ z) around a circular inclusion at different material parameters under incident SH-wave

examples has the maximum values at low frequency. Therefore, low frequency has a great influence on the
magnetic field.

In Fig. 12, the distributions of DSCF (τ ∗
θ z) around a circular inclusion varying as different material parame-

ters under incident SH-wave are shown. WhenMedium is are composed of PZT-5H, τ ∗
θ z reaches the maximum

value of 3.39 (θ � −180◦), which is larger than the maximum value of 2.63 (θ � −90◦) in the case of k1a � 1
and h∗ � 20 by more than 22%.Therefore, different piezoelectric materials have different corresponding
values of τ ∗

θ z , and attention should be paid to the dangerous angle of θ � −180◦, at which τ ∗
θ z can reach the

maximum.

6.3 Special cases: the DSCF around a circular cavity

Figure 13 shows the distributions of the maximum value of DSCF (τ ∗
θ z) around a circular cavity versus k1a

under incidence of SH-wave. In Fig. 13a, the range of frequency k1a is from 1 to 20, Fig. 13b is the local
amplification of Fig. 13a in the frequency range k1a from 0.2 to 7.4. Obviously, the curves show a stable trend
as a whole, and DSCF has the maximum values at k1a � 0.1 and k1a � 7.5, and these values are close to 5.5
and 4.5, respectively. In the range of k1a from 0.2 to 7.4, the maximum value of DSCF is less than 1.

Figure 14 presents the distribution of DSCF (τ ∗
θ z) around a circular cavity varying as k1a under incident

SH-wave. It can be seen from this Figure that the value of τ ∗
θ z decreases with increases of k1a due to higher
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Fig. 13 Distribution of the maximum value of DSCF (τ ∗
θ z) around a circular cavity versus k1a under incidence of SH-wave

Fig. 14 Distribution of DSCF around a circular cavity versus k1a under incident SH-wave

probability of having resonance at low frequencies. At k1a � 0.1 and h∗ � 40, τ ∗
θ z reaches the maximum

value of 5.53. The stress on the boundary of the circular cavity is uniform this pointing to significant damage
of low frequency.

7 Conclusions

In this paper, the theory of elastic wave, variable separation method, and series expansion method are applied
to investigate the problem of scattering SH-wave by a circular inclusion in an inhomogeneous piezoelec-
tric/piezomagnetic half-space. Numerous valuable statistics are obtained, which can provide references for the
engineering applications. Numerical calculations show that DSCF, EFICF, and MFICF are somewhat influ-
enced by the frequency of incident wave, position of circular inclusion, and characteristics of the materials.

1. Load parameter k1a has an obvious effect on DSCF. High frequency has a great impact on τ ∗
θ z ;

2. EFICF and MFICF have smaller values as compared to DSCF;
3. The low frequency has a great influence on the magnetic field, and electric field is greatly affected by the

middle frequency.
4. For DSCF (τ ∗

θ z), θ � −90◦ is a dangerous angle;
5. The upper limit of maximum τ ∗

θ z is about 4;
6. In a special case, the maximum value of DSCF is less than 1 in the frequency range k1a from 0.2 to 7.4.
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Specific combinations of physical parameters of a piezoelectric/piezomagnetic half-space can lead to a decrease
of DSCF value. Therefore, optimum choice of parameters can reduce the possibility of fracture of the structure.

Appendix

Part I: Decoupling of governing equations

The constitutive equations for a piezoelectric/piezomagnetic material look as follows:

τxz � c44(x , y)
∂u

∂x
+ e15(x , y)

∂φ

∂x
+ h15(x , y)

∂ϕ

∂x
,

τyz � c44(x , y)
∂u

∂y
+ e15(x , y)

∂φ

∂y
+ h15(x , y)

∂ϕ

∂y
,

Dx � e15(x , y)
∂u

∂x
− κ11(x , y)

∂φ

∂x
− t11(x , y)

∂ϕ

∂x
,

Dy � e15(x , y)
∂u

∂y
− κ11(x , y)

∂φ

∂y
− t11(x , y)

∂ϕ

∂y
,

Bx � h15(x , y)
∂u

∂x
− t11(x , y)

∂φ

∂x
− μ11(x , y)

∂ϕ

∂x
,

By � h15(x , y)
∂u

∂y
− t11(x , y)

∂φ

∂y
− μ11(x , y)

∂ϕ

∂y
. (33)

Here, σxz and σyz are stress tensor components;Dx and Dy are electric displacement tensor components;Bx
and By are magnetic induction components;w, φ, and ϕ are displacement, electric potential, and magnetic
potential, respectively.

Taking into account the absence of body forces and free charges for the dynamic problem, the equilibrium
equations of the piezoelectric/piezomagnetic medium are written as follows:

∂τxz

∂x
+

∂τyz

∂y
� ρ

∂2u

∂t2
,

∂Dx

∂x
+

∂Dy

∂y
� 0,

∂Bx

∂x
+

∂By

∂y
� 0. (34)

Employing Eqs. (34) into (33), the following governing equations are obtained:

∂c44(x , y)

∂x

∂u

∂x
+ c44(x , y)

∂2u

∂x2
+

∂e15(x , y)

∂x

∂φ

∂x
+ e15(x , y)

∂2φ

∂x2
+

∂h15(x , y)

∂x

∂ϕ

∂x
+ h15(x ,

y)
∂2ϕ

∂x2
+

∂c44(x , y)

∂y

∂u

∂y
+ c44(x , y)

∂2u

∂y2
+

∂e15(x , y)

∂y

∂φ

∂y
+ e15(x ,

y)
∂2φ

∂y2
+

∂h15(x , y)

∂y

∂ϕ

∂y
+ h15(x , y)

∂2ϕ

∂y2
� ρ(x , y)

∂2u

∂t2
,

∂e15(x , y)

∂x

∂u

∂x
+ e15(x , y)

∂2u

∂x2
− ∂κ11(x , y)

∂x

∂φ

∂x

− κ11(x , y)
∂2φ

∂x2
− ∂t11(x , y)

∂x

∂ϕ

∂x
− t11(x , y)

∂2ϕ

∂x2

+
∂e15(x , y)

∂y

∂u

∂y
+ e15(x , y)

∂2u

∂y2
− ∂κ11(x , y)

∂y

∂φ

∂y

− κ11(x , y)
∂2φ

∂y2
− ∂t11(x , y)

∂y

∂ϕ

∂y
− t11(x , y)

∂2ϕ

∂y2
� 0
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,

∂h15(x , y)

∂x

∂u

∂x
+ h15(x , y)

∂2u

∂x2
− ∂t11(x , y)

∂x

∂φ

∂x

− t11(x , y)
∂2φ

∂x2
− ∂μ11(x , y)

∂x

∂ϕ

∂x
− μ11(x , y)

∂2ϕ

∂x2

+
∂h15(x , y)

∂y

∂u

∂y
+ h15(x , y)

∂2u

∂y2
− ∂t11(x , y)

∂y

∂φ

∂y

− t11(x , y)
∂2φ

∂y2
− ∂μ11(x , y)

∂y

∂ϕ

∂y
− μ11(x , y)

∂2ϕ

∂y2
� 0 .

(35)

By substituting Eqs. (1) into (35), the governing equations can be described as follows:

c440∇2u + 2c440

(
p
∂u

∂x
+ q

∂u

∂y

)
+ e150∇2φ + 2e150

(
p
∂φ

∂x
+ q

∂φ

∂y

)
+ h150∇2ϕ + 2h150

(
p
∂ϕ

∂x
+ q

∂ϕ

∂y

)

� ρ0
∂2u

∂t2
,

e150∇2u + 2e150

(
p
∂u

∂x
+ q

∂u

∂y

)
− κ110∇2φ − 2κ110

(
p
∂φ

∂x
+ q

∂φ

∂y

)
− t110∇2ϕ − 2t110

(
p
∂ϕ

∂x
+ q

∂ϕ

∂y

)

� 0h150∇2u+2h150

(
p
∂u

∂x
+ q

∂u

∂y

)
−t110∇2φ−2t110

(
p
∂φ

∂x
+ q

∂φ

∂y

)
−μ110∇2ϕ−2μ110

(
p
∂ϕ

∂x
+ q

∂ϕ

∂y

)

� 0

,

(36)

where ∇2 represents the two-dimensional Laplace operator.

Part I: Calculation of unknown coefficients

According to the boundary conditions (11) on the boundary Bin , the integral equations with unknown coeffi-
cients An ,Bn ,Cn ,Dn ,En ,Rn ,Ln ,Tn ,Un and Vn are established as follows:

+∞∑
n�−∞

Anξ
(11)
n +

+∞∑
n�−∞

Rnξ
(16)
n � ξ (1) ,

+∞∑
n�−∞

Anξ
(21)
n +

+∞∑
n�1

Bnξ
(22)
n +

+∞∑
n�1

Cnξ
(23)
n +

+∞∑
n�1

Dnξ
(24)
n +

+∞∑
n�1

Enξ
(25)
n +

+∞∑
n�−∞

Rnξ
(26)
n

+
+∞∑

n�−∞
Lnξ

(27)
n +

+∞∑
n�−∞

Tnξ
(28)
n +

+∞∑
n�−∞

Unξ
(29)
n +

+∞∑
n�−∞

Vnξ
(210)
n � ξ (2) ,

+∞∑
n�−∞

Anξ
(31)
n +

+∞∑
n�1

Bnξ
(32)
n +

+∞∑
n�1

Cnξ
(33)
n +

+∞∑
n�1

Dnξ
(34)
n +

+∞∑
n�1

Enξ
(35)
n +

+∞∑
n�−∞

Rnξ
(36)
n

+
+∞∑

n�−∞
Lnξ

(37)
n +

+∞∑
n�−∞

Tnξ
(38)
n +

+∞∑
n�−∞

Unξ
(39)
n +

+∞∑
n�−∞

Vnξ
(310)
n � ξ (3) ,

+∞∑
n�1

Bnξ
(42)
n +

+∞∑
n�1

Cnξ
(43)
n +

+∞∑
n�−∞

Lnξ
(47)
n +

+∞∑
n�−∞

Tnξ
(48)
n � ξ (4) ,
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+∞∑
n�−∞

Anξ
(51)
n +

+∞∑
n�1

Bnξ
(52)
n +

+∞∑
n�1

Cnξ
(53)
n +

+∞∑
n�1

Dnξ
(54)
n +

+∞∑
n�1

Enξ
(55)
n +

+∞∑
n�−∞

Rnξ
(56)
n

+
+∞∑

n�−∞
Lnξ

(57)
n +

+∞∑
n�−∞

Tnξ
(58)
n +

+∞∑
n�−∞

Unξ
(59)
n +

+∞∑
n�−∞

Vnξ
(510)
n � ξ (5) ,

+∞∑
n�1

Dnξ
(64)
n +

+∞∑
n�1

Enξ
(65)
n +

+∞∑
n�−∞

Unξ
(69)
n +

+∞∑
n�−∞

Vnξ
(610)
n � ξ (6) (37)

where: ξ (11)n �
4∑
j�1

S( j)n ,ξ (16)n � −Jn(k03
∣∣η′∣∣)[η′/∣∣η′∣∣]ne−p3(

η′+η̄′
2 )−q3(

η′−η̄′
2i ),

ξ
(21)
n � k1M I

1
2

[
4∑
j�1

χ
( j)
n exp(iθ ) +

4∑
j�1

γ
( j)
n exp(−iθ )

]
,ξ (22)n � M I

2

[
2∑
j�1

ς
( j)
n exp(iθ ) +

2∑
j�1

ϑ
( j)
n exp(−iθ )

]
,

ξ
(23)
n � M I

2

[
2∑
j�1

υ
( j)
n exp(iθ ) +

2∑
j�1

ψ
( j)
n exp(−iθ )

]
,ξ (24)n � (M I

3

/
M I

2)ξ
(22)
n ,ξ (25)n � (M I

3

/
M I

2)ξ
(23)
n ,

ξ
(26)
n � − k03M III

1
2

[
ι1 exp(iθ ) + ν1 exp(−iθ )

]
,ξ (27)n � −M III

2

[
ι2 exp(iθ ) + ν2 exp(−iθ )

]
,

ξ
(28)
n � −M III

2

[
ι3 exp(iθ ) + ν3 exp(−iθ )

]
,ξ (29)n � (M III

3

/
M III

2 )ξ (27)n ,ξ (210)n � (M III
3

/
M III

2 )ξ (28)n ,

ξ
(31)
n � aI1ξ

(11)
n , ξ (32)n � bI1

4∑
j�1

ϕ
( j)
1n ,ξ

(33)
n � bI1

4∑
j�1

ϕ
( j)
2n ,ξ

(34)
n � (cI1/b

I
1)ξ

(32)
n ,ξ (35)n � (cI1

/
bI1)ξ

(33)
n ,

ξ
(36)
n � aIII1 ξ

(16)
n ,ξ (37)n � −bIII1 e−p3(

η′+η̄′
2 )−q3(

η′−η̄′
2i )H (1)

n (ik′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n ,
ξ
(38)
n � −bIII1 e−p3(

η′+η̄′
2 )−q3(

η′−η̄′
2i )H (2)

n (ik′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n ,ξ (39)n � (cIII1
/
bIII1 )ξ (37)n ,ξ (310)n � (cIII1

/
bIII1 )ξ (38)n ,

ξ
(42)
n � (1

/
M I

2)ξ
(22)
n ,ξ (43)n � (1

/
M I

2)ξ
(23)
n , ξ (47)n � (1

/
M III

2 )ξ (27)n ,ξ (48)n � (1
/
M III

2 )ξ (28)n ,

ξ
(51)
n � (aI2

/
aI1)ξ

(31)
n , ξ

(52)
n � (bI2

/
bI1)ξ

(32)
n ,ξ (53)n � (bI2

/
bI1)ξ

(33)
n ,ξ (54)n � (cI2

/
bI2)ξ

(52)
n ,ξ (55)n �

(cI2
/
bI2)ξ

(53)
n ,ξ (56)n � (aIII2

/
aIII1 )ξ (36)n ,ξ (57)n � (bIII2

/
bIII1 )ξ (37)n , ξ

(58)
n � (bIII2

/
bIII1 )ξ (38)n ,ξ (59)n � (cIII2

/
bIII2 )ξ (57)n ,

ξ
(510)
n � (cIII2

/
bIII2 )ξ (58)n , ξ (64)n � ξ

(42)
n ,ξ (65)n � ξ

(43)
n ,ξ (69)n � ξ

(64)
n ,ξ (610)n � ξ

(65)
n , .

χ
(1)
n � H (1)

n−1(k1
∣∣η′∣∣)[η′/∣∣η′∣∣]n−1, χ

(2)
n � −H (1)

n+1(k1
∣∣η′

1

∣∣)[η′
1

/∣∣η′
1

∣∣]−n−1, χ
(3)
n � (−1)nH (1)

n−1(k1
∣∣η′

2

∣∣)[
η′
2

/∣∣η′
2

∣∣]n−1,χ (4)
n � −(−1)nH (1)

n+1(k1
∣∣η′

3

∣∣)[η′
3

/∣∣η′
3

∣∣]−n−1,

γ
(1)
n � −H (1)

n+1(k1
∣∣η′∣∣)[η′/∣∣η′∣∣]n+1, γ (2)

n � H (1)
n−1(k1

∣∣η′
1

∣∣)[η′
1

/∣∣η′
1

∣∣]−n+1.

γ
(3)
n � −(−1)nH (1)

n+1(k1
∣∣η′

2

∣∣)[η′
2

/∣∣η′
2

∣∣]n+1,γ (4)
n � (−1)nH (1)

n−1(k1
∣∣η′

3

∣∣)[η′
3

/∣∣η′
3

∣∣]−n+1,

ς
(1)
n � −nη′−n−1,ς (2)

n � −(−1)nn(η′ − 2d − 2hi)−n−1, ϑ (1)
n � −n(η̄′ + 2hi)−n−1,ϑ (2)

n � −(−1)nn(η̄′ −
2d)−n−1,

υ
(1)
n � −n(η′ − 2hi)−n−1,υ(2)

n � −n(−1)n(η′ − 2d)−n−1,ψ (1)
n � −nη̄′−n−1,ψ (2)

n � −(−1)nn(η̄′ − 2d +
2hi)−n−1,

ι1 � e
p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
k03
2

J (1)n−1(k03
∣∣η′∣∣)[η′/∣∣η′∣∣]n−1 − 1

2
(p3 − q3i)J

(1)
n (k03

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
ν1 � e

p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
−k03

2
J (1)n+1(k03

∣∣η′∣∣)[η′/∣∣η′∣∣]n+1 − 1

2
(p3 + q3i)J

(1)
n (k03

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
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Fig. 15 Point source load

ι3 � e
p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
ik′

3

2
H (1)
n−1(ik

′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n−1 − 1

2
(p3 − q3i)H

(1)
n (ik′

3

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
ν3 � e

p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
− ik′

3

2
H (1)
n+1(ik

′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n+1 − 1

2
(p3 + q3i)H

(1)
n (ik′

3

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
ι2 � e

p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
ik′

3

2
H (2)
n−1(ik

′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n−1 − 1

2
(p3 − q3i)H

(2)
n (ik′

3

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
ν2 � e

p3
(

η′+η̄′
2

)
+q3

(
η′−η̄′
2i

)[
− ik′

3

2
H (2)
n+1(ik

′
3

∣∣η′∣∣)[η′/∣∣η′∣∣]n+1 − 1

2
(p3 + q3i)H

(2)
n (ik′

3

∣∣η′∣∣)[η′/∣∣η′∣∣]n],
ξ (1) � −(wi + wr ), ξ (2) � −(τ iθ z + τ rθ z), ξ (3) � −(φi + φr ),

ξ (4) � −(Di
θ + Dr

θ ), ξ (5) � −(ϕi + ϕr ), ξ (6) � −(Bi
θ + Br

θ ).

In order to solve Eq. (37), wemultiply both sides of these equations by the coefficient exp(−imθ ′) and integrate
the variable θ ′ in the known coefficient of Eq. (37) in the range of (−π , π). Such operation enables to simplify
Eq. (37) into linear algebraic equations.

Part II: Green’s function

Green’s function method is also called point source method.
Firstly, the piezoelectric/piezomagnetic half-space is divided into two right angle regions along the vertical

interface BV , and the unit point source load δ(η − η0) ,η0 � yi(y ≤ h) is applied on the boundary BV as the
incident wave source, as shown in Fig. 15.

The displacement function also satisfies the governing Eq. (6) and the boundary conditions (10), (11) on
the boundaries BH and Bin . Unlike the boundary conditions on the vertical boundary BH in Sect. 4.1, here it
becomes:

τ Ixz

∣∣
x�0 � δ(η − η0) , (38)

Since Medium I is homogeneous, the displacement function Gi
w1 can be expressed as follows according to

[15]:

Gi
w1 � H (1)

0 (k1|η − η0|) + H (1)
0 (k1|η − η̄0 − 2hi |) , (39)

Taking into account that Medium II is inhomogeneous, the displacement function Gi
w2 can be expressed in the

following form:

Gi
w2 � e− p2(η+η̄)

2

[
H (1)
0 (k02|η − η0|) + H (1)

0 (k02|η − η̄0 − 2hi |)
]
, (40)

The displacement field G(•)
w1,G

(•)
w2, electric field G

(•)
φ1,G

(•)
φ2, and magnetic field G(•)

ϕ1,G
(•)
ϕ2 are obtained by means

of the same procedure as used for calculating SH-wave (Note that the superscript (•) refers to I, II, III).
To make the calculations more convenient, the polar coordinate system (r ′′, θ ′′) is set at the origin of the

right-angle plane, and the respective complex variables are η′′ � r ′′eiθ ′′
and η̄′′ � r ′′e−iθ ′′

.
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Fig. 16 Systems of external force

Then pairs of unknown external force f1(r ′′, θ ′′), f2(r ′′, θ ′′), external electric field f3(r ′′, θ ′′), f4(r ′′, θ ′′),
and external magnetic field f5(r ′′, θ ′′), f6(r ′′, θ ′′) are applied on the boundary BV as the amplitude function
of δ(η − η0) , as shown in Fig. 16. Note that unknown parameters in each pair introduced above have equal
values and opposite directions.

Finally, these unknown coefficients above are obtained with the aid of the continuous conditions (15) on
the boundary BV :

wI + w f 1 � wII + w f 2,φI + φ f 3 � φII + φ f 4,

ϕI + ϕ f 5 � ϕII + ϕ f 6 , (41)

where:

w f 1 � ∫ +∞
0 f1(r ′′

0 , β1)GI
w(r

′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,w
f 2 � − ∫ +∞

0 f2(r ′′
0 , β1)GII

w(r
′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,

φ f 1 � ∫ +∞
0 f3(r ′′

0 , β1)GI
φ(r

′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,φ
f 2 � − ∫ +∞

0 f4(r ′′
0 , β1)GII

φ (r
′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,

ϕ f 1 � ∫ +∞
0 f5(r ′′

0 , β1)GI
ϕ(r

′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,ϕ
f 2 � − ∫ +∞

0 f6(r ′′
0 , β1)GII

ϕ (r
′′
0 , β1; r ′′, θ ′′)dr ′′

0 ,

β1 � −π
/
2 and physical variable (•) f i is produced by fi (r ′′, θ ′′), (i � 1, 2, 3, 4).

The scattering wave has no effect on the boundary BV . According to Eq. (15), the continuity conditions
for stress, electric displacement, and magnetic induction must be satisfied as follows:

f1(r ′′
0 , β1) � f2(r ′′

0 , β1), f3(r ′′
0 , β1) � f4(r ′′

0 , β1), f5(r ′′
0 , β1) � f6(r ′′

0 , β1),∫ +∞

0
f1(r

′′
0 ,β1)

[
GI

w(r
′′
0 ,β1; r

′′, θ ′′)+ GII
w(r

′′
0 ,β1; r

′′, θ ′′)
]
dr ′′

0 � −ws ,
∫ +∞

0
f3(r

′′
0 ,β1)

[
GI

φ(r
′′
0 ,β1; r

′′, θ ′′)+ GII
φ (r

′′
0 ,β1; r

′′, θ ′′)
]
dr ′′

0 � −φs ,
∫ +∞

0
f5(r

′′
0 ,β1)

[
GI

ϕ(r
′′
0 ,β1; r

′′, θ ′′)+ GII
ϕ (r

′′
0 ,β1; r

′′, θ ′′)
]
dr ′′

0 � −ϕs . (42)

Equations (42) are Fredholm equations of the first kind. By selecting different coordinate points, they can be
solved by the interpolation method.

Part III: Relationship between different parameters of SH-waves

Based on the continuity of displacement as well as electric potential and magnetic potential on the vertical
boundary in Eq. (15), the following relationship can be known:

k1 sin α0 � k2 sin α2 , (43)

For mathematical simplicity, the following parameters are introduced:
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λ1 � cosα0,λ2 � cosα2,c1 � cI440,c2 � cII440,e1 � eI150,e2 � eII150,h1 � hI150,h2 � hII150,d1 � κ I
110,d2 �

κ II
110,t1 � t I110,t2 � t II110,μ1 � μI

110,μ2 � μII
110.

Combining with Eq. (15), the following equations are obtained:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w0c1(ik1λ1) − w1c1(ik1λ1) + φ0e1(ik1λ1) − φ1e1(ik1λ1) + ϕ0h1(ik1λ1)1 − ϕ1h1(ik1λ1)

� w2c2(ik02λ2 − p2) + φ2e2(ik02λ2 − p2) + ϕ2h2(ik02λ2 − p2)

w0e1(ik1λ1) − w1e1(ik1λ1)1 − [φ0d1(ik1λ1) − φ1d1(ik1λ1)] − [ϕ0t1(ik1λ1) − ϕ1t1(ik1λ1)]

� w2e2(ik02λ2 − p2) − φ2d2(ik02λ2 − p2) − ϕ2t2(ik02λ2 − p2)

w0h1(ik1λ1) − w1h1(ik1λ1) − [φ0t1(ik1λ1) − φ1t1(ik1λ1)] − [ϕ0μ1(ik1λ1) − ϕ1μ1(ik1λ1)]

� w2h2(ik02λ2 − p2) − φ2t2(ik02λ2 − p2) − ϕ2μ2(ik02λ2 − p2).

(44)

Note that w0, φ0, and ϕ0 in Eq. (44) are known quantities, so Eq. (44) can be transformed into the following
form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1c1(ik1λ1) + w2c2(ik02λ2 − p2) + φ1e1(ik1λ1) + φ2e2(ik02λ2 − p2) + ϕ1h1(ik1λ1) + ϕ2h2(ik02λ2 − p2)

� w0c1(ik1λ1) + φ0e1(ik1λ1) + ϕ0h1(ik1λ1)

w1e1(ik1λ1) + w2e2(ik02λ2 − p2) − φ1d1(ik1λ1) − φ2d2(ik02λ2 − p2) − ϕ1t1(ik1λ1) − ϕ2t2(ik02λ2 − p2)

� w0e1(ik1λ1) − φ0d1(ik1λ1) − ϕ0t1(ik1λ1)

w1h1(ik1λ1) + w2h2(ik02λ2 − p2) − φ1t1(ik1λ1) − φ2t2(ik02λ2 − p2) − ϕ1μ1(ik1λ1) − ϕ2μ2(ik02λ2 − p2)

� w0h1(ik1λ1) − φ0t1(ik1λ1) − ϕ0μ1(ik1λ1).

(45)

For mathematical simplicity, the parameters γ1 � ik1λ1 and γ2 � ik02λ2 − p2 are introduced. In Eq. (45),w0,
φ0, and ϕ0 are regarded as known coefficients. Cramer’s Rule can be used to find the unknown coefficients
w1,w2,φ1,φ2,ϕ1, and ϕ2.
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