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Abstract Lubrication theory is used widely due to its simplicity and accuracy in many circumstances such as
for the modeling of thin fluid films, the motion of particles near surfaces, and the flow in narrow geometries
and configurations. Here, we present an extension to the classical lubrication theory to study the laminar
flow of an incompressible and highly viscous simple Newtonian fluid in microfluidic channels and tubes with
variable geometry using a formal perturbation expansion in terms of the aspect ratio. The analysis generalizes
and extends the work of Tavakol et al., Proc. R. Soc. A, 473 (2017) by considering (a) different shapes for
the upper and lower walls of the channel, and (b) axisymmetric tubes with variable circular cross section.
Analytical expressions in series form for the average pressure drop, required to maintain the constant flowrate
through the channel or tube, are derived, where the formulas are provided in terms of the function(s) that
describe the shape of the wall(s). Furthermore, the formulas are processed with techniques that increase the
accuracy and extend the domain of convergence of series. For symmetric and periodic undulating channels and
tubes, the comparison of the analytical results derived here with numerical results from the literature reveals
the great accuracy and efficiency of the high-order lubrication theory, as well as its superiority against the
well-known domain perturbation method.

1 Introduction

In the theory of Newtonian fluid mechanics various techniques have been developed through the years in order
to find approximate analytical solutions of the relevant governing equations. For laminar highly viscous flows
in narrow geometries and confined configurations with slow changes in curvature, a well-known technique
is the classical lubrication approximation (or lubrication theory) [1–3]. The lubrication theory allows for the
derivation of analytical approximate solutions of the Navier–Stokes equations at low Reynolds numbers. Due
to its simplicity and its acceptable accuracy, even beyond the formal limits of validity, it has been used widely
to describe the field variables (velocity and pressure) of film lubricants [4, 5], the motion of particles within a
fluid and near boundaries [6, 7], the fluid flow in microchannels with known geometry [8–11], the flow driven
by contracting walls of microchannels and microtubes [12–14], and the flow of thin liquid films with free
surfaces [15–19]. The lubrication theory is valid in all these cases provided that the magnitude of the boundary
slope is sufficiently small so that the induced variations of the field variables along the main flow direction are
much smaller than the variations along the direction normal to the solid boundary.

In the case of narrow and confined geometries, one of the main interests is to understand the relationship
between the imposed flow-rate and pressure drop for a given geometry, while another important factor which
also affects this relationship is the rheology of the fluid (not considered here though); see for instance Boyko
and Stone [20] and references therein. Indeed, the pressure drop is of great significance in a large variety of
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physical processes and applications such as the design and manufacturing of microfluidic devices with soft
or deformable materials [21–26], the modelling of multiphase fluid–structure interactions in industrial piping
and turbomachinery [27], the understanding of the mechanics of blood flow in microvessels, arteries and veins
[28–31], and in medical applications such as the precise estimation of the injection force of subcutaneous drug
administration [32, 33], to name only a few.

Tavakol et al. [34] studied the flow of a simpleNewtonian fluid in a channel with a variable but fixed a-priori
boundary. The goal was to study the effect of a large constriction made by a trapped cell, particle, bubble or
droplet, or as a result of buckled, crumpled or swollen walls. The shape of the upper wall of the channel was
described mathematically by any continuous and differentiable, or piecewise differentiable, functionH �H(x)
where x is the distance from the inlet plane. Provided that the curvature of the boundary is modest, Tavakol et al.
[34] calculated analytically the first and second correction terms to the leading-order approximation. Strictly
speaking, the leading-order approximation is valid in the limit of a vanishing small aspect ratio δ ≡ h0/L0 (i.e.,
for δ << 1, or δ → 0+) where h0 is the channel height and 2L0 is the length of the channel. The higher-order
terms extend the classical leading-order lubrication solution, and relax the main limitation of the theory, which
is the vanishing small aspect ratio. Comparison of the analytical, high-order results with experimental results
as well as with direct numerical solutions of the Navier–Stokes equations showed that the higher-order terms
improve substantially the accuracy of the leading-order solution. In a more recent work, Hinojosa et al. [35]
investigated a general serpentine channel with different shapes for the upper and lower walls in Cartesian
geometry and found the solution of the Stokes equations up to second-order in the aspect ratio of the channel.

In this paper, we follow the work of Tavakol et al. [34] and extend their systematic and successful analysis
which involves corrections to the leading-order lubrication solution [10, 36–38] in order to study a channel
with two variable walls in Cartesian geometry, as well as an axisymmetric tube with variable cross section in
cylindrical geometry. In both cases, the shape of the wall(s) is fixed and described with smooth, continuous and
adequately differentiable functions. Our method of solution is a formal regular perturbation technique in terms
of the aspect ratio of the channel or tube. This method appears to be superior to the domain perturbationmethod
[2, 39–45], which can be used when the amplitude of the variation of the boundary is much smaller than the
channel height. One is reminded that according to the domain perturbation method, the expansion parameter
for the solution of the governing equations is the ratio of the amplitude of the curvature of the boundary to the
channel height (or radius of the tube), while in the classical lubrication theory, and in the extended lubrication
theory used here, the expansion parameter is the ratio of the channel height (or radius of the tube) to the total
length of the duct (channel or tube). On the contrary, the high-order lubrication theory is suitable even for
constrictions whose amplitude approaches the channel height [34]. We also note that in the Cartesian geometry
our formulation gives the possibility to investigate fully asymmetric channels with different boundary shapes
or different constrictions imposed on the walls of the channel.

The rest of the paper is organized as follows. In Sect. 2, we give the governing equations and the accompa-
nying auxiliary (boundary and integral) conditions for the steady laminar flow of an incompressible and highly
viscous Newtonian fluid in a channel with two variable walls. The method of solution, the procedure for the
derivation of the solution, and the analytical solution are provided in this Section, too. In Sect. 3, we study the
axisymmetric flow in a tube with variable cross section following the same structure as in Sect. 2. In Sect. 4,
we present the most interesting results focusing on the average pressure drop which is required to maintain
the constant flowrate through the channel or tube. The pressure drop is derived and presented in terms of the
shape function(s); we also employ and discuss specific examples for the shape functions. Finally, in Sect. 5
we state our conclusions.

2 Flow in a channel

We consider the isothermal and incompressible steady flow of a simple Newtonian fluid in a two-dimensional
channel, the walls of which can vary smoothly as function of the distance from the inlet plane. The length of
the channel is l, and the distance between the walls at the inlet is h0. We use a Cartesian coordinate system
x*y*z* to describe the flow field, where x* is the main flow direction, y* is direction between the two walls
and vertical to the x*-direction, and z* is the neutral direction, normal to the x* y*-plane (throughout the text,
a superscript * denotes a dimensional quantity). The origin of the coordinate system is located in the middle
of the inlet plane such that the distance to each wall is h0/2; see Fig. 1a. The walls of the channel are allowed
to have different shapes; the upper wall is described by the shape function H∗ � H∗(x∗) and the lower wall
by �∗ � �∗(x∗). Based on the shape functions the upper wall is given as F∗

u (x
∗, y∗) � y∗ − H∗(x∗) � 0,
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Fig. 1 (a) Geometry and Cartesian coordinate system x*y* for a general channel with two varying walls, (b) geometry and
cylindrical coordinate system r*z* for an axisymmetric tube with a circular cross-section varying with the distance z* from the
inlet

while the lower wall is given as F∗
l (x

∗, y∗) � y∗ + �∗(x∗) � 0. The choice of the coordinate system and the
fact that the flow is possible as long as the two walls are not joined imply that the shape function must meet
the requirements: H∗(x∗ � 0) � �∗(x∗ � 0) � h0/2 > 0 and H∗(x∗) + �∗(x∗) > 0 for any x∗ ∈ [0, �].
The velocity vector in the flow domain is denoted by u∗ � u∗

xex + u∗
yey (ex , ey are the units vectors in the

x*, y*, directions, respectively), and the total pressure is denoted by p*; the latter is induced by the imposed
flow-rate q (per unit length in the neutral direction) at the inlet plane, i.e., q � ∫ h0/2

−h0/2
u∗
x (0, y

∗)dy∗.
In the absence of inertia and any external forces and torques, the fluid motion in the channel is governed by

the mass balance (continuity equation), the momentum balance, and the Laplacian equation for the pressure:

∇ · u∗ � 0, − ∇ p∗ + μ∇2u∗ � 0, ∇2 p∗ � 0 (1.1–3)

where μ is the constant shear viscosity of the fluid. Note that Eq. (1.3) is not an independent equation. It has
been derived by taking the divergence of Eq. (1.2) and using the continuity equation, Eq. (1.1). The domain
of definition of Eqs. (1) is �cart � {(x∗, y∗)|0 < x∗ < �, −�∗(x∗) < y∗ < H∗(x∗)}. Equations (1.1–3)
are accompanied with the usual no-slip and no-penetration boundary conditions along the channel walls,
u∗ � 0 at y∗ � H∗(x∗) and y∗ � −�∗(x∗), along with the integral constraint, i.e., the total mass balance,
q � ∫ H∗(x∗)

−�∗(x∗) u
∗
x (x

∗, y∗)dy∗.
We introduce dimensionless variables based on the lubrication theory, i.e., X � X∗/Xc where X � x ,

y, ux , uy , p, H , �, and Xc is the relevant characteristic scale for X∗. First, the characteristic scale in the
x∗-direction is �, and the characteristic scale in the y∗-direction is h0. The shape functions H∗ and �∗ are
scaled with h0, too. Using the mass flow-rate at the inlet plane (x∗ � 0) one finds that the characteristic scale
for the velocity component in the main flow direction is q/h0. Then, with the aid of the continuity equation
one finds that the characteristic scale for the velocity component in the y∗-direction is q/�. Last, from the
component of the momentum balance in the main flow direction, we find that the suitable characteristic scale
for the pressure is μ q �/h30. Thus, the final dimensionless governing equations in scalar form are:

∂ux
∂x

+
∂uy

∂y
� 0, (2)

−∂p

∂x
+ ε2

∂2ux
∂x2

+
∂2ux
∂y2

� 0, (3)

−∂p

∂y
+ ε4

∂2uy

∂x2
+ ε2

∂2uy

∂y2
� 0, (4)

∂2 p

∂y2
+ ε2

∂2 p

∂x2
� 0 (5)

where ε ≡ h0/� is the aspect ratio of the channel (recall that h0 � H∗(0) + �∗(0)). The auxiliary (boundary
and integral) conditions are:

ux � uy � 0 at y � −�(x) and H (x), 0 ≤ x ≤ 1, (6)
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H (x)∫

−�(x)

ux (x , y)dy � 1. (7)

Equation (7) simply results from the integration of Eq. (2) along the y-direction between the limits y �
−�(x) and y � H (x), applying the no-penetration condition at the channel walls, and using the dimensionless
flow-rate at the inlet plane, i.e.,

∫ 1/2
−1/2 ux (0, y)dy � 1 where, due to the characteristic scales used above,

H (0) � �(0) � 1/2. Note that the shape functions H and � are considered known in advance. For H (x) �
�(x) � 1/2 one gets a straight channel, while for �(x) � 1/2 the physical problem reduces to that studied in
Ref. [34] (see also below in Sect. 4).

2.1 Method of solution and solution procedure

Equations (2, 3,4, 5, 6, and 7) only involve one dimensionless parameter, the aspect ratio of the channel ε, which
appears in the equations in even powers. When the square of the aspect ratio is small, i.e., when ε2 << 1, a
regular perturbation method can be used, namely the solution for the unknown field variables can be expanded
as a power series in terms of ε2:

X � X0 + ε2X2 + ε4X4 + O(ε6), ε2 << 1 (8)

where X � p, ux , uy . Strictly, the perturbation theory implemented here is valid provided that
max0≤x∗≤�(H∗(x∗) + �∗(x∗))/� << 1. Thus, henceforth we assume that the wall functions H∗ and �∗
are such that this requirement is fulfilled. Substituting Eq. (8) into Eqs. (2–7), expanding all quantities in terms
of ε2, and collecting the terms of the same order of magnitude with respect to ε2, we derive the sequence of
perturbation equations:

∂ux , j
∂x

+
∂uy, j

∂y
� 0, (9)

−∂p j

∂x
+

∂2ux , j−2

∂x2
+

∂2ux , j
∂y2

� 0, (10)

−∂p j

∂y
+

∂2uy, j−4

∂x2
+

∂2uy, j−2

∂y2
� 0, (11)

∂2 p j

∂y2
+

∂2 p j−2

∂x2
� 0 (12)

where j � 0,2,4,6,… and ux , j � uy, j � p j � 0 for j < 0 have been introduced for completeness. The
auxiliary conditions are:

ux , j � uy, j � 0 at y � −�(x) and H (x), − 1 ≤ x ≤ 1, (13)

H (x)∫

−�(x)

ux , j (x , y)dy � δ0, j . (14)

In Eq. (14), the Kronecker delta, δi , j � 1(0) if i � j (otherwise), has been used.
The solution procedure consists of the following steps:

(i) Integrate twice Eq. (12) with respect to y to find p j in the general form p j � a j−2(x , y)+� j (x)y+ P̂j (x)
where� j and P̂j are unknown functions of x that must be determined, and a j−2(x , y) is the fully known
part of the solution which results from the double integration of −∂2 p j−2

/
∂x2 with respect to y.

(ii) Substitute p j in Eq. (11) to find � j (x).
(iii) Substitute p j in Eq. (10) and integrate twice the resulting equation with respect to y and apply the no-slip

conditions at both walls to find ux , j .
(iv) Substitute ux , j in the integral constraint, Eq. (14), to find P̂ ′

j (x).



High-order lubrication theory in channels and tubes 4067

(v) Substitute ux , j in Eq. (9), integrate with respect to y, and apply the no-penetration boundary condition
at the lower wall to find uy, j � − ∫ y

−�(x)
∂
∂x ux , j (x , s)ds.

Note that the solution for uy, j satisfies the no-penetration condition at the upper wall, uy, j (x , H (x)) � 0.
Indeed, by evaluating the solution for uy, j , found in step (v), at y � H (x) and applying the Leibniz rule, gives:

uy, j (x , H (x)) +
d

dx

⎛

⎜
⎝

H (x)∫

−�(x)

ux , j (x , y)dy

⎞

⎟
⎠ − H ′(x)ux , j (x , H (x)) − �′(x)ux , j (x , − �(x)) � 0 (15)

where throughout the paper the primes denote derivatives with respect to the axial coordinate, x. Equation (15)
reduces to uy, j (x , H (x)) � 0 because the third and the fourth terms vanish owing to the no-slip condition
given by Eq. (13), and the second term is zero, too, due to the integral constraint given by Eq. (14). Therefore,
although the continuity equation used to determine uy, j is first order in y, the solution satisfies both boundary
conditions for uy, j as previously reported in Ref. [34], too.

2.2 Solution

Following the procedure described in the previous Subsection, we find the analytical solution for the field
variables up to fourth-order in ε, i.e., X0, X2, and X4 where X � p, ux , uy . We mention that the zero-
and second-order solutions given below fully agree with the analytical results derived by Hinojosa et al. [35]
provided that the different scale for the pressure used by Hinojosa et al. [35] is taken into account. Also, for
�(x) � 1/2 our solution up to fourth-order fully matches the solution derived by Tavakol et al. [34] provided
that first the transformations ỹ � y + 1/2 and H̃ � H + 1/2 are implemented (due to the fact that the origin
of the coordinate system is placed in the midplane at the entrance of the channel and not at the lower wall as
Tavakol et al. [34] did).

For convenience,we introduce the reduced y-coordinate ŷ � (y + �(x))
/
(H (x) + �(x)) so that 0 ≤ ŷ ≤ 1,

and we also omit the explicit dependence of the shape functions on the x-coordinate.

2.2.1 Zero-order solution

The zero-order solution corresponds to the classical lubrication theory, and is given as:

ux ,0(x , ŷ) � 6ŷ
(
1 − ŷ

)

H + �
, uy,0(x , ŷ) � (

ŷ H ′ − (
1 − ŷ

)
�′)ux ,0(x , ŷ), p0(x) � p0(1) + 12

1∫

x

ds

(H (s) + �(s))3
.

(16)

In the above equation, p0(1) is arbitrary and can be considered zero without loss of generality. Its value
does not affect the higher-order solutions which are shown below, nor it affects the required pressure drop
needed to drive the flow.

2.2.2 Second-order solution

The second-order solution is found as follows:

ux , 2(x , ŷ) � ŷ(1 − ŷ)

H + �

((

ŷ − 1

2

)

a1(x) +

(

ŷ2 − 3

10

)

a2(x)

)

,

uy,2(x , ŷ) � (
H ′ ŷ − (1 − ŷ)�′)ux ,2(x , ŷ) +

ŷ2(1 − ŷ)2

4

(

a′
1(x) +

(
3 + 4ŷ

)
a′
2(x)

5

)

,

p2(x , ŷ) � P̂2(x) +
2∑

k�0

ŷk p2,k(x).

(17)
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The functions that appear in ux , 2 are given by:

a1(x) � 24�′(H ′ + �′) − (H + �)
(
H ′′ + 5�′′),

a2(x) � 3
(
−4

(
H ′ + �′)2 + (H + �)

(
H ′′ + �′′)).

(18)

Also, the functions that appear in p2 are:

p2,0(x) � 6�2
(
H ′ − �′) − 12H�

(
H ′ + 2�′)

(H + �)4
, p2,1(x) � 12

(
H ′ + 2�′)

(H + �)2
, p2,2(x) � −18

(
H ′ + �′)

(H + �)2
.

(19)

Finally, the first derivative of P̂2 with respect to x is given by:

d P̂2
dx

� 6

5(H + �)5

{
6
(
4�2 − H2 − 7H�

)
H ′2 + 4

(
7H2 − 16H� + 7�2)H ′�′

+ 6
(
4H2 − 7H� − �2)�′2 − (H + �)

(
H2 − 8H� + 6�2)H ′′

−(H + �)
(
6H2 − 8H� + �2)�′′}. (20)

2.2.3 Fourth-order solution

The fourth-order solution is found as:

ux ,4(x , ŷ) � ŷ(1 − ŷ)

H + �

((

ŷ − 1

2

)

A1(x) +

(

ŷ2 − 3

10

)

A2(x) +

(

ŷ3 − 1

5

)

A3(x) +

(

ŷ4 − 1

7

)

A4(x)

)

,

uy,4(x , ŷ) � (
H ′ ŷ − (1 − ŷ)�′)ux ,4(x , ŷ)

+
ŷ2(1 − ŷ)2

4

{

A′
1 +

(
3 + 4ŷ

)
A′
2

5
+
2
(
3 + 4ŷ + 5ŷ2

)
A′
3

15
+
2
(
3 + ŷ

(
4 + ŷ

(
5 + 6ŷ

)))
A′
4

21

}

,

p4(x , ŷ) � P̂4(x) +
1

(H + �)2

4∑

j�0

ŷ j p4, j (x) (21)

where functions A j � A j (x), j � 1, 2, 3, 4 and p4, j � p4, j (x), j � 0, 1, 2, 3, 4, are provided for
convenience in the Appendix in terms of the shape functions H � H (x) and � � �(x) and their derivatives.
The first derivative of P̂4 with respect to x is found as follows:

d P̂4
dx

� 1

G3

(

2G ′ p4,0 +
G ′ + 2H ′

2
p4,1 +

G ′ + 5H ′

5
p4,2 +

G ′ + 9H ′

10
p4,3 +

2
(
G ′ + 14H ′)

35
p4,4

)

− 1

G2

(

p′
4,0 +

p′
4,1

2
+
3p′

4,2

10
+

p′
4,3

5
+

p′
4,4

7

)

+
222G ′4

175G3 − 24G ′3H ′

5G3 − 2G ′′2

35G
− 2H ′′2

5G
− 3G(4)

350

+
2H ′G(3)

5G
− 4H ′H (3)

5G
+ G ′2

(
24H ′2

5G3 +
506G ′′

175G2 − 14H ′′

5G2

)

+ G ′′
(
24H ′2

5G2 +
2H ′′

5G

)

+ G ′
(

−38H ′G ′′

5G2 +
28H ′H ′′

5G2 − 32G(3)

175G
+
2H (3)

5G

)

(22)

where G ≡ H + � has been used for convenience. Note that all the analytical solutions derived in this work
have been checked for their correctness using the “Mathematica” symbolic software [46].
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2.3 Pressure drop

Themost interesting quantity for this type of flow is the required pressure drop tomaintain the constant flowrate
in the channel. First, however, we define the average of any dependent variable, f � f (x , y), at a cross section
from the inlet plane, i.e.,

f (x) :�
H (x)∫

−�(x)

f (x , y)dy

/ H (x)∫

−�(x)

dx �
1∫

0

f (x , − �(x) + ŷ(�(x) + H (x))) d ŷ (23)

where in the second equality the reduced y-coordinate has been used. We also define the difference operator,
	, for any dependent flow variable, f � f (x , y), as 	 f :� f (x � 0, y) − f (x � 1, y). Therefore, the
average pressure drop is given as 	p ≡ p(0)− p(1), where p(0) � ∫ 1

0 p(0, ŷ) d ŷ and p(1) � ∫ 1
0 p(1, ŷ) d ŷ;

note that p(0, ŷ), p(1, ŷ) have been used for brevity instead of p(0, −�(0) + ŷ(�(0) + H (0))), p(1, −�(1) +
ŷ(�(1) + H (1))),respectively. Hence, based on the perturbation expansion up to O(ε4), the average pressure
drop is 	p ≈ 	p0 + ε2	p2 + ε4	p4. Recalling that p0 � p0(x), the individual components are:

	p0 �
1∫

0

p0(0)d ŷ −
1∫

0

p0(1)d ŷ � p0(0) − p0(1) � −
1∫

0

dp0
dx

dx � 12

1∫

0

dx

(H (x) + �(x))3
, (24.1)

	p2 �
1∫

0

p2(0, ŷ)d ŷ −
1∫

0

p2(1, ŷ)d ŷ � −
1∫

0

d P̂2
dx

dx +
2∑

k�0

	p2,k
k + 1

, (24.2)

	p4 �
1∫

0

p4(0, ŷ)d ŷ −
1∫

0

p4(1, ŷ)d ŷ � −
1∫

0

d P̂4
dx

dx +
4∑

k�0

	p4,k
k + 1

. (24.3)

In Eqs. (24.2) and (24.3), P̂ ′
2(x) and P̂ ′

4(x) are given by Eqs. (20) and (22), respectively. Notice that the
average pressure drop at O(ε2) and O(ε4) is not found by integrating only −P̂ ′

2(x) and −P̂ ′
4(x) along thex-

direction, respectively, but additional correction terms appear, as these can be seen on the right-hand-side in
Eqs. (24.2, 3). For periodic shape functions, the additional terms vanish, but this does not hold in general. For
instance, even fully symmetric linearly contracting/expanding channels exhibit a nonzero first derivative at the
inlet (z � 0) and outlet planes (z � 1), and therefore the additional terms at the right-hand-side of Eqs. (24.2,
3) contribute to the average pressure drop.

3 Flow in a tube

We consider the isothermal and incompressible steady axisymmetric flow of a simple Newtonian fluid in a tube
with varying cross section, namely the radius of the tube changes with the distance from the inlet cross section.
The length of the tube is �, and the radius of the inlet cross section is h0. We use a cylindrical coordinate
system r*θ*z* to describe the flow field, where z* is the main flow direction, r* is the radial, and θ* is the
azimuthal angle. The origin of the coordinate system is located at the axis of symmetry of the tube and at
the inlet plane as shown in Fig. 1b. The wall of the tube is described by the shape function H∗ � H∗(z∗),
with H∗(z∗ � 0) � h0, and hence the equation that describes the wall is F∗(r∗, z∗) � r∗ − H∗(z∗) � 0.
Obviously, the flow throughout the tube is allowed provided that H∗(z∗) > 0 for z∗ ∈ [0, �].The velocity
vector in the flow domain is denoted by u∗ � u∗

r er +u
∗
z ez (er , ez are the unit vectors along the r

*, z* directions,
respectively) and the total pressure by p*; the latter is induced by the imposed flow-rate q at the inlet cross
section, q � 2π

∫ h0
0 uz(r∗, 0) r∗ dr∗.

Using the same assumptions as for the channel flow, the fluid motion in the tube is governed by Eq. (1), the
domain of definition of which is �cyl � {(r∗, θ∗, z∗)|0 < r∗ < H∗(z∗), 0 ≤ θ∗ < 2π , 0 < z∗ < �}. Note,
however, that due to the symmetry with respect to the z*-axis, ∂/∂θ∗ � 0, and thus all the field variables are
independent of θ∗. Equation (1) is accompanied with the usual no-slip and no-penetration boundary conditions
along the wall, u∗ � 0 at r∗ � H∗(z∗), the symmetry conditions along the z*-axis, u∗

r � ∂u∗
z

/
∂r∗ � 0 at r*

� 0, and the integral constraint, q � 2π
∫ H∗(z∗)
0 uz(r∗, z∗) r∗ dr∗.



4070 K. D. Housidas, C. Tsangaris

As for the channel flow, we introduce dimensionless variables based on the lubrication theory, i.e., X �
X∗/Xc where X � r , z, ur , uz , p, H , and Xc is the relevant characteristic scale for X∗. The z*-coordinate is
scaled by � and the r*-coordinate by h0, while the angle θ∗ is already dimensionless. The radius of the inlet
cross section, h0, is also used to make dimensionless the shape function H*. From the mass flow-rate at the
inlet cross section we find that the characteristic scale for u∗

z is q/(2πh20). Next, with the aid of the continuity
equation, we find that the characteristic scale for u∗

r is q/(2πh0�). Last, from the component of the momentum
balance along the axial direction, we determine the characteristic scale for the pressure, μ q �/(2πh40). Thus,
the final scalar dimensionless governing equations are:

∂

∂z
( r uz) +

∂

∂r
( r ur ) � 0, (25)

−∂p

∂z
+ ε2

∂2uz
∂z2

+
1

r

∂

∂r

(

r
∂uz
∂r

)

� 0, (26)

−∂p

∂r
+ ε4

∂2ur
∂z2

+ ε2
∂

∂r

(
1

r

∂

∂r
(r ur )

)

� 0, (27)

1

r

∂

∂r

(

r
∂p

∂r

)

+ ε2
∂2 p

∂z2
� 0 (28)

where ε ≡ h0/� is the aspect ratio of the tube (recall that h0 � H∗(0)). The auxiliary conditions (boundary,
symmetry, and integral conditions) are:

ur � uz � 0 at r � H (z), 0 ≤ z ≤ 1, (29)

ur � ∂uz
∂r

� 0 at r � 0, 0 ≤ z ≤ 1, (30)

H (z)∫

0

uz(r , z) r dr � 1. (31)

Equation (31) results from the integration of Eq. (25) along the radial direction between the limits r � 0
and r � H (z), applying the no-penetration boundary condition, Eq. (29), and using the dimensionless flow-rate
at the inlet,

∫ 1
0 uz(r , 0) r dr � 1, where, due to the characteristic scales used, H (0) � 1. The shape function

H is considered known in advance; for H (z) � 1 one gets a straight tube.

3.1 Method of solution and solution procedure

When the aspect ratio of the tube, ε, is small, a regular perturbation method can be used, namely the solution
for the unknown field variables, p, ur , uz , can be expanded as a power series in terms of ε2 as shown in
Eq. (8). As we mentioned before for the channel flow, the main requirement for our analysis to be valid is the
magnitude of the ratio max0≤x∗≤� H∗(x∗)/� to be much less than unity. Thus, henceforth we assume that the
wall function H∗ is such that this requirement is fulfilled. Following the same procedure as for the channel
flow, and introducing ur , j � uz, j � p j � 0 for any j < 0 for completeness, we derive the sequence of
perturbation equations:

∂

∂z
( r uz, j ) +

∂

∂r
( r ur , j ) � 0, (32)

−∂p j

∂z
+

∂2uz, j−2

∂z2
+
1

r

∂

∂r

(

r
∂uz, j
∂r

)

� 0, (33)

−∂p j

∂r
+

∂2ur , j−4

∂z2
+

∂

∂r

(
1

r

∂

∂r
(r ur , j−2)

)

� 0, (34)

∂

∂r

(

r
∂p j

∂r

)

+
∂2

∂z2
(r p j−2) � 0 (35)

where j � 0, 2, 4, … The accompanying auxiliary conditions are:

ur , j � uz, j � 0 at r � H (z), 0 ≤ z ≤ 1, (36)
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ur , j � ∂uz, j
∂r

� 0 at r � 0, 0 ≤ z ≤ 1, (37)

H (z)∫

0

uz, j (r , z) r dr � δ0, j . (38)

The solution procedure is like that described for the channel flow:

(i) Integrate twice Eq. (35) with respect to r to find the general solution for p j :

p j � −
∫ (

1

r

∫
∂2

∂z2
(r p j−2)dr

)

dr
︸ ︷︷ ︸

a j−2(r ,z)

+P̂j (z) (39)

where the condition
∣
∣p j (0, z)

∣
∣ < ∞ has been used, and P̂j � P̂j (z) is an unknown function that must

be determined.
(ii) Substitute Eq. (39) into Eq. (33) and integrate twice with respect to r to obtain uz, j :

uz, j � P̂ ′
j (z)

4

(
r2 − H2) +

H (z)∫

r

(
1

s

∫
∂2

∂z2
(suz, j−2(s, z)) − ∂

∂z
(sa j−2(s, z)))ds

)

ds

︸ ︷︷ ︸
β j−2(r ,z)

(40)

where the no-slip condition, uz, j (H (z), z) � 0, and the symmetry condition, ∂uz, j
/
∂r � 0 at r � 0,

have been applied.
(iii) Substitute uz, j in the integral constraint, Eq. (38), to determine P̂ ′

j (z):

P̂ ′
j (z) � 16

H4

⎛

⎝−δ0, j +

H (z)∫

0

β j−2(r , z) r dr

⎞

⎠. (41)

(iv) Substitute uz, j in Eq. (32), integrate with respect to r, and apply the symmetry condition ur , j (r � 0,
z) � 0 to find ur , j :

ur , j � −1

r

r∫

0

∂

∂z
(s uz, j (s, z))ds. (42)

Next, we check the no-penetration condition at the upper wall, ur , j (H (z), z) � 0. Evaluating Eq. (42) at
r � H (z) and applying the Leibniz rule gives:

ur , j (H (z), z) H (z) +
d

dz

⎛

⎝

H (z)∫

0

uz, j (r , z) r dr

⎞

⎠ − H ′(z)uz, j (H (z), z) � 0. (43)

The third term vanishes owing to the no-slip condition given by Eq. (13), and the second term is zero, too,
due to integral constraint given by Eq. (38). Therefore, Eq. (43) simply reduces to ur , j (H (z), z) � 0. This
shows that albeit the continuity equation used to determine ur , j is first order in r, both the symmetry and the
no-penetration conditions are satisfied.

Finally, we confirm that the solution for p j , ur , j−4 and ur , j−2 satisfies Eq. (34). This completes the
solution of the equations at order O(ε j ), j � 0,2,4,…
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3.2 Solution

Following the procedure describe in the previous Subsection, we find the analytical solution for the field
variables up to forth-order in ε, i.e., the quantities X0, X2, and X4 where X � p, ur , uz . For convenience, we
define the reduced radial coordinate r̂ � r/H (z) so that 0 ≤ r̂ ≤ 1, which helps us to produce more compact
expressions for the solutions, and for further simplicity we omit the explicit dependence of the shape function
on the axial coordinate.

3.2.1 Zero-order solution

The zero-order solution corresponds to the classical lubrication theory, and is given as:

uz,0(r̂ , z) � 4(1 − r̂2)/H2, ur ,0(r̂ , z) � r̂ H ′ uz,0(r̂ , z), p0(z) � P̂0, P̂ ′
0(z) � −16/H4, (44)

The last expression in Eq. (44) can be used to determine the pressure distribution, up to a constant, along the
tube:

p0(z) � p0(1) −
1∫

z

P̂ ′
0(s)ds � p0(1) + 16

1∫

z

H−4(s)ds. (45)

Note, however, that only the quantity P̂ ′
0(z) really matters for the calculation of the higher-order solutions

and the required pressure drop (see the next Subsection).

3.2.2 Second-order solution

The second-order solution is found as follows:

uz,2
(
r̂ , z

) � 2

3

(
1 − r̂2

)(
1 − 3r̂2

)
(
5H ′2

H2 − H ′′

H

)

,

ur ,2
(
r̂ , z

) � r̂ H ′uz,2
(
r̂ , z

) − r̂
(
1 − r̂2

)2(
5H ′2 − HH ′′)′

3H
,

p2(r̂ , z) � P̂2(z) − 16H ′

H3 r̂2

(46)

where

P̂ ′
2(z) � 8H ′′

3H3 − 88H ′2

3H4 . (47)

3.2.3 Fourth-order solution

The fourth-order solution is found as follows:

uz,4(r̂ , z) � (
1 − r̂2

)
(
5(−1 − 60r̂2 + 126r̂4)H ′4

36H2 − 5(7 − 48r̂2 + 54r̂4)H ′2H ′′

18H

+
(8 − 39r̂2 + 30r̂4)

18
H ′H ′′′ + 1

72

((
32 − 141r̂2 + 90r̂4

)
H ′′2 +

(−2 + 9r̂2 − 6r̂4
)
HH (4)

))

,

(48.1)

ur ,4
(
r̂ , z

) � r̂ H ′uz,4
(
r̂ , z

) − r̂
(
1 − r̂2

)2(
5H ′2 − HH ′′)′

3H
, (48.2)

p4(r̂ , z) � P̂4 − H2 P̂ ′′
2

4
r̂2 + H4

(
H ′

H5

)′′
r̂4 (48.3)

where

P̂ ′
4(z) � 238H ′2H ′′

9H3 − 115H ′4

9H4 − 41H ′′2

18H2 − 22H ′H (3)

9H2 − H (4)

18H
. (49)
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3.3 Pressure drop

The required average pressure drop to maintain the constant flowrate in the tube is found as follows. First, the
average of any dependent variable, f � f (r , z), at a cross section from the inlet plane is defined as

f (z) :�
H (z)∫

0

f (r , z)rdr

/ H (z)∫

0

rdr � 2

1∫

0

f
(
r̂ H(z), z

)
r̂dr̂ (50)

where the integration along the polar angle θ has been ignored due to the axisymmetry of the geometry
and the flow field, and in the second equality the reduced radial coordinate, r̂ , has been used. Also, we
define the difference operator 	 f :� f (z � 0) − f (z � 1) of any dependent variable f � f (r , z), and
thus the average pressure drop is given as 	p ≡ p(0) − p(1), where p(0) � 2

∫ 1
0 p(r̂ H (0), 0) r̂ dr̂ and

p(1) � 2
∫ 1
0 p(r̂ H (1), 1) r̂ dr̂ . Finally, based on the perturbation expansion up to O(ε4), the average pressure

drop is 	p ≈ 	p0 + ε2	p2 + ε4	p4. The individual components are found as:

	p0 � 2

1∫

0

p0(r̂ H (0), 0)r̂dr̂ − 2

1∫

0

p0(r̂ H (1), 1)r̂dr̂ � −
1∫

0

P̂ ′
0(z)dz � 16

1∫

0

H−4(z)dz, (51.1)

	p2 � 2

1∫

0

p2
(
r̂ H(0), 0

)
r̂dr̂ − 2

1∫

0

p2
(
r̂ H(1), 1

)
r̂dr̂ � −

1∫

0

P̂ ′
2(z)dz + 	

(

−8
H ′

H3

)

, (51.2)

	p4 � 2

1∫

0

p4
(
r̂ H(0), 0

)
r̂dr̂ − 2

1∫

0

p4
(
r̂ H(1), 1

)
r̂dr̂ � −

1∫

0

P̂ ′
4(z)dz + 	

(
H4(H ′/H5)′′

3
− H2 P̂ ′′

2

8

)

.

(51.3)

In Eqs. (51.2, 3),P̂ ′
2(z) and P̂ ′

4(z) are given by Eqs. (47) and (49), respectively. As for the channel flow, we
notice that the average pressure drop at O(ε2) and O(ε2) is not found only by integrating −P̂ ′

2(z) and −P̂ ′
4(z)

along thez-direction, but additional terms appear, as these can be seen on the right-hand-side in Eqs. (51.2)
and (51.3). For fully periodic tubes, the additional terms vanish, however this does not hold in general. For
instance, even linearly contracting/expanding channels exhibit a nonzero first derivative at the inlet (z � 0) and
outlet cross section (z � 1), i.e., H ′(0) �� 0 and H ′(1) �� 0, and therefore the additional terms in Eqs. 51.2,
51.3) contribute to the average pressure drop.

4 Results and discussion

We proceed by presenting results for the average pressure drop required to maintain the constant flowrate
through the channel or tube using specific examples for the shape function(s). We are interested most in
configurations with multiple constrictions, converging or diverging channels/tubes, and wavy and undulating
or rough channels/tubes with relatively large wavenumber and small amplitude; a few examples are shown in
Fig. 2. For all the selected cases, the integrations needed in Eqs. (24.1–3) and Eqs. (51.1–3) are performed
analytically, yielding the average pressure drop explicitly in terms of the parameters entering into the shape
function(s). More complex configurations can be easily considered, however, the integrations in Eqs. (24.1–3)
and Eqs. (51.1–3) must then be performed numerically.

Since the main purpose of the current work is the derivation of more accurate expressions for the average
pressure drop compared to the classical leading-order lubrication approximation,we also investigate techniques
that increase the accuracy of the obtained truncated perturbation solutions. This issue has been discussed
recently in the literature due to the availability of high-order solutions obtained with the aid of symbolic
computer software (such as the “Mathematica” software used here [46]). It has also been reported that when
many terms (three, at least) in a perturbation series are known, techniques that increase their accuracy and
extend their domain of convergence can be applied [47]. For fundamental nonlinear viscoelastic flow problems,
three techniques have been studied extensively and checked for their accuracy and efficiency [48]. These are
Euler’s linear transformation (when the series is alternating), the nonlinear Shanks transformation [49, 50],
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Fig. 2 Typical configurations with aspect ratio ε � 1/4 (a) Asymmetric channel with a flat boundary and multiple constrictions
(three) imposed by the upper boundary, (b) Symmetric wavy/rough channel with many oscillations (six) and low amplitude (0.1),
(c) Symmetric and converging channel with hf � 1/4, (d) Symmetric and expanding channel with hf � 1

and the Padé-type approximants [51]. The techniques have also been applied successfully to a variety of
viscoelastic flows around cylinders and spheres yielding accurate formulas for the drag force on the cylinder
or sphere [52–56]. Here, the diagonal [2/2] Padé-approximant and the Shanks transformation are applied
to the three-term series for the average pressure drop, which based on the perturbation scheme is given as
	p ≈ 	p0+ε2	p22+ε4	p4. In this case, bothShanks transformation and the diagonal [2/2] Padé-approximant
produce the same transformed expression for 	p, denoted with the subscript “S”:

	pS � 	p0 +
ε2	p22

	p2 − ε2	p4
. (52)

By construction, Eq. (52) agrees well with the original three-term solution for small values of ε. Thus, for
the range of parameters for which Eq. (52) agrees with the original solution, one is confident that high accuracy
of the results has been achieved. Furthermore, and based on the experience regarding the performance of the
transformed formula(s) in many fluid mechanics problems, Eq. (52) is expected to be accurate for an extended
range of parameters; this range however cannot be determined a-priori. Hereafter, we will be referring to
Eq. (52) as the “acceleration formula”, and we also emphasize that in general there is no formal proof about
the superiority of Eq. (52) versus the truncated original perturbation series. Thus, Eq. (52) should be used with
appropriate caution. For instance, we mention the case where 	p2 and 	p4 have the same sign, and thus
Eq. (52) becomes singular at a critical aspect ratio εc � ±√

	p2/	p4, a situation that was not encountered
for the specific examples studied in the subsequent Sections.

To summarize, the truncated original perturbation series for the average pressure drop is given by the three-
term expression 	p ≈ 	p0 + ε2	p22 + ε4	p4, and its transformed expression by Eq. (52). In the window of
parameters for which the two expressions agree well, high accuracy and convergence of the results is indicated.
In addition, Eq. (52) is expected to be more accurate than the original solution, and therefore it can be trusted,
for an extended set of parameter values.

4.1 Flow in a channel

First, we present the results for the confined flow in an asymmetric channel the lower wall of which is flat,
�(x) � 1/2, while the upper wall is described by the shape function H (x) � 1

2 (1 − λ(1 − cos(2mπx))),i.e.,
multiple constrictions, m, of the same amplitude, λ, (for simplicity) are considered, where m � 1, 2, 3, ...
and 0 ≤ λ < 1. Thus, for any x ∈ [0, 1], 0 < H (x) +�(x) ≤ 1, where H (x) +�(x) � 0 can be attained only
when λ � 1. For m � 1, this case corresponds to the main case presented by Tavakol et al. [34]; note that in
Ref. [34] the authors use the aspect ratio δ ≡ h0/(�/2) � 2h0/� � 2ε, the x-axis varies from -1 to 1, and that
the origin of their coordinate system is located at the lower wall and in the middle of the channel (see Fig. 1
in Ref. [34]). Defining the shape functions as mentioned above, Eqs. (24.1-3) can be calculated analytically to
give the average pressure drop in the channel:

	p ≈ 3
(
8 − 8λ + 3λ2

)

2(1 − λ)5/2
+

6λ2

5(1 − λ)3/2
χ2 +

4
(
428

(−1 +
√
1 − λ

)
+ 214

(
2 − √

1 − λ
)
λ − 53λ2

)

175
√
1 − λ

χ4 (53)
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Fig. 3 The reduced average pressure drop for an asymmetric channel with a flat lower wall and a varying upper wall with multiple
constrictions (a) as function of the amplitude of the constriction for χ � 1, 2, and 3 where χ � 2 π m ε; (b) as function of χ for
λ � 0.3, 0.6, and 0.9. The corresponding results obtained using the acceleration formula, Eq. (52), are also shown with dashed
lines for comparison

where the modified aspect ratio χ ≡ 2πm ε has been used. As expected, for λ → 1− the upper wall touches the
lower wall, and the fluid cannot continue to flow leading to a blow-up of 	p. For m � 1 Eq. (53) fully agrees
with the corresponding expression derived in Ref. [34] if the difference in the domain along the x-direction
and the different definition of the aspect ratio are taken into account; note also that in Ref. [34] the results
have been presented up to δ � 1 which corresponds to ε � 0.5. We reiterate that Eq. (53) is valid for multiple
constrictions (i.e., for m > 1) asymptotically as ε → 0+ provided that

∣
∣	p0

∣
∣ >> ε2

∣
∣	p2

∣
∣ >> ε4

∣
∣	p4

∣
∣. In

order to focus on the effect of the higher-order terms, namely on the effect of a non-vanishing aspect ratio, we
show in Fig. 3a the reduced average pressure drop,	p/	p0, as function of the amplitude of the constriction(s),
λ, for χ � 1, 2, and 3. Also, in Fig. 3b, we show 	p/	p0 as function of the modified aspect ratio χ , for λ
� 0.3, 0.6, and 0.9. The corresponding results for 	pS/	p0 according to the acceleration formula, Eq. (52),
are also presented with dashed lines for comparison.

First, it is seen that for fixedχ and in the range 0 < λ ≤ 0.9 the required pressure drop is always above unity.
Also, a global maximum which grows as the modified aspect ratio increases is observed at a critical amplitude
of the constriction(s), λc. Notice that λc depends weakly on χ ; for χ � 1, 2, and 3 the maximum is attained at
λc ≈ 0.727, 0.716, and 0.688, respectively. Second, it is seen in Fig. 3b that for fixed λ the reduced average
pressure drop increases monotonically with the increase in the modified aspect ratio, with the rate of increase
being larger as the amplitude of the constriction(s) becomes higher. Finally, in both Figs. 3a and 3b, one can
see clearly that the acceleration formula gives almost the same results with the original perturbation solution,
with some minor differences observed only for large values of λ and χ . This is an indication for the high
accuracy and convergence of the results, at least for λ � λc and for the range of parameters investigated here,
while the accuracy and convergence of the results for λ � λc require further investigations to be performed.

We proceed by investigating a symmetric wavy channel, namely both walls are described by the same shape
function�(x) � H (x) � 1

2

(
1 − λ

2 (1 − cos(2mπx))
)
,m � 1, 2, 3, .... Due to the requirement�(x)+H (x) �

2H (x) > 0 for any x ∈ [0, 1], the amplitude of the constriction(s) is restricted in the window 0 < λ < 1; for
λ � 0 one gets a straight channel with two parallel walls, while for λ → 1− the upper wall reaches the lower
wall and the flow is interrupted, i.e., a singularity is expected. Using these shape functions, Eq. (24.1-3) gives
the average pressure drop in the channel:

	p ≈ 3
(
8 − 8λ + 3λ2

)

2(1 − λ)5/2
+

9λ2

5(1 − λ)3/2
χ2 +

3
(
1928

(−1 +
√
1 − λ

)
+ 964

(
2 − √

1 − λ
)
λ − 243λ2

)

350
√
1 − λ

χ4

(54)

where the modified aspect ratio χ ≡ πm ε has been used. Interestingly, Eq. (54) is very similar to Eq. (53);
the leading-order terms in these equations coincide (due to the fact that the quantity � + H is the same) but
differences appear at the higher-order terms. Thus, the classical lubrication theory gives the same 	p0 for an
asymmetric channel consisting of a flat and a varying wall, as described at the beginning of this Subsection,
with a symmetric channel with two varying walls. On the contrary, the higher-order lubrication theory provides
different solutions (as it should be expected). Equation (54) also shows that the average pressure drop becomes



4076 K. D. Housidas, C. Tsangaris

Table 1 The dimensionless resistance to the flow, f Re, as calculated in Ref. [57] using spectral methods and Richardson extrapo-
lation, compared to the leading-order lubrication approximation (3rd column), to the analytical results fromEq. (54) (4th column),
and to the transformed expression based on Eq. (52) (5th column)

Parameters f Re m (1 − λ/2)3	p0 m (1 − λ/2)3	p m (1 − λ/2)3	pS

α � 0.07, R/L � 0.16 12.21354 12.178 12.2136 12.2136
α � 0.10, R/L � 0.16 12.43974 12.3669 12.4398 12.4398
α � 0.15, R/L � 0.16 13.0119 12.8454 13.0121 13.0122
α � 0.20, R/L � 0.50 16.0* 13.5551 15.969 16.0709

*Indicates an approximate value extracted virtually from a figure in Ref. [57]

singular in the limit λ → 1− as the gap vanishes. Finally, we mention that the results for 	p/	p0(and for
	pS/	p0) follow the same general trends as those observed before for the asymmetric channel and thus are
not shown here.

Forλ < 0Eq. (54) canbeused to study anundulating symmetric channel, and to comparewith high accuracy
numerical solutions from the literature. In particular, Beris et al. [57] performed numerical spectral calculations
of viscoelastic flows in a fully periodic, along themain flowdirection, undulating channel. Denoting the average
half-gap height of an equivalent straight channel byR, the wavelength of the undulation by L, and the amplitude
of the undulation by αR, where α is dimensionless, the shape function for both the upper and the lower walls of
the channel was r∗

w(x
∗) � R(1 − α cos(2πx∗/L)), 0 ≤ x∗ ≤ L . Comparing r∗

w with the shape function used in
the previous paragraph, i.e.,H∗(x∗) � (h0/2)(1 − (λ/2)(1 − cos(2mπx∗/�))) (dimensional), one can confirm
that the two formulations are equivalent provided that �/m � L , λ � 2a/(a − 1) and m ε � 2(R/L)(1 − α).
Since the calculations in Ref. [57] were performed in a computational cell of length L, in our comparison we
setm� 1. Thus, by defining a and R/L (i.e., the two dimensionless parameters that characterize the geometry)
we can calculate λ and ε.

In Table 1, we compare the macroscopic dimensionless resistance of the flow, f Re ≡ 8 	p∗R3/(η q L),
obtained numerically in Ref. [57] with the analytical results for 	p given by Eq. (54). Taking into account
the expressions between {λ, ε, m} and {a, R/L}, one finds that f Re � m (1 − λ/2)3	p. We were able to
extract numerical results from Ref. [57] that correspond to four different geometries; the parameters are shown
in the first column in the Table. The numerical values for f Re, obtained with Richardson extrapolation, are
shown along with the leading-order lubrication results, the high-order results (Eq. (54)) and the corresponding
results obtained with the acceleration formula (Eq. (52)). In all cases, it is seen that the correction to the
classical lubrication solution is significant, and, most importantly, that the higher-order lubrication theory
agrees very well with the numerical results. It is also very interesting that the quality of the agreement remains
approximately the same, even when α increases to 0.2. As far as the acceleration formula is concerned, its
effect is inconsequential indicating that the original truncated perturbation solution as given by Eq. (54) has
already converged.

Last, we investigate a symmetric contracting/expanding channel whose walls are described by the linear
shape functions �(x) � H (x) � 1

2 +
(
h f − 1

2

)
x where h f > 0 is the half-distance between the two walls at

the exit plane. In this case, Eqs. (24.1–3) give:

	p

	p0
≈ 1 +

1

10
χ2 − 17

2800
χ4, 	p0 � 3(1 + 2h f )

2h2f
, χ ≡ (1 − 2h f )ε. (55)

Since only even powers of the modified aspect ratio χ appear in Eq. (55), its sign does not matter. Thus,
Eq. (55) predicts the same result for converging (0 < h f < 1/2) and diverging (h f > 1/2) channels provided
that |χ | is the same. This is a consequence of the linearity of the Stokes equations, Eqs. (2–5), and the fact that
the converging and diverging channels are two mirror-image configurations of the sameshaped body (see also
the discussion in Chapter 7 in Ref. [2]). For χ � 0 (i.e., for h f � 1/2) one gets a straight channel for which
Eq. (55) gives 	p0 � 12 and 	p/	p0 � 1. Finally, as h f approaches zero, 	p0 diverges to infinity as the
gap at the outlet plane vanishes. For comparison, illustrative results produced from Eq. (55) are presented in
the subsequent Section together with those obtained for an expanding/contracting tube.
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Fig. 4 The reduced average pressure drop for a tube with multiple constrictions (a) as function of χ � πm ε for various values of
the amplitude of the constriction(s), λ; (b) as function of λ for m � 1, 2, 4, and 8. The aspect ratio is ε � 1/10. The corresponding
results obtained using the acceleration formula, Eq. (52), are also shown dashed lines for comparison

4.2 Flow in a tube

For the flow in an axisymmetric tube of varying cross section, first we present the results for awall withmultiple
constrictions. As for the channel flow, the shape function is given by H (z) � 1 − λ

2 (1 − cos(2mπ z)) where
the wavenumber m corresponds to the number of constrictions (m � 1, 2, 3, ...), and λ is their amplitude
which is assumed to be the same for all constrictions and varies in the range 0 ≤ λ < 1. Using χ ≡ πm ε, the
average pressure drop up to fourth order is found from Eqs. (51.1–3) as follows:

	p ≈ (2 − λ)
(
8 − 8λ + 5λ2

)

(1 − λ)7/2
+

(2 − λ)(4λ)2

3(1 − λ)5/2
χ2 +

2
(
640

(
1 − (1 − λ)3/2

)
+ λ

(
41λ2 + 238λ − 960

))

9(1 − λ)3/2
χ4.

(56)

It is clear that the pressure drop becomes unbounded as λ approaches unity, i.e., as the constriction(s) reach
the axis of symmetry of the tube. In Fig. 4a, we show the predictions for the reduced average pressure drop,
	p/	p0, as function of χ for an increasing amplitude of the constriction(s). In the same Figure, the results
obtained with the acceleration formula, 	pS/	p0, are also shown for comparison. The increase of χ , which
implies an increase in the number of constrictions and/or the increase in the tube aspect ratio, or the increase
in the amplitude of the constriction(s), increase 	p/	p0. The increase is substantial and can reach up to 50%
for the range of parameters shown in the Figure. Likewise, the results for a long undulating tube with aspect
ratio ε � 1/10 are plotted as functions of the amplitude of the undulation in Fig. 4b. It is seen that the higher
the wavenumber of the undulation, the higher the increase in the average pressure drop. Last, we emphasize
that the great agreement of the original truncated perturbation solution with the acceleration formula gives
confidence for the convergence and accuracy of the results.

For λ < 0, Eq. (56) can be used to study an undulating tube, and to compare with high accuracy numerical
solutions from the literature [58, 59]. In these papers, the simulations were performed pseudospectrally for a
fully periodic, along the main flow direction, undulating tube. Denoting the average radius of an equivalent
straight circular tube by R, the wavelength of the undulation by L, and the amplitude of the undulation
by αR, where α is dimensionless, the shape function for the wall was r∗

w(x
∗) � R(1 − α cos(2πx∗/L)),

0 ≤ x∗ ≤ L [58, 59]. Comparing r∗
w with the shape function used in the previous paragraph, i.e., H∗(x∗) � h0

(1 − (λ/2)(1 − cos(2mπx∗/�))) (dimensional), one can confirm that the two formulations are equivalent
provided that �/m � L , λ � 2a/(a − 1) and m ε � (R/L)(1 − α). Since the calculations in Refs. [58, 59]
were performed in a computational cell of length L, in our comparison we set m � 1. Thus, by defining a and
R/L , we can calculate λ and ε. In Table 2, we compare the numerically obtained macroscopic dimensionless
resistance of the flow, f Re ≡ 2π 	p∗R4/(η q L), with the analytical results for 	p given by the classical
lubrication theory, the high-order perturbation theory, Eq. (56), and the results derived by the acceleration
formula, Eq. (52); note that by taking into account the relations between {λ, ε, m} and {a, R/L}, we find that
f Re � m (1− λ/2)4	p. It is seen that the high-order lubrication theory agrees very well with the numerical
results. It is also very interesting that the quality of the agreement remains approximately the same for all the
parameters shown in the Table. As far as the acceleration formula is concerned, it is important to note that in
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Table 2 The dimensionless resistance to the flow, f Re, as calculated in Refs. [58, 59] using spectral methods, compared to (a)
the analytical results from the leading-order lubrication approximation (3rd column), (b) the results of Eq. (56) (4th column), and
(c) the transformed results based on Eq. (52) (5th column)

Parameters f Re m (1 − λ/2)4	p0 m (1 − λ/2)4	p m (1 − λ/2)4	pS

α � 0.100, R/L � 0.5000 17.74* 16.8214 17.7581 17.7748
α� 0.200, R/L � 0.1042 19.7655 19.5649 19.7655 19.7655
α � 0.300, R/L � 0.1592 26.4370 25.2622 26.4350 26.4365
α � 0.286, R/L � 0.2333 26.3830 24.2155 26.3698 26.3809
α � 0.500, R/L � 0.5000 95.6* 60.2155 77.3914 92.3348

*Indicates an approximate value extracted virtually from a figure in Ref. [59]

Fig. 5 The reduced average pressure drop for contracting (χ >0) and expanding (χ <0) tubes and for contracting (χ >0) and
expanding (χ <0) channels. The corresponding results according to the acceleration formula, Eq. (52), are also shownwith dashed
lines (for the channel the results are indistinguishable). For both configurations, the contraction or expansion is linear

contrast to the cases presented for the undulating channel (see Table 1), Eq. (52) increases significantly the
accuracy of Eq. (56), especially for α � 0.5 for which Eq. (56) does not agree well with the numerical results.
All these observations clearly demonstrate the efficiency of the high-order lubrication theory, as well as the
significance of the acceleration formula.

Last, we investigate a contracting/expanding tube whose wall is described by the linear shape function
H (z) � 1 + (h f − 1)z with h f > 0 being the radius of the outlet cross section. In this case, Eqs. (51.1–3) give

	p

	p0
≈ 1 +

1

3
χ2 − 11

144
χ4, 	p0 � 16

3

(
1

h f
+

1

h2f
+

1

h3f

)

, χ ≡ (1 − h f )ε. (57)

As previously found for a contracting/expanding symmetric channel, the sign of the modified aspect ratio
χ does not matter since only even powers of χ appear in Eq. (57). Therefore, the reduced pressure drop
is the same for both expanding and contracting tubes provided that |χ | is the same. Again, this feature is
a consequence of the linearity of the Stokes equations, Eqs. (25–28), in conjunction with the fact that the
contracting and expanding tubes are two mirror-image configurations of the same shaped body [2]. For χ � 0
(i.e., for h f � 1 � H (0)) one gets a straight tube for which Eq. (57) gives 	p0 � 16 and 	p/	p0 � 1.
As h f approaches zero, 	p0 diverges to infinity as the radius of the outlet cross section vanishes. Illustrative
results for 	p/	p0 (solid lines) and 	pS/	p0 (dashed lines) are shown as functions of χ in Fig. 5, along
with the corresponding results for the channel case (Eq. (55)). It is seen that for both the channel and the tube
the higher-order terms in the lubrication approximation predict an increase in the average pressure drop; the
increase is more significant for the flow in the tube. Also, the results shown using the acceleration formula
are almost indistinguishable from the original truncated perturbation series (Eqs. (55) and (57)) indicating the
high accuracy and convergence of the results.

Before closing this Section, we point out that the authors in Refs. [57–59] used extensively the domain
perturbation method as an analytic technique to study the effect of the undulation of the boundary wall(s)
on the dimensionless flow resistance, i.e., on f Re. However, the agreement of the analytical results with the
converged numerical results was reasonable only for very small amplitude of the undulation (α<0.1, and in
some cases even to as low as α � 0.01). On the contrary, the comparison that we performed in Tables 1
and 2 showed an extraordinary agreement of the high-order lubrication results, and the corresponding results
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obtained with the acceleration formula, with the numerical results given in Refs. [57–59] for all values of the
amplitude of the undulation, α.

5 Conclusions

Using a regular perturbation technique, we have systematically extended and generalized the classical lubrica-
tion theory for the creeping flow of a simple Newtonian fluid in confined and narrow configurations. High-order
analytical results for the field variables (velocity and pressure) have been derived in channels with two vari-
able walls and in tubes with varying circular cross section. The analysis is applicable provided that the shape
functions that describe a-priori the geometry of the channel or tube are adequately smooth.

Focusing on the most interesting quantity for engineering applications, namely on the average pressure
drop required to maintain the constant flowrate through the channel/tube, we have derived general expressions
in terms of the aspect ratio and the shape functions (and their derivatives). For selected cases, such as con-
tracting/expanding, undulating or rough channels and tubes, and configurations with multiple constrictions,
analytical solutions for the average pressure drop have been derived and discussed. In all cases investigated,
the effect of the higher-order terms is to increase the average pressure drop compared to that predicted by the
classical leading-order lubrication theory. The magnitude of the increase, however, depends on the specific
details and the parameters that characterize the geometry of the flow configuration.

In the cases of symmetric undulating channels and axisymmetric undulating tubes, comparison of the ana-
lytic results for the pressure drop with high-accurate numerical solutions from the literature showed excellent
agreement between the solutions revealing the great accuracy and efficiency of the high-order lubrication the-
ory. Furthermore, the comparison revealed the superiority of the theory against the domain perturbationmethod,
especially for fully periodic configurations with large amplitude of the undulation. Finally, the implementation
of the Shanks transformation and the Padé-type approximant(s) on the original truncated perturbation series
further increased the accuracy of the analytical results, when these were compared to the numerical results,
once again demonstrating the capability of these techniques to achieve better results than the original ones.
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Appendix

For the channel flow, and using G(x) ≡ H (x) + �(x), the functions that appear in p4 are:

p4, 0(x) � 1

10G4 (G − H)(300H3G ′3 + 60GH2G ′(G ′2 − 12G ′H ′ − 3HG ′′)

+ 3G2H
(
−16G ′3 + 60G ′2H ′ + 60G ′(H ′2 + HH ′′) + 5H

(
12H ′G ′′ + HG(3)

))

+ 5G5
(
G(3) − 2H (3)

)
+ G4

(
12H ′G ′′ − 4G ′(4G ′′ − 5H ′′) + H

(
G(3) + 10H (3)

))

+ G3(24G ′3 + 12G ′2H ′ − 60G ′(3H ′2 − H
(
G ′′ − 2H ′′))

+5
(
24H ′3 − 12HH ′(2G ′′ − H ′′) − H2

(
G(3) + 4H (3)

)))
),

p4, 1(x) � −2

5

(
84G ′3 − 132G ′2H ′ + 30H ′3 + 3GH ′(5H ′′ + 6G ′′) + GG ′(20H ′′ − 34G ′′) + G2

(
4G(3) − 5H (3)

))
,

p4, 2(x) � 3

5

(
162G ′3 − 210G ′2H ′ + 10G ′(3H ′2 + 4G

(
H ′′ − 2G ′′)) + G

(
10H ′(4G ′′ + H ′′) + G

(
6G(3) − 5H (3)

)))
,

p4, 3(x) � −2
(
48G ′3 − 36G ′2H ′ + 9GG ′(H ′′ − 3G ′′) + G

(
9H ′G ′′ + G

(
2G(3) − H (3)

)))
,

p4, 4(x) � 30G ′3 − 18GG ′G ′′ + 3

2
G2G(3).



4080 K. D. Housidas, C. Tsangaris

Also, the functions that appear into ux , 4 are:

A1(x) � −288

5
G ′4 + 768

5
G ′3H ′ − G ′2

15

(
1800H ′2 + G

(
413H ′′ − 562G ′′))

+
2

15
G ′(180H ′3 + 3GH ′(65H ′′ − 148G ′′) + 2G2

(
11H (3) − 10G(3)

))

+
G

60

(
60H ′2(19G ′′ + 4H ′′) + 24GH ′(6G(3) − 5H (3)

)

+G
(
−80G ′′2 + 148G ′′H ′′ − 30H ′′2 + 8GG(4) − 13GH (4)

))
,

A2(x) � 504

5
G′4 − 192G′3H ′ + 3

5
G′2(140H ′2 + G

(−142G′′ + 79H ′′))

+
2

5
GG′(3H ′(84G′′ − 25H ′′) + 2G

(
11G(3) − 8H (3)

))

+
G

20

(
−420H ′2G′′ − 8GH ′(16G(3) − 5H (3)

)
+ G

(
124G′′2 − 172G′′H ′′ + 10H ′′2 − 8GG(4) + 9GH (4)

))
,

A3(x) � −72G ′4 + 72G ′3H ′ + 18

5
GG ′2(19G ′′ − 6H ′′) − 6

5
GG ′(36H ′G ′′ + G

(
7G(3) − 3H (3)

))

+
3

20
G2

(
−42G ′′2 + 36G ′′H ′′ + 24H ′G(3) + 3GG(4) − 2GH (4)

)

A4(x) � 18G ′4 − 18GG ′2G ′′ + 12

5
G2G ′G(3) +

3

20
G2

(
12G ′′2 − GG(4)

)

.
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