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Abstract The present research work is concerned with the solution of a problem on thermoelastic inter-
actions in a functionally graded (non-homogeneous), fiber-reinforced, transversely isotropic half-space with
temperature-dependent properties under the application of an inclined load in the context of Green-Naghdi the-
ory of type III. Material properties are supposed to be temperature-dependent and are graded along x-direction.
Normal mode technique is adopted to obtain the exact expressions for the temperature field, displacement,
and stress components. These are computed numerically and limned graphically to observe the disturbances
induced in the medium due to fiber reinforcement, non-homogeneity parameter, temperature-dependent prop-
erties, and inclination angle of the load and time. Certain particular cases of interest have been deduced from
the current investigation.

1 Introduction

The theory of thermoelasticity is concerned with the relationship between elastic properties of a material and
its temperature. Although Duhamel [1] presented equations of thermoelasticity with coupling of deformation
and temperature fields already in 1837, only research works done 120 years later by Biot [2] and Lessen [3]
gave a new impulse to do research in this area. In classic thermoelasticity, a problem regarding temperature
was solved first, and then stresses were received from Duhamel–Neumann equations. But both the theoretical
assumptions and very simple experiments show that a change of displacements in a material accompanies
a change of temperature, and a change of temperature is accompanied by a change of displacements. Thus,
treating a dynamic problem of thermoelasticity in stresses requires simultaneous solution of the stress equation
of motion and the heat conduction equation in which the time derivative of first stress invariant appears clearly.
Thereafter, Weiner [4] presented a proof on uniqueness of solutions of coupled equations of thermoelasticity.
A generalization of the theory of thermoelasticity was put forwarded by Lord and Shulman [5], which involves
a single relaxation time in the equation for heat conduction. They developed the theory by including a heat
flux rate term in the classical Fourier’s equation of thermal conduction. As a result, it ensures the finite speed
of heat propagation because the obtained heat equation is hyperbolic.

One other generalization of coupled theory was proposed by Green and Lindsay [6], which contains two
relaxation times and amends all the field equations of coupled theory, not the thermal conduction equation
only. Later on, by providing sufficient basic modifications in the constitutive equations, Green and Naghdi
[7–9] produced three alternative theories for thermoelastic materials, namely as GN theory of type I, GN theory
of type III and GN theory of type II, respectively. When these theories are linearized, GN theory of type I
reduces to the classical heat conduction theory, and GN theories of type III and II permit thermal signals to
propagate with finite speed. GN theory of type II does not contain the thermal conductivity parameter, and
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the internal rate of production of entropy is taken to be identically zero, implying no dissipation of thermal
energy. GN theory of type III includes the previous two theories as special cases and admits dissipation of
energy in general. However, these theories do not account for the relaxation time. An article of representative
theories on the account of generalized thermoelasticity is given by Hetnarski and Ignaczak [10]. Awrejcewicz
and Pyryev [11] modeled a dynamic 2-DoF (two degrees of freedom) damper with reference to dry friction
and heating processes. In addition, the proposed method of solution may also be applied to model any other
nonlinear problem of dynamics of thermoelastic contacting bodies. Krysko et al. [12] described the regular
(periodic and quasi-periodic) and chaotic vibrations of flexible beams, plates, cylindrical shells, panels, and
sector-type spherical shells under the action of thermal and piezoelectric phenomena. In an another research
article, Awrejcewicz and Krysko [13] formulated fundamental assumptions and relations for coupled nonlinear
thermoelastic problems similar to those formulated for coupled linear thermoelasticity problems of shallow
shells. In addition, they discussed the existence and uniqueness of a solution as well as the convergence of
the Bubnov–Galerkin method. A theory of shells with physical nonlinearities and coupling is also outlined by
them by discussing variational equations of physically nonlinear coupled problems. Recently, Krysko-jr et al.
[14] developed the theory of nonlinear statics and dynamics of flexible plates, taking into account the modified
couple stress theory and temperature field and investigated the hyperchaotic vibrations in amathematical model
of rectangular plates obtained based on the modified couple stress theory, subjected to transverse harmonic
loads and embedded into a temperature field.

Functionally graded materials (FGMs) are a modern class of smart materials and are defined as diverse and
advanced materials whose thermal and elastic characteristics differ slowly and continuously corresponding to
variation in spatial coordinates. These types of specifications develop spatial heterogeneity in the materials.
FGMs are designed to work in high temperature fields, and as a result, these materials are extremely helpful in
aviation, nuclear reactors, and space technology applications. Their applications extend to several other fields,
such as material science, geophysics, and magnetic storage, as well as mechanical and thermal engineering.
Lagrangian finite element formulations were proposed by Reddy and Chin [15] to analyze the pseudodynamic
thermal vibrations induced in functionally graded elastic cylinders. Krysko et al. [16] studied a coupled ther-
momechanical problem of functionally graded, i.e., non-homogeneous Timoshenko type shells, i.e., shells
with variable thickness and variable Young’s modulus. Furthermore, the problem is reduced to a uniformly
correct problem in the form of a first order difference operator equation. A problem on one-dimensional tran-
sient thermal stresses in nonhomogeneous plates, spheres, and cylinders was solved by Wang and Mai [17]
by adopting finite element technique. Abbas and Zenkour [18] examined the electro-magnetic responses of
a nonhomogeneous thermoelastic cylinder in the purview of LS theory, with the help of finite element tech-
nique.Kirichenko et al. [19] proposedmathematicalmodels to design non-homogeneous thermoelastic shallow
shells which define a novel class of boundary problems in the non-classical theory of shallow shells with initial
imperfections. Pal et al. [20] investigated magneto-thermoelastic interactions in a rotating functionally graded
isotropic medium due to a periodically varying heat source in the context of Green-Naghdi theories of types II
and III. The thermomechanical disturbances in a nonhomogeneous isotropic elastic thin annular disk subjected
to exponential and periodic types of axisymmetric pressures were examined by Mishra et al. [21]. Krysko
et al. [22] defined and solved the problem of topological optimization of the microstructure of a composite
aimed at the construction of a material associated with multifunctional requirements with respect to effective
characteristics of composites consisting of two components as well as composites with holes or technological
inclusions. An analysis of nonlinear functionally graded beams behavior based on the modified couple stress
theory was carried out by Awrejcewicz et al. [23]. They defined the deflection curve to simplify the governing
equations and then investigated the influence of scale length parameter and the non-homogeneity coefficient
on the dynamic characteristics and the scenario of transition from periodic to chaotic beam vibrations. Saeed
et al. [24] studied the influence of themagnetic field in non-homogeneous (functionally graded) semiconductor
materials in the context of the photo-thermoelasticity theory. Thi [25] analyzed the thermal vibration responses
of functionally graded porous plates with varying thickness resting on two-parameter-based elastic foundations
adopting finite element method.

Usually, the material properties are supposed to be constant in many important investigations. However,
the physical properties of some specific modern engineering materials may vary with temperature. Lomakin
[26] proposed that the material characteristics such as coefficient of thermal expansion, elastic constants,
and the thermal conductivity are no longer constant, at very high magnitude of temperature. Ezzat et al. [27]
analyzed a problem of generalized thermoelasticity with two relaxation times in an isotropic elastic medium
with temperature-dependent mechanical properties. Aouadi [28] investigated the effect of elastic modulus
temperature dependency on the behavior of two-dimensional solutions in a micropolar thermoelastic model.
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Othman and Said [29] examined the influence of temperature-dependent properties and magnetic field on the
plane waves in a fiber-reinforced thermoelastic medium in the context of Green–Naghdi theory without energy
dissipation and three-phase-lag theory. Sheoran et al. [30] obtained numerical results for the thermophysical
fields in a rotating nonlocal thermoelastic medium with temperature-dependent properties in the context of
GN theory of type II.

Fiber-reinforced composites are now firmly placed in the forefront of advanced materials and are used in
a wide number of applications of diverse fields like aerospace, acoustics, geophysics, and automotive fields.
These consist of fibers of high strength and modulus embedded in or bonded to a matrix with distinct inter-
faces between them. The mechanical behavior of the majority of fiber-reinforced composites is appropriately
modeled by linearized elasticity theory for transversely isotropic materials, with preferable direction, the same
as the direction of fibers. Light weight with better impact resistance, high strength, easy mold proficiency, and
excellent corrosion resistance are many remarkable advantages of fiber-reinforced composites over traditional
metals/materials. The numerical results of technically salient elastic moduli for fiber-reinforced composites
have been acquired byHashin andRosen [31]. For the last four decades, the study of strain and stress in compos-
ites reinforced by fibers has been a very significant topic in mechanics of solids. Rogers [32] did premier work
on this special topic of research. Belfield et al. [33] introduced the continuous self-reinforcement throughout
the elastic medium and acquired the veracious solutions for a circular annulus. A problem on propagation of
plane waves in a fiber-reinforced magneto-thermoelastic half-space in the context of Lord-Shulman theory
was discussed by Abbas et al. [34]. Kalkal et al. [35] examined the reflection and transmission phenomena at
the plane interface between an initially stressed fiber-reinforced thermoelastic half-space and a thermoelastic
half-space in the context of dual-phase-lag theory. Deswal et al. [36] analyzed the mechanical disturbances
induced in an initially stressed fiber-reinforced orthotropic thermoelastic half space due to an inclined load.
Hobiny and Abbas [37] investigated the thermoelastic interactions in a fiber-reinforced material with spherical
cavities in the purview of Green–Naghdi theory of type III. Recently, Deswal et al. [38] studied the characteris-
tics of various reflected waves in a homogeneous anisotropic fiber-reinforced magneto-thermoelastic diffusive
solid under dual-phase-lag theory of generalized thermoelasticity with two-temperatures.

The objective of the present research is to analyze the disturbances induced in a functionally graded
fiber-reinforced, transversely isotropic thermoelastic medium with temperature-dependent properties due to
an inclined load in the context of GN theory of type III. Although many research problems do exist in a fiber-
reinforced thermoelastic medium, as well as in a functionally graded thermoelastic medium, no attempt has
been made to access the distributions of various physical fields, i.e., normal displacement, normal stress, shear
stress, and temperature distribution in a functionally graded (non-homogeneous), fiber-reinforced, transversely
isotropic thermoelastic medium with temperature-dependent properties due to an inclined load. The normal
mode technique is applied to obtain the exact expressions of the considered field variables. This model may
be very useful in geophysics, marine, automobile field, lightweight beams in construction, aerospace field,
pressure pipes, and nuclear reactors.

2 Basic equations

Following Green and Naghdi [8] and Spencer [39], the governing field equations and relations among stress,
strain, and temperature in a functionally graded fiber-reinforced transversely isotropic thermoelastic medium
are as follows:
The constitutive relation:

σi j = λekkδi j + 2μT ei j + α(akaleklδi j + aia j ekk) + βakaleklaia j

+2(μL − μT )(aiakek j + a jakeki ) − βi jθδi j , (1)

The equation of motion:

σ j i, j = ρüi , (2)

Heat conduction equation:

(K ∗
i jθ, j +Ki j θ̇ , j ),i = ρCE θ̈ + T0βi j üi, j , (3)

Strain–displacement relation:

ei j = 1

2
(ui, j + u j,i ), (4)
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where i, j, k, l = 1, 2, 3, ρ is the density of the material, σi j are the components of the stress tensor, ei j are
the components of the strain tensor, ui are the components of the displacement vector, α, β, λ, μL and μT
are the elastic constants, δi j is the Kronecker delta, ekk = e is the cubical dilatation, θ = T − T0, T is the
absolute temperature, and T0 is the temperature of the material in its natural state assumed to be | θ

T0
| � 1. The

direction of fiber reinforcement is the normalized vector a= (a1, a2, a3). βi j are components of the thermal
elastic coupling tensor, cE is the specific heat at constant strain, Ki j is the thermal conductivity such that
Ki j = Ki δi j , and K ∗

i j is the material constant such that K ∗
i j = K ∗

i δi j .

Here, a comma denotes material derivative, dot indicates partial temporal derivative, and the summation
convention is used.

For a functionally graded, i.e., non-homogeneous medium, the parameters λ, μT , μL , α, β, βi j , Ki j , and
ρ are no longer constant but become space-dependent. Hence, we consider

[
λ, μT , μL , α, β, βi j , Ki j , K ∗

i j , ρ
] = f (xxx)

[
λ

′
, μ

′
T , μ

′
L , α

′
, β

′
, β

′
i j , K

′
i j , K ∗′

i j , ρ
′]
, (5)

whereλ
′
,μ

′
T ,μ

′
L ,α

′
,β

′
,β

′
i j , K

′
i j , K

∗′
i j , andρ

′
are supposed to be constants, and f (x) is a given non-dimensional

function of the space variable x = (x, y, z).

Using these values of parameters, Eqs. (1)-(3) take the following forms:

σi j = f (x)
[
λ

′
ekkδi j + 2μ

′
T ei j + α

′
(akaleklδi j + aia j ekk) + β

′
akaleklaia j

+2(μ
′
L − μ

′
T )(aiakek j + a jakeki ) − β

′
i jθδi j

]
, (6)

σ j i, j = f (x)ρ
′
üi , (7)

[
f (x)(K ∗′

i j θ, j +K
′
i j θ̇ , j )

]
,i = f (x)

[
ρ

′
cE θ̈ + β

′
i j T0üi , j

]
. (8)

This research work is proposed with an aim to examine the effect of the temperature-dependent nature of the
material. Following Said and Othman [40], one can assume

[
λ

′′
, μ

′′
T , μ

′′
L , α

′′
, β

′′
, β

′′
i j

] = 1

r(α∗)
[
λ

′
, μ

′
T , μ

′
L , α

′
, β

′
, β

′
i j

]
, (9)

where α∗ is an empirical material constant such thatr(α∗) = 1−α∗T0, and r(α∗) is a dimensionless quantity.

3 Mathematical model

A model made up of a functionally graded fiber-reinforced transversely isotropic thermoelastic half-space
(x ≥ 0,−∞ ≤ y ≤ ∞) subjected to an inclined load under the purview of GN theory of type III is considered,
as shown in Fig. 1. The half-space is assumed to be transversely isotropic in the sense that its elastic and thermal
properties are symmetric about the perpendicular to the plane of isotropy. The present formulation is restricted
to xy-plane, and thus all the field variables are independent of the space variable z. So, the displacement vector
uuu has the components as

uuu = (u, v, 0) such that u = u(x, y, t), v = v(x, y, t).

The fiber direction is chosen as aaa = (1, 0, 0), and the material properties of the model are assumed to be
graded in x-direction only, so we take f (xxx) as f (x). In view of Eq. (9) along with these assumptions, the
stresses obtained from Eq. (6) can be expressed as

σxx = f (x)

[
H11

∂u

∂x
+ H12

∂v

∂y
− r(α∗)β ′′

11θ

]
, (10)

σyy = f (x)

[
H12

∂u

∂x
+ H13

∂v

∂y
− r(α∗)β ′′

22θ

]
, (11)

σxy = f (x)

[
H14

(
∂u

∂y
+ ∂v

∂x

)]
, (12)
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Fig. 1 Geometry of the problem

where
H11 = r(α∗)[λ′′ + 2(α

′′ + μ
′′
T ) + 4(μ

′′
L − μ

′′
T ) + β

′′ ], H12 = r(α∗)[λ′′ + α
′′ ],

H13 = r(α∗)[λ′′ + 2μ
′′
T ], H14 = r(α∗)μ′′

L .

Also, β
′′
11 = (2λ

′′ + 3α
′′ + 4μ

′′
L − 2μ

′′
T +β

′′
)α11 + (λ

′′ +α
′′
)α22,β

′′
22 = (2λ

′′ +α
′′
)α11 + (λ

′′ + 2μ
′′
T )α22,and

α11 and α22 are coefficients of linear thermal expansion.

Upon substituting the stresses obtained in Eqs. (10)-(12) into the equation of motion (7), one can obtain
the following equations:

f (x)ρ
′ ∂2u

∂t2
= f (x)

[
H11

∂2u

∂x2
+ H15

∂2v

∂x∂y
+ H14

∂2u

∂y2
− r(α∗)β ′′

11
∂θ

∂x

]

+∂ f (x)

∂x

[
H11

∂u

∂x
+ H12

∂v

∂y
− r(α∗)β ′′

11θ

]
, (13)

f (x)ρ
′ ∂2v

∂t2
= f (x)

[
H14

∂2v

∂x2
+ H15

∂2u

∂x∂y
+ H13

∂2v

∂y2
− r(α∗)β ′′

22
∂θ

∂y

]

+∂ f (x)

∂x

[
H14

(
∂u

∂y
+ ∂v

∂x

)]
, (14)

where H15 = H12 + H14.
By using the summation convention and temperature-dependent properties as defined in Eq. (9), the heat

conduction equation (8) in the xy-plane takes the form

f (x)

[
K ∗′
11

∂2θ

∂x2
+ K ∗′

22
∂2θ

∂y2
+ ∂

∂t

(
K

′
11

∂2θ

∂x2
+ K

′
22

∂2θ

∂y2

)]
+ ∂ f (x)

∂x

[
K ∗′
11

∂θ

∂x

+ ∂

∂t

(
K

′
11

∂θ

∂x

)]
= f (x)

∂2

∂t2

[
ρ

′
CEθ + T0 r(α

∗)
(

β
′′
11

∂u

∂x
+ β

′′
22

∂v

∂y

)]
. (15)

To facilitate the solution, one can introduce the following set of dimensionless quantities:

(x̂ , ŷ , û , v̂) = c0η0 (x, y, u, v), t̂ = c20η0 t,
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σ̂i j = σi j

ρ
′c20

, θ̂ = β
′′
11

ρ
′c20

θ, (16)

where

η0 = ρ
′
CE

K
′
11

, c20 = H11

ρ
′ .

4 Exponential variation of non-homogeneity

The considered model is made of functionally graded material, i.e., mechanical and thermal properties of the
model are non-homogeneous along x-direction. In order to incorporate the non-homogeneity of the model,
let us consider f (x) = e−nx , where n is the non-homogeneity parameter, and this implies that the material
properties of the considered model vary exponentially along the x-direction.

With the help of the dimensionless quantities defined in (16) and the expression of function f (x) as
f (x) = e−nx , the governing Eqs. (10)-(15) transform to the following non-dimensional forms (while dropping
the hats):

σxx = e−nx
[
∂u

∂x
+ I2

∂v

∂y
− r(α∗)θ

]
, (17)

σyy = e−nx
[
I2

∂u

∂x
+ I3

∂v

∂y
− I1r(α

∗)θ
]

, (18)

σxy = e−nx
[
I4

(
∂u

∂y
+ ∂v

∂x

)]
, (19)

∂2u

∂t2
=

[
∂2u

∂x2
+ I5

∂2v

∂x∂y
+ I4

∂2u

∂y2
− r(α∗) ∂θ

∂x

]
− n

[
∂u

∂x
+ I2

∂v

∂y
− r(α∗)θ

]
, (20)

∂2v

∂t2
=

[
I4

∂2v

∂x2
+ I5

∂2u

∂x∂y
+ I3

∂2v

∂y2
− I1r(α

∗)∂θ

∂y

]
− n

[
I4

(
∂u

∂y
+ ∂v

∂x

)]
, (21)

[
I6

∂2θ

∂x2
+ I7

∂2θ

∂y2
+ ∂

∂t

(
∂2θ

∂x2
+ I0

∂2θ

∂y2

)]
− n

[
I6

∂θ

∂x
+ ∂

∂t

(
∂θ

∂x

)]

= ∂2

∂t2

[
θ + I8

∂u

∂x
+ I9

∂v

∂y

]
, (22)

where

I0 = K
′
22

K
′
11

, I1 = β
′′
22

β
′′
11

, [I2, I3, I4, I5] = 1

H11
[H12, H13, H14, H15],

I6 = K ∗′
11

K
′
11c

2
0η0

, I7 = K ∗′
22

K
′
11c

2
0η0

, I8 = T0 r(α∗)β ′′
11β

′′
11

H11K
′
11η0

, I9 = T0 r(α∗)β ′′
11β

′′
22

H11K
′
11η0

.

5 Solution methodology

In the current Section, normal mode technique is applied to get the exact solutions without any presumed
restrictions on the physical variables. So, the physical variables under consideration and the stresses can be
decomposed into terms of normal modes in the following form:

[u, v, θ, σi j ](x, y, t) = [u∗, v∗, θ∗, σ ∗
i j ](x) exp(ωt + ιmy), (23)

where ω is the frequency, ι is the imaginary unit, m is the wave number in y-direction, and u∗, v∗, θ∗, and σ ∗
i j

are the amplitudes of the functions u, v, θ , andσi j , respectively.
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Introducing expression (23) to Eqs. (20)-(22), one can get

(D2 − nD − J1)u
∗(x) + (J2D − J3)v

∗(x) − r(α∗)(D − n)θ∗(x) = 0, (24)

(J2D − J4)u
∗(x) + (I4D

2 − J5D − J6)v
∗(x) − J7 θ∗(x) = 0, (25)

J8D u∗(x) + J9 v∗(x) − (J10D
2 − J11D − J12)θ

∗(x) = 0, (26)

where D = d

dx
, J1 = m2 I4 + ω2, J2 = ιmI5, J3 = ιmnI2, J4 = ιmnI4,

J5 = nI4, J6 = m2 I3 + ω2, J7 = ιm r(α∗)I1, J8 = ω2 I8, J9 = ιmω2 I9,
J10 = ω + I6, J11 = nJ10, J12 = m2(I7 + ωI0) + ω2.

Equations (24)-(26) represent a system of linear differential equations in the physical variables u∗(x), v∗(x),
and θ∗(x). By adopting elimination procedure, the following differential equation of order six is obtained:

[
D6 + L1D

5 + L2D
4 + L3D

3 + L4D
2 + L5D + L6

]
(u∗, v∗, θ∗) = 0, (27)

where

L1 = A11A2 − A12A1 − A4A7 − A0A8

A11A1 + A7A0
,

L2 = A11A3 − A12A2 + A13A1 + A7A5 + A8A4 + A0A9

A11A1 + A7A0
,

L3 = A13A2 − A12A3 + A14A1 − A7A6 − A8A5 − A4A9 + A0A10

A11A1 + A7A0
,

L4 = A13A3 + A14A2 − A15A1 + A8A6 + A9A5 − A10A4

A11A1 + A7A0
,

L5 = A14A3 − A15A2 − A9A6 + A10A5

A11A1 + A7A0
, L6 = −A15A3 − A10A6

A11A1 + A7A0
,

A0 = r(α∗)I4, A1 = J7 − r(α∗)J2, A2 = −nJ7 + r(α∗)(J4 + nJ2),

A3 = −J7 J1 − n r(α∗)J4, A4 = r(α∗)(J5 + nI4),

A5 = r(α∗)(−J6 + nJ5) − J7 J2, A6 = −J7 J3 − n r(α∗)J6,
A7 = J10 J2, A8 = J11 J2 + J4 J10, A9 = J11 J4 − J12 J2 − J7 J8,

A10 = J4 J12, A11 = I4 J10, A12 = I4 J11 + J5 J10,

A13 = −I4 J12 + J5 J11 − J10 J6, A14 = J5 J12 + J6 J11, A15 = −J6 J12 + J7 J9.

The solution of Eq. (27), which is bounded as x → ∞, is given by

(u∗, v∗, θ∗)(x) =
3∑

j=1

(Hj , H
′
j , H

′′
j )(m, ω)e−λ j x , for Re(λ j ) > 0, (28)

where Hj , H ′
j andH

′′
j are expressions which depend upon ω and m, and the constants Hj will be determined

by imposing the proper boundary conditions in the next Section. Making use of the solutions (28) in the system
of Eqs. (24)-(26), we get the following simplified expressions:

[u∗, v∗, θ∗](x) =
3∑

j=1

[1, N1 j , N2 j ]Hj (m, ω)e−λ j x , for Re(λ j ) > 0, (29)

where

N1 j = −(A1λ
2
j − A2λ j + A3)

(A0λ
3
j + A4λ

2
j + A5λ j + A6)

, N2 j = (λ2j + nλ j − J1) + (−J2λ j − J3)N1 j

−r(α∗)(λ j + n)
.
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In view of the solution Eq. (29), the stress components (17) and (19) take the form

[σ ∗
xx , σ ∗

xy](x) =
3∑

j=1

[N3 j , N4 j ]Hj (m, ω)e−λ j x−nx , for Re(λ j ) > 0, (30)

where

N3 j = −λ j + ιmI2N1 j − r(α∗)N2 j , N4 j = I4(ιm − λ j N1 j ).

6 Application: inclined mechanical load is subjected to the boundary of the half-space

The surface of the functionally graded fiber-reinforced thermoelastic half space, i.e., the plane x = 0, is
subjected to an inclined load RRR (R1, R2, 0) with an inclination angle φ, defined from the negative x-axis as
shown inFig. 1. The applied load RRR is decomposed as a normal load R1 = R cosφ and shear load R2 = R sin φ,
where |RRR| = R. The surface of the medium is kept at reference temperature T0; hence, the boundary conditions
can be written as

θ(0, y, t) = 0, (31)

σxx (0, y, t) = −R1, (32)

σxy(0, y, t) = −R2, at x = 0. (33)

Using expressions of non-dimensional quantities in (16) and normal mode technique defined in (23), the
boundary conditions (31)-(33) transform to

θ∗ = 0, (34)

σ ∗
xx = −R∗

1 , (35)

σ ∗
xy = −R∗

2 , at x = 0, (36)

where R∗
1 = R∗ cosφ, R∗

2 = R∗ sin φ, and R∗ is defined by the expression R = R∗ exp(ωt + ιmy).

Using expressions (29) and (30), the boundary conditions (34)-(36) yield a non-homogeneous system of
three equations, which can be written in matrix form as

⎡

⎣
N21 N22 N23
N31 N32 N33
N41 N42 N43

⎤

⎦

⎡

⎣
H1
H2
H3

⎤

⎦ =
⎡

⎣
0

−R∗
1−R∗
2

⎤

⎦ . (37)

The expressions for Hj , ( j = 1, 2, 3) obtained by solving the system (37) are

H1 = �1

�
, H2 = �2

�
, H3 = �3

�
, (38)

where

�1 = −N22(−R∗
1N43 + R∗

2N33) + N23(−R∗
1N42 + R∗

2N32),

�2 = N21(−R∗
1N43 + R∗

2N33) + N23(−R∗
2N31 + R∗

1N41),

�3 = N21(−R∗
2N32 + R∗

1N42) − N22(−R∗
2N31 + R∗

1N41),

� = N21(N32N43 − N42N33) − N22(N31N43 − N41N33)

+N23(N31N42 − N32N41).

Substitution of (38) in (29) and (30) provides us the following expressions of the physical fields:

u∗(x) = 1

�
[�1e

−λ1x + �2e
−λ2x + �3e

−λ3x ], (39)

v∗(x) = 1

�
[N11�1e

−λ1x + N12�2e
−λ2x + N13�3e

−λ3x ], (40)
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θ∗(x) = 1

�
[N21�1e

−λ1x + N22�2e
−λ2x + N23�3e

−λ3x ], (41)

σ ∗
xx (x) = 1

�
[N31�1e

−λ1x−nx + N32�2e
−λ2x−nx + N33�3e

−λ3x−nx ], (42)

σ ∗
xy(x) = 1

�
[N41�1e

−λ1x−nx + N42�2e
−λ2x−nx + N43�3e

−λ3x−nx ]. (43)

7 Particular cases

7.1 Neglecting the non-homogeneity effect

By setting n = 0 in Eqs. (17)-(22), Eqs. (39)-(43) provide the expressions for various field variables in
a homogeneous fiber-reinforced transversely isotropic thermoelastic medium with temperature-dependent
properties due to an inclined load under the purview of GN theory of type III. In addition, setting φ = 0◦ along
with this modification, the results obtained match with the limiting case (g = 0, τv = τt = τq = 0) of Said
and Othman [40].

7.2 Without fiber reinforcement

To discuss the problem in a functionally graded isotropic thermoelastic medium with temperature-dependent
properties due to an inclined load in the context of GN theory of type III, it is sufficient to set the values of
parameters α, β, and μL − μT as α = 0, β = 0, and μL = μT . Furthermore, the temperature dependence
of the parameters λ, μT , μL , α, β, βi j can be neglected from the considered model by setting α∗ as α∗ = 0;
thereafter, we shall be dealing with a functionally graded isotropic thermoelastic half-space due to an inclined
load in the context of GN theory of type III. By setting φ = 0◦ along with these modifications, the results
obtained match with the particular case (� = 0, H0 = 0) of Gunghas et al. [41].

8 Numerical results and discussion

To illustrate the analytical procedure presented earlier, we nowpresent somenumerical results, which are shown
by depicting the variations of normal displacement, normal stress, shear stress, and temperature distribution
with the help of computer programming using the MATLAB software. For the purpose of simulation, the
values of relevant parameters are taken from Abbas et al. [34]:
ρ

′ = 2660 kg m−3, λ
′′ = 5.65 × 1010 N m−2, μ

′′
T = 2.46 × 1010 N m−2, n = 0.1,

K
′
11 = 0.0921 × 103 J m−1s−1K−1, K

′
22 = 0.0963 × 103 J m−1s−1K−1,

K ∗′
11 = 1.313 × 102 J m−1s−2K−1, K ∗′

22 = 1.540 × 102 J m−1s−2K−1, ω = 1.0,
μ

′′
L = 5.66 × 1010 N m−2, α

′′ = −1.28 × 1010 N m−2, β
′′ = 220.90 × 1010 N m−2,

α11 = 0.017 × 10−4 K−1, α22 = 0.015 × 10−4 K−1, cE = 0.787 × 103 J kg−1K−1,
T0 = 293 K , α∗ = 2.0 s−1, R∗ = 1, φ = 45◦, m = 1.0.
Utilizing the above numerical values of the parameters, the values of the non-dimensional field variables have
been evaluated, and the results are presented in the form of the graphs at different positions of x at t = 0.01s
and y = 1.0.

Figures 2, 3, 4, and 5 illustrate the effect of the non-homogeneity parameter n on normal displacement,
normal stress, shear stress, and temperature field, respectively, for four different values of n (0.00, 0.05, 0.10,
and0.20). The influence of fiber reinforcement on displacement component, stress components, and temper-
ature distribution field for the two models, a functionally graded fiber-reinforced thermoelastic medium with
temperature-dependent properties due to an inclined load (WFR), and a functionally graded thermoelastic
mediumwith temperature-dependent properties due to an inclined load (NFR) are shown in Figs. 6, 7, 8, and 9,
respectively. Figures 10, 11, 12, and 13 exhibit the temperature dependency of the material constants on normal
displacement, stress components, and temperature distribution field, respectively, for three different values of
the empirical constant α∗ (0.0, 2.0, and 4.0). Figures 14, 15, 16, and 17 are plotted to observe the effects
of the inclination angle of load on the physical fields for four different values of φ (0◦, 45◦, 60◦, and 90◦).
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Fig. 2 Effect of non-homogeneity parameter on normal displacement at y = 1

Fig. 3 Effect of non-homogeneity parameter on normal stress at y = 1

Fig. 4 Effect of non-homogeneity parameter on shear stress at y = 1

Figures 18, 19, 20, and 21 offer the graphic details about the effect of time t on the profiles of normal dis-
placement, normal stress, shear stress, and temperature distribution, respectively, for three different values of
t (0.01, 0.10, and 0.20).

Figure 2 is drawn to observe the graphical details of normal displacement against the spatial distance x
for four different values of the non-homogeneity parameter n (0.00, 0.05, 0.10, and 0.20). The Figure clearly
indicates that all the curves of normal displacement start from positive values, and the normal displacement
increases significantly with an increase in the value of the non-homogeneity parameter in the initial part of the
domain of distance x , while it has a mixed kind of behavior in the later part of the domain. Figure 3 shows that
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Fig. 5 Effect of non-homogeneity parameter on temperature field at y = 1

Fig. 6 Influence of fiber reinforcement on normal displacement at y = 1

Fig. 7 Influence of fiber reinforcement on normal stress at y = 1

all the curves of normal stress have a coincident starting value−0.324, which is due to the presence of resolved
component R1 of the inclined load at the surface and hence satisfies the boundary conditions. In addition, all
the curves then start to approach the zero value as we move away from the boundary. Also, the solution curves
corresponding to n = 0.05, 0.10, and 0.20 follow a similar pattern with difference in magnitudes, while the
curve corresponding to n = 0.0 follows a different path and shows that the physical field in this case is
compressive in nature. Figure 4 indicates that an increment in the values of non-homogeneity parameter n has
a decreasing effect on the profile of shear stress. Figure 5 shows that the magnitude of the temperature field
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Fig. 8 Influence of fiber reinforcement on shear stress at y = 1

Fig. 9 Influence of fiber reinforcement on temperature field at y = 1

Fig. 10 Effect of temperature-dependent properties on normal displacement at y = 1

increases with an increase in the values of the non-homogeneity parameter n. The maximum impact of the
temperature distribution with respect to distance is observed as x reaches 0.265, and this impact dies out with
the passage of distance.

Figures 6 depicts the space variations of the normal displacement u versus distance x for the two models,
WFR and NFR. The fiber reinforcement has a mixed influence on the profile of normal displacement. Figure 7
shows that normal stress starts with a common initial value −0.324 for both WFR and NFR, which also
satisfies the boundary conditions. In the absence of fiber reinforcement, the normal stress is compressive in



Effect of inclined load on a functionally graded fiber-reinforced medium 3657

Fig. 11 Effect of temperature-dependent properties on normal stress at y = 1

Fig. 12 Effect of temperature-dependent properties on shear stress at y = 1

Fig. 13 Effect of temperature-dependent properties on temperature field at y = 1

nature throughout the domain. Figure 8 shows that the presence of fiber reinforcement has a decreasing effect
on shear stress, and Fig. 9 shows that it has an increasing effect on the temperature distribution field.

Figures 10, 11, 12, and 13 illustrate that the temperature dependency of the material constants has a
mixed effect on normal displacement and normal stress for three distinct values of the empirical constant
α∗, 0.0, 2.0, and 4.0;while it has a decreasing effect on the profiles of shear stress and temperature distribution
field with an increase in the values of the empirical constant.
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Fig. 14 Effect of inclination angle of load on normal displacement at y = 1

Fig. 15 Effect of inclination angle of load on normal stress at y = 1

Fig. 16 Effect of inclination angle of load on shear stress at y = 1

Figure 14 shows that the inclination angle of load has an increasing effect on the profile of normal displace-
ment for all considered values of φ except φ = 0◦. Figure 15 depicts that the solution curves corresponding
to φ = 45◦, φ = 60◦, and φ = 90◦ follow the same pattern with difference in magnitude, while the curve
corresponding to φ = 0◦ follows a different pattern and is compressive in nature. Figures 16 and 17 show that
the magnitudes of both shear stress and temperature field increase with an increase in the inclination angle of
load, and therefore, the inclination angle of load has an increasing effect on the profiles of both shear stress
and temperature distribution field.



Effect of inclined load on a functionally graded fiber-reinforced medium 3659

Fig. 17 Effect of inclination angle of load on temperature field at y = 1

Fig. 18 Effect of time on normal displacement at y = 1

Fig. 19 Effect of time on normal stress at y = 1

Figures 18, 19, 20, and 21 show that time has a prominent increasing effect on the profiles of all the considered
physical fields, normal displacement, normal stress, shear stress, and temperature distribution field.
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Fig. 20 Effect of time on shear stress at y = 1

Fig. 21 Effect of time on temperature field at y = 1

9 Concluding remarks

The present investigation provides a mathematical model to study the behavior of normal displacement, nor-
mal stress, shear stress, and temperature field in a functionally graded fiber-reinforced transversely isotropic
thermoelastic medium with temperature-dependent properties due to an inclined load within the framework
of GN theory of type III, by using normal mode technique. The theoretical and numerical results reveal that
the parameters, namely fiber reinforcement, non-homogeneity, temperature dependency of material constants,
inclination angle of the load, and time, have significant effects on the physical fields. The following conclusions
can be drawn according to the analysis of this study:

(i) Both the non-homogeneity parameter and fiber reinforcement have a deceasing effect on the shear stress
and an increasing effect on the temperature distribution, while these have mixed effects on normal
displacement and normal stress.

(ii) A significant decreasing effect of the empirical constant is clearly seen on shear stress and temperature
distribution, while it has mixed effects on normal displacement and normal stress.

(iii) The inclination angle of load has an increasing effect on the profile of normal displacement for all
considered values of φ except φ = 0◦ and has an increasing effect on the profile of shear stress and
temperature distribution for all considered values of φ including φ = 0◦, while it has a mixed effect on
normal stress throughout the domain.

(iv) Time t has a remarkable increasing effect on all the physical variables, i.e., normal displacement, normal
stress, and temperature distribution.

(v) From all the Figures, it has been observed that all the physical fields have non-zero values only in the
bounded region of space, which is in accordance with the notion of generalized thermoelasticity theory
and supports the physical facts.
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The above study is of geophysical interest and explores applications in the problems related to seismology,
as such a model is expected to exist in the interior of the earth. The results discussed in the present research
work will prove practicable for designers of new materials, researches in material science as well as for those
working on the second sound effect.
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