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Abstract In this work, we investigate the behaviour of liquids in symmetric open microgrooves and give a
criterion for spontaneous capillary flow. To that end, we use a two-dimensional model and analyse the liquid
morphologies minimizing the Gibbs energy of the system. We find that the condition of a flat liquid surface,
whichwas hitherto assumed, is indeed the solutionminimizing theGibbs energy, so that it can safely be accepted
to investigate whether open capillaries fill spontaneously. Furthermore, we find a condition for spontaneous
capillary flow that depends on the cross-section of the channel alone. We use the findings to derive the critical
contact angle, below which spontaneous capillary flow happens, for three examples including V-grooves,
Gaussian grooves, and lenticular grooves.

1 Introduction

Since the first investigations on capillary flows [1], liquid flow into open microchannels has been used in
various fields ranging from biology [2–4], medicine [5–7] up to the fabrication of electronic devices [8–13].
The question of whether capillaries spontaneously fill with fluid is easy to answer: when it is energetically
favourable. For closed microfluidics it follows that a liquid will wet a channel without the need of applying an
external pressure if the contact angle is below a critical value. For round tubes this happens for contact angles
θ if [1]

θ <
π

2
. (1)

For nonuniform channels a similar equation holds if we take the average contact angle, the generalized Cassie
angle [14], instead. It is defined as weighted sum of the contact angles θi of each component of the considered
microchannel,

cos θ∗ =
∑

i

cos θi fi , (2)
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with the weights fi being the corresponding area fraction per component. Therefore, the surface weighted
contact angle has to be below a critical angle before spontaneous capillary flow can occur:

θ∗ <
π

2
. (3)

Put differently, if the contact angle of the liquid is smaller than π/2 for most of the round tube, spontaneous
capillary flow will happen.

In contrast to closedmicrofluidic channels, liquids in openmicrofluidic systems have a free interface. Thus,
when looking at a cross section of the microchannel, it’s surface is not necessarily flat and can bulge freely
giving rise to complex morphologies. For example, in rectangular grooves the liquid shape depends strongly
on the exact geometry and the contact angle, giving rise to a zoo of possible morphologies [15].

For open microchannels not only the liquid morphologies, but also the condition of spontaneous capillary
flow are both strongly dependent on the channel geometry itself [14]. The generalized Cassie angle has been
used successfully to predict the onset of fluid flow [16–19] when assuming that the open surface is flat and the
contact angle to the gaseous surroundings is θgas = π in Eq. (3) [14].

One problem is imminent: Eq. (3) does tell, whether an open microchannel fills or not, but does not give
information about what the cross section of the liquid filling the channel looks like. It has been argued that this
curvature may be neglected for most cases [20]. However, as shown in the case of V-grooves [21], in some
geometries the top surface cannot equilibrate to a state without curvature, due to a restriction stemming from
the geometry and the contact angle itself.

This discrepancy is the starting point of our work, i.e. we want to investigate how an additional curvature in
the top surface affects the condition of spontaneous capillary flow to derive a more general criterion for open
grooves and relate it to the generalized contact angle in Eq. (3). Further, we derive a condition for minimal
energy cross sections and try to understand up to which liquid level smooth grooves fill spontaneously.

It is known that the condition of whether microchannels fill or not has to do with the Laplace pressure;
however, we are not aware of a precise derivation of this empirical knowledge. An extensive theoretical
description of liquids on cylindrical surfaces was done by Roy and Schwartz [22], who used perturbation
theory on three-dimensional energy functionals. With our work, we not only want to formulate the same
approach with a two-dimensional model, but also show how the condition on spontaneous capillary flow can
be applied by three examples. By the derivationwewill find that we can drop the restriction on themicrogrooves
to be symmetric, so that we can really obtain the same results and formulate a critical contact angle for capillary
filling by using a simple two-dimensional model of a symmetric microgroove.

Our work focuses on open capillary systems, with only taking surface energies into account, i.e. we neglect
temperature changes, electromagnetic fields, changes in chemical composition, and gravity. We investigate
microchannels coupled to an infinite reservoir for which we assume that the reservoir provides a zero pressure
source of liquid. As with any other thermodynamic reservoir, it does neither cost energy to supply nor to uptake
an additional amount of the liquid volume into the channel or backfilling into the reservoir. For the case of a
finite volume, our approach will reversely yield the filling length L , provided it is huge against edge effects.
In experiments, that condition is typically fulfilled if we look at micrometre sized channels so that gravity can
be neglected, and large reservoirs to minimize the Laplace pressure arising from them.

We start by recapitulating the derivation of Young’s equation for the cross section ofmicrogrooves, which is
typically derived for flat substrates [23,24] or fibres [25], but notmicrogrooves. Even though typical derivations
of Young’s equation argue with surface forces hinting that this model works for arbitrarily shaped surfaces,
we deliberately chose to focus on derivations based on energy considerations. A recent discussion supporting
this choice has been done by Makkonen [26].

After establishing Young’s equation, we investigate the conditions for spontaneous capillary flow for a
given microchannel layout and fixed contact angle between the substrate and the liquid. Since the liquid is
only entering the groove when it is energetically favourable, i.e. when the energy of the system is lowered
for a groove of finite wetting height, this breaks down to the problem of finding minimal energy states for a
given contact angle that follows Young’s law. In other words, we minimize the Gibbs energy per length to
draw conclusions about what morphology a system of infinite length will take.

Finally, we apply our findings to three model systems, being V-grooves, Gaussian grooves, and lenticular
grooves.
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2 Two-dimensional model

In the following, we are investigating the minimal energy states of liquids inside microgrooves. We look at
the cross section of the microgroove filled with liquid and investigate the Gibbs energy to find the minimal
energy states. We want to prove that states having zero curvature—flat liquid surfaces—always correspond to
extreme points of the Gibbs energy, independent of the exact shape of the groove.

For a given cross section the function describing the liquid surface has to be a function of constant curvature
to minimize its surface energy given that additional terms in Gibbs energy (e.g. potential energy due to weight)
can be neglected. (see Proof 1 in Appendix). For larger droplets radius, where gravity contributes, the reader is
referred to Tamanini [27] and Roura et al. [28]. Thus, we can assume that the liquid shapes are always part of
a circle or straight lines since these are the only shapes in two dimensions having constant curvature and thus
fulfilling the Young–Laplace equation. Any other liquid shape with varying mean radius will induce Laplace
pressure differences along its surface such that the liquid itself is not in equilibrium, inducing internal flows.
Thus, since we are only interested in minimal energy states, we can safely focus on circular or straight cross
sections for two-dimensional calculations being the only states of constant curvature in two dimensions.

Since the problem is stated with the goal to find wetting solutions θ < 90◦, we neglect morphologies with
trapped air on the bottom of the grooves. Even though we build our model around symmetric microgrooves, we
will find that this restriction can be dropped, since only the contact angle at the liquid level and the curvature
of the surface at this point are relevant.

The situation in thermodynamic equilibrium is governed byGibbs free energyG, and this quantity depends,
as it is known for gaseous systems, at least on temperature T and pressure p. But for solids as well as liquids
additional terms can arise, which are due to any other energy contribution present in the system as well
as the reservoir, e.g. binding energy represented by the atomic chemical potential. Here, we disregard the
temperature change, pressure change, any electrical or magnetic fields, and reactions leading to a change in
chemical potential.

Since we will focus on liquid in micrometre sized capillaries, the contribution of gravity can be neglected.
The contribution of gravity is multiple orders of magnitudes below the surface energies. Only for length scales
near the capillary length [24], which is typically in the millimetre range for the system under consideration,
gravity does influence the system. It follows that the Gibbs free energy of the system is virtually described
solely by its surface energies.

We assume that the total Gibbs energy is composed of a contribution scaling with the length of the groove
G2DL and additional parts stemming from the front of the liquid meniscus Gfront independent on the length
of the groove, as shown in Fig. 1. In this case one can write

G = G2DL + Gfront (4)

= (
γsl lsl + γsglsg + γlgllg

)
L + Gfront (5)

= γsl Asl + γsg Asg + γlg Alg + Gfront (6)

where we have introduced the surface energies between the solid and the liquid phase γsl , the liquid and the
gaseous phase γlg , and the solid and gaseous phase γsg with corresponding surface areas Asl , Alg , and Asg .

Spontaneous capillary flow is linked to whether the Gibbs energy is decreased or increased when filling
the capillary, i.e. when L is increasing. This condition then corresponds to finding the sign of G2D , since for
large lengths L

dG/L = d (G2DL) /dL + d (Gfront) /dL (7)
L�Lfront= G2D. (8)

For negative (positive) G2D the Gibbs energy of the system is decreasing (increasing) for increasing length
L , allowing (prohibiting) spontaneous capillary flow. Thus, knowing the exact behaviour of the liquid for the
cross section of the microchannel is sufficient to predict its filling behaviour.

Similarly, one can also argue that, for sufficiently long filling length L , the contributions of the front of the
liquid can safely be neglected, so that the problem of finding the energy of a groove with unit length L for an
arbitrary liquid volume can be simplified to finding the minimal energy configuration of its cross section per
unit length.
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Fig. 1 Liquid in open Gaussian groove with contact angle θ = 30◦. For large wetted lengths L the contribution of the Gibbs
energy of the front of the groove Gfront can be neglected compared to the contribution G2DL scaling with the wetted length.
Figure created with Surface Evolver [29]

Fig. 2 Liquid morphology of a microgroove defined by the symmetric, twice differentiable, strictly monotonically increasing
function f (x). The shape of the liquid surface is defined by the intersection of a circle centred around x = 0

In summary, we can describe the system shown in Fig.1 with the Gibbs free energy per unit length L and
find minimal energy states by investigating:

G2D = γsl Asl + γsg Asg + γlg Alg. (9)

2.1 Liquid in a symmetrical infinite groove

Similar to the derivation of Young’s equation for a droplet sitting on a flat surface [23] (see Proof 2 in
Appendix), we can now focus on finding minimal energy solutions of infinitely long microgrooves. Assume a
straight microchannel with its cross section defined by a function f (x) being strictly monotonically increasing
and twice differentiable for x > 0. We create a symmetric microgroove by mirroring this function along the
x = 0 plane and assume the createdmicrochannel to be filledwith a liquid up to a point x0 = R sin |α| as shown
in Fig. 2. The angle between the liquid and the surface will be denoted as θ and the radius of the circular liquid
shape R, as in the previous Section. Here, we also point out that for channels with some non-differentiable
cross sections bistability conditions can exist [30] which are not treated in this work.

The Gibbs free energy of the system is given by Eq. (9) with variation

dG2D = γsld Asl + γsgd Asg + γlgd Alg (10)

= γlg

(
d Alg − γsg − γsl

γlg
d Asl

)
(11)

where we have used that d Asl = −d Asg .
We investigate the problem of finding the liquid morphology of minimal energy sitting in this groove.

Further, we assume that the liquid is wetting with a contact angle of θ < 90◦ in order to avoid solutions where
it is favourable to have air trapped in the bottom of the grooves.
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We find the angle between the horizontal and the function f (x) as ε = arctan f ′ (x0) which yields1

α = arctan f ′ (x0) − θ. (12)

The wetted lengths are given by

Asl/L = 2
∫ R sin |α|

0

√
1 + f ′ (x)2dx, (13)

Alg/L = 2R|α|, (14)

Asg = A0 − Asl , (15)

and the cross-sectional area by

φ = −2
∫ R sin |α|

0
( f (x) − f (R sin α)) dx − R2

2
(2α − sin (2α)) , (16)

with variation

dφ = dαR2 (
2 sin α cosα f ′(R sin |α|) − 1 + cos (2α)

)
, (17)

+ RdR
(
2 sin α2 f ′(R sin |α|) − 2α + sin (2α)

)
. (18)

Note that we can set the value of A0 equal to zero in Eq. (15), since this only gives a constant offset to the
Gibbs free energy and is not affecting the physics. In fact, this choice sets the Gibbs free energy to zero when
there is no liquid present.

To find minimal energy configurations for a given contact angle θ and given groove shape f (x) we
minimize the energy by variation of R and α. For the conservation of the cross-sectional area φ we introduce
the Lagrange parameter λ and minimize G2D/L − λ (φ − φ0) which yields (see Proof 3 in Appendix))

cos θ = (γsg − γsl)/γlg (19)

which is exactly Young’s equation for flat surfaces [31]. Thus, the contact angle follows Young’s equation,
independent of the grooves shape. As found for liquid droplets sitting on flat surfaces, the Lagrange multiplier
λ is found to be equal to the Laplace pressure [23].

As seen in the example of the three-dimensional droplet, the same derivation can be performed with λ = 0
such that the volume is not conserved. By performing the same manipulations, it can be shown that even in
this case Young’s equation is recovered. Thus, we have proven that Young’s equation also holds for cross
sections of infinitely long microgrooves regardless of the exact cross section. Furthermore, we have recovered
the Laplace pressure in the case when the liquid volume is conserved.

2.2 Minimal energy cross section

After recovering Young’s equation for the cross section of symmetric grooves, we can investigate up to which
point a microgroove wants to fill when connected to an infinite reservoir. To this end, we rewrite the Gibbs
energy in terms of x0 = R sin |α|, and search for minima for any cross-sectional area with x0 as the only
independent variable. Analoguovsly to Eqs. (13)–(15) we are evaluating the wetted areas,

Asl/L = 2
∫ x0

0

√
1 + f ′ (x)2dx, (20)

Alg/L = 2 x0 arctan
(
θ − f ′(x0)

)√
(θ − f ′(x0))2 + 1

θ − f ′(x0)
, (21)

Asg = A0 − Asl (22)

1 Note that α can have both positive or negative values. In the latter case, the circle drawn in Fig. 2 will be mirrored along the
horizontal plane making the liquid surface bulge out.
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and formulate the condition of the minimal Gibbs energy,

0 = dG2D/L

= γlg
(
d Alg/L − cos θ d Asl/L

)

= 2γlg

((
f ′(x0)2 + 1

)
α(x0) − x0 f ′′(x0) (1 + α(x0)/ tan (α(x0)))(

f ′(x0)2 + 1
)
sin (α(x0))

− cos θ

√
f ′(x0)2 + 1

)
dx0, (23)

where we have introduced the short-hand notation α(x0) = arctan f ′(x0)− θ . Thus, there is an extremal point
in the Gibbs free energy when the large parentheses of Eq. (23) vanish. There is no obvious solution to this
equation due to the dependence on both, f ′(x0) and f ′′(x0). However, when drawing the limit x0 → z with z
such that f ′(z) = tan θ carefully, one can see that f ′(x0) = tan θ is a solution, being the state when α = 0, i.e.
when the liquid surface is flat. It can be inferred that a flat liquid surface complying with Young’s equation is
always an extremal point of the Gibbs free energy. We can even get information about the type of the extremal
point by looking at the second derivative at this point:

d2G2D

dx20

∣∣∣∣∣
α=0

/L = 2

3
γlg cos(θ) f ′′(x0)

(−3 sin(θ) + x0 cos(θ)3 f ′′(x0)
)

(24)

= 2

3
γlg f

′′(x0)
−3

(
f ′(x0) + f ′(x0)3

) + x0 f ′′(x0)
(
f ′(x0)2 + 1

)2 . (25)

We can see that the second derivative is positive, i.e. implying a minimum of the Gibbs free energy for
f ′′(x0) < 0, i.e. if the groove has a negative curvature at the point x0. Thus, α = 0 indicates the filling level
of minimal energy for grooves having a negative curvature at this point.

For positive curvature f ′′(x0) > 0, the sign of Eq. (24) is not determined without further information about
the function f (x).

In summary, Young’s equation holds for the cross section of liquids inside infinitely long grooves. If the
groove is connected to an infinite amount of liquid, the state where the liquid surface is flat describes an
extremal point of the Gibbs energy. This extremal point describes the cross section with minimal Gibbs energy
if the groove has negative curvature. Thus, Eq. (3) is fulfilled if the cross section of the groove is concave at
the filling point x0.

On the other hand, this statement neither implies that the global energy minimum for arbitrary volume lies
at α = 0, nor that this state is reachable for all geometries. As we will see from the example of V-grooves,
restricting the contact angle to a certain value by predefined surface energies restricts the contact angle and thus
α to a value which is not necessarily zero. The condition of α = 0 is not always achievable for this geometry
and the minimal energy states are either at infinite filling height (x0 → ∞), or zero filling height (x0 → 0).

This derivation also shows that for the minimization of Gibbs energy in two-dimensional systems only
the value of f ′(x0), f ′′(x0) and the contact point x0 are determining the points of minimal energy. We can
deduce that the system is memory-less in the sense that already wetted areas do not influence the minimal
energy states. Thus, even the common derivation of Young’s contact angle found in textbooks [23,32] based
on the minimization of the Gibbs free energy around the contact line can be applied to cross sections of
microgrooves. Furthermore, the result on the generalized contact angle in Eq. (3) is true for the cases when
the second derivative in Eq. (24) is positive.

We summarize these findings into the following condition for capillary filling:
Assume that a symmetric function f (x)mirrored around x = 0 describes the cross section of amicrogroove.

Spontaneous capillary flow for liquids with contact angle θ < π/2 happens when:
There exists a morphology where the surface of the liquid is flat or concave with both sides fulfilling

Young’s equation at the contact points x0 with the second derivative of the Gibbs free energy given in Eq. (24)
being positive. The latter is always fulfilled when the curvature of the surface at the contact point is negative,
f ′′(x0) < 0.

We will see in the following how these conditions can help us decide when open capillaries will fill
spontaneously and the liquid flows along the channel direction. We investigate three morphologies: V-grooves,
Gaussian grooves, and lenticular grooves.
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Fig. 3 Liquid in an infinitely long V-groove with opening angle 2β

3 Examples

3.1 V-grooves

We focus on liquid morphologies inside infinitely long V-grooves with opening angle 2β and contact angle
θ < π/2 that is solely defined by the surface energies between the liquid and the surface. The definition of
lengths can be seen in Fig. 3. As before, we do not consider states where air is trapped beneath the liquid, thus
we have to restrict the contact angle to θ < 90◦.

From geometry it can be seen that α is completely determined by the opening angle of the groove and the
contact angle

α = π

2
− β − θ, (26)

with the total Gibbs energy of this system being

G2D = γlg

(
2R|α| − 2R cos θ

sin |α|
sin β

)
, (27)

with a cross-sectional area φ of

φ = R2
(
sin α2

tan β
− α + sin 2α

2

)
. (28)

Thus, for this system a surface with zero curvature (as assumed for the Cassie angle) and following Young’s
equation is not always achievable. However, as derived before, α = 0 can be used to obtain a critical contact
angle for capillary filling,

θcrit := π

2
− β, (29)
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Fig. 4 Gibbs energy of liquid in an infinitely long V-groove with opening angle 2β = 50◦. Critical contact angle θcrit = 65◦
drawn as thick black horizontal line. Only for small contact angles below the critical contact angle the energy is decreasing for
larger cross sections

which is in accordance with the literature [14,21,33–35].
An exemplary plot of the energy given in Eq. (27) for a V-groove with opening angle 2β = 50◦ for different

θ and cross sections φ (see Fig. 4) shows how this critical contact angle (drawn as thick black line) separates
two distinct regimes in the plot. For the lower half, labelled “I”, the energy per length is smaller than zero and
decreases further for increasing liquid cross section. The Gibbs energy per length being negative is exactly the
condition for the existence of spontaneous capillary flow—it is energetically favourable for the liquid to enter
the capillary. Additionally, since the Gibbs energy per unit length is decreasing for increasing cross section it
can be inferred that the liquid will wet the channel up to the maximal cross section and thus maximal filling
height x0. In contrast, section “II” above the critical contact angle shows a positive Gibbs energy per length.
Thus, it is energetically unfavourable for the liquid to wet the capillary.

For a contact angle below (above) the critical contact angle, the global maxima and minima are at minimal
(maximal) and maximal (minimal) cross section, respectively (see Proof 4 in Appendix). Thus, a V-groove,
connected to an infinite liquid reservoir, will show spontaneous capillary filling if and only if the contact angle
between the fluid and the surface is below the critical contact angle determined by α = 0.

3.2 Gaussian grooves

Another interesting test case are Gaussian grooves, since they were not treated in the literature before and
occur naturally when laser-writing microchannels [36]. We investigate the Gibbs energy of a liquid sitting in
a non-normalized Gaussian groove defined by the function

f (x) = −e−( x
σ )

2
. (30)

We find the area of the cross section of the liquid to be

φ = −2
∫ R sin |α|

0

(
f (x) − f (R sin |α|))dx − R2

2

(
2α − sin (2α)

)
(31)

= √
πσ erf

(
R sin |α|

σ

)
− 2R sin |α| e− R2 sin2 α

σ2 − R2

2

(
2α − sin (2α)

)
(32)
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Fig. 5 Critical contact angle of Gaussian grooves depending on σ . For liquids with a contact angle below θcrit spontaneous
capillary flow exists

with erf denoting the error function. Evaluation of the Gibbs energy yields

G2D = γlg

⎛

⎜⎜⎝2R|α| − cos θ 2
∫ x0

0

⎛

⎜⎜⎝

√√√√√

⎛

⎝2xe− x2

σ2

σ 2

⎞

⎠
2

+ 1

⎞

⎟⎟⎠ dx

⎞

⎟⎟⎠ . (33)

If we consider the liquid to be connected to an infinite reservoir, we can use the condition of a flat liquid
surface and find (see Proof 5 in Appendix)

θcrit := arctan

(
1

σ

√
2

e

)
. (34)

A plot of θcrit can be found in Fig. 5. Note that the critical contact angle is always below π/2 and decreases
for increasing channel width σ .

An exemplary plot of the Gibbs energy for a Gaussian groove of fixed width σ = 1 for different contact
angles and cross sections in Fig. 9 shows that the critical contact angle separates two distinct regions. Above the
critical contact angle (region I), only solutions with α > 0 exist as plotted in Fig. 6, with the energy minimum
at minimal cross section. Thus, in this region it is energetically unfavourable for the liquid to be inside the
channel, and spontaneous capillary flow will not arise (Fig. 7).

Below the critical contact angle, there are three distinct regions separated by the two possible solutions to
α = 0 as shown in Fig. 8. Starting from a low liquid cross section and a fixed contact angle θ < θcrit (region
IV), the fluid shows α > 0 with increasing energy for increased fill level. At a certain point, it reaches its cross
section with maximal energy at α = 0. After this point the fluid surface is convex with α < 0 (region III)
with decreasing Gibbs free energy for higher fill level. The minimum of the Gibbs free energy is found at the
second solution of α = 0. Above this level, the energy is increasing again such that the previous minimum is
indeed a global minimum of the Gibbs free energy. At the critical contact angle, the two solutions of α = 0
coincide as shown in Fig. 7 and Fig. 9.

Knowing the energy landscape of the liquid inside Gaussian channels, we can conclude that below the
critical contact angle there exists a minimal energy state for a finite filling height. Thus, the condition for
spontaneous capillary filling is met if θ < θcrit which distinguishes the case when spontaneous capillary flow
happens, to the case when it is not present. However, due to the increase of Gibbs energy at a smaller cross
section, there is an energy barrier to overcome beforehand.

3.3 Lenticular grooves

As last example we are investigating lenticular grooves being defined by

f (x) =
√
R2 − (x − R)2 (35)
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Fig. 6 Liquid morphologies in Gaussian channel with σ = 1 and contact angle θ = 50◦ being above the critical contact angle
θcrit = 40.6◦ (region I). The minimal energy surfaces for different cross sections are colour-coded depending on their Gibbs
energy. All possible liquid surfaces for contact angles above the critical contact angle are concave and increase in energy for
increasing cross section

Fig. 7 Liquid in Gaussian channel with σ = 1 at the critical contact angle θ = θcrit = 40.6◦. The minimal energy surfaces for
different cross sections are colour-coded depending on their Gibbs energy. At a single point, the morphology is showing a flat
surface, whereas being concave for all other cross sections above (region II) and below (region IV) the critical cross section. The
minimal energy is achieved for the minimal cross section

Fig. 8 Liquid in Gaussian channel with σ = 1 and contact angle θ = 30◦ below the critical contact angle θcrit = 40.6◦. The
minimal energy surfaces for different cross sections are colour-coded depending on their Gibbs energy. In region IV, for small
cross sections, the surface is concave with increasing energy for increasing cross section. At the first critical filling height where
α = 0 the energy reaches its maximum, followed by region III having a convex shape. The minimal energy is achieved by the
second point where α = 0. For higher cross sections (region IV), the morphology is convex again with the energy increasing for
increasing cross sections

with −R < x < R as drawn in Fig. 10. The condition α = 0 yields

tan θ = f ′(x0) = R − x0√
(2R − x0) x0

. (36)

Due to the shape of the right hand side of this equality, approaching infinity for small x0 and zero for x0 close
to R, there exists a solution to α = 0 for each contact angle θ < 90◦. Additionally, since the curvature of this
function is always negative f ′′(x) < 0, those solutions are always minimal energy solutions. This is the reason
why lenticular grooves of any radius R are ideal for spontaneous capillary flow. They allow for minimal energy
solutions and thus allow spontaneous capillary flow for all contact angles below the critical contact angle,

θcrit := π

2
. (37)
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Fig. 9 Gibbs energy of liquid in infinitely long Gaussian-groove with FWHM σ = 1. Critical contact angle drawn as thick black
horizontal line. The condition α = 0 is drawn as dashed black line. Only for small contact angles below the critical contact angle
the energy is decreasing for larger cross sections

Fig. 10 Lenticular groove of radius R filled with liquid. Note that this groove design facilitates a solution with a flat cross section
for all contact angles θ < 90◦. Thus, spontaneous capillary flow occurs for all liquids with a contact angle below 90◦

4 Summary

With this workwe have shown howminimal energy calculations can be used to find a condition for spontaneous
capillary flow of open symmetric microgrooves. We started by introducing a two-dimensional model for the
Gibbs energy of a microgroove and retraced Young’s equation for the cross section since this derivation is
typically only done for liquids on flat surfaces. We found that the Laplace pressure is conserving the liquid
volume in the form of a Lagrange parameter. By using these results in our model, we were able to derive
conditions for minimal Gibbs energy, being a flat liquid surface with the curvature of the substrate at the
contact point to the liquid being negative. This is in accordance with previous works, and justifies a simplified
calculation using the Cassie angle for most cases.

Finally, we tested the theory for three different groove geometries and derived the critical contact angle for
spontaneous capillary flow for each of them.
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Appendix

Proof 1

We want to prove that functions g(x) spanning a fixed cross-sectional area A between two points p and q with
g(p) = g(q) = 0 are functions of constant curvature.

Proof The area is described by
∫ q

p
g(x)dx = A (A.1)

whereas the length of the curve is given by
∫ q

p

√
1 + g′(x)2dx . (A.2)

Wewant to minimize this length under the requirement of constant curvature being introduced by a Lagrangian
multiplier λ. Thus, we can minimize the Lagrangian

L =
√
1 + g′(x)2 − λg(x) (A.3)

which leads to

− g′′(x)
(
1 + g′(x)2

)3/2 = λ (A.4)

where the left-hand side can be identified as the curvature of the function. 	


Proof 2

We want to derive Young’s equation for a droplet sitting on a flat surface. We assume that the solution has to
be spherical (see Proof 1) with a radius R and makes an (still unknown) contact angle θ with surface (Fig. 11).

Proof We start by writing down the differential associated with the minimization of the Gibbs energy G under
the constraint of a fixed droplet volume V0 ensured by the Lagrange parameter λ,

d (G − λ (V − V0)) = dG − λ dV − dλ (V − V0) (A.5)

= γlg

(
d Alg − γsl − γsg

γlg
d Asl

)
− λ dV − dλ (V − V0) (A.6)

= dR Rπ
(
4γlg − 2Rλ − (

γlg − 3Rλ
)
cos θ − Rλ cos3 θ − 2

(
γsg − γsl

)
sin2 θ

)

+ dθR2π sin θ
(
2γlg − Rλ + cos θ

(
2γsl − 2γsg + Rλ cos θ

))
(A.7)

+ dλ

(
V0 − 4

3
πR3 (2 + cos θ) sin4 θ

)

= 0, (A.8)
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Fig. 11 Cross section of a three-dimensional liquid droplet sitting on a flat surface. The droplet shape is entirely defined by its
radius R and the angle θ

where we have used that d Asl = −d Asg . Each of the three parentheses of the last line has to vanish indepen-
dently, thus one can express

λ = 2γlg
R

(
1 + γsl − γsg

γlg

)
cos θ

sin2 θ
(A.9)

by setting the second summand (variation of θ ) equal to zero and plug the result into the third summand
(variation of R), which yields:

2dR Rπ
(
γsl − γsg + γlg cos θ

)
tan2

θ

2
. (A.10)

This factor is only zero if

cos θ = γsg − γsl

γlg
. (A.11)

	


Proof 3

We want to find the minimal energy state for symmetric infinite microchannels with a cross-sectional area
fixed to φ0 as given in Eq. (16). The surface areas are taken from Eqs. (13) to (15), whereas the Gibbs energy
is given by Eq. (11).

Proof The differential corresponding to the minimization can be equated to

0 = dG2D/L − λ dφ − (φ − φ0) dλ (A.12)

= γlg

(
d Alg/L − γsg − γsl

γlg
d Asl/L

)
− λ dφ − (φ − φ0) dλ (A.13)

= 2γlg Rdα

[
sgn(α) − γsg − γsl

γlg
sgn(α) cosα

√
1 + f ′ (R sin |α|)2

− λ
R

2γlg

(
2 sin α cosα f ′(R sin |α|) − 1 + cos (2α)

)]

+ 2γlgd R

[
|α| − γsg − γsl

γlg
sin |α|

√
1 + f ′ (R sin |α|)2



3936 T. Mitteramskogler et al.

− λ
R

2γlg

(
2 sin α2 f ′(R sin |α|) − 2α + sin (2α)

)]

− dλ (φ − φ0) . (A.14)

Sinceα and R are independent variables, both expressions in the square parenthesesmust vanish independently.
We can set both parentheses to zero and simplify the equations further by multiplying the first parenthesis with
sin |α|, the second with − cos(α) and adding the results, giving

(sin α − α cosα)

(
sgn(α) + λR

γlg

)
= 0. (A.15)

Thus, we have two cases λ = −sgn(α)γlg/R and α = 0, whereas the latter is illegitimate due to the previous
multiplication with sin(|α|). Plugging the first case into the square parenthesis of Eq. (A.14) yields

γsg − γsl

γlg
= cosα + sin α f ′ (R sin |α|)√

1 + f ′ (R sin |α|)2
= cos

(
arctan

(
f ′ (R sin |α|)) − α

) = cos θ (A.16)

where we have used Eq. (18) for the last equality. In summary, we find that

cos θ = (γsg − γsl)/γlg (A.17)

which is exactly Young’s equation for flat surfaces along with φ = φ0. 	


Proof 4

It is to prove that the total energy of a liquid in a V-shaped groovewith an opening angle of 2β and contact angle
of the liquid to the walls of θ under the constraint α < 0 (α > 0) is decreasing (increasing) with increasing
filling length.

Proof As found in Eq. (35), the Gibbs energy per length can be formulated as

G2D/L = 2Rγlg

(
|α| − cos θ

sin |α|
sin β

)
(A.18)

= 2Rγlgsgn(α)

(
α − cos θ

sin α

sin β

)
(A.19)

= 2Rγlgsgn(α)

(
π

2
− β − θ − cos θ cos (β + θ)

sin β

)
(A.20)

where we replaced α by α = π
2 − β − θ . Since the first factors are always positive (negative) for positive

(negative) α, it remains to show that

f (θ, β) = cos θ cos (β + θ)

sin β
− π

2
+ β + θ > 0 (A.21)

under the constraints θ ∈ [
0, π

2 − β
]
and β ∈ (

0, π
2

)
.

The extreme points can be found by setting

∂ f (θ, β)

∂θ
= ∂ f (θ, β)

∂β
= 0. (A.22)

The derivative with regard to θ can be written as

∂ f (θ, β)

∂θ
= −2

cos (β + θ) sin θ

sin β
= 0, (A.23)

cos (β + θ) = 0, (A.24)

β + θ = n π + π

2
(A.25)



A condition for spontaneous capillary flow in open microgrooves 3937

with n being an integer number. Due to the valid ranges of β and θ , the only possibility that is just outside of
the valid values is n = 0 leading to

β + θ = π

2
. (A.26)

Considering the derivative with regard to β leads to

∂ f (θ, β)

∂β
= − cos (2β) + cos (2θ)

2 sin2 β
= 0 (A.27)

which is always zero under the constraint of Eq. (A.26). To check whether the found extreme points are a
minimum or maximum, we are taking an epsilon environment around the variables at this point

θ �→ θ + εθ , (A.28)

β �→ β + εβ, (A.29)

with |ε| 
 1. This leads to an epsilon environment around the condition in Eq. (A.26) as:

β + θ + εβ + εθ︸ ︷︷ ︸
ε

= π

2
. (A.30)

Thus, for creating an epsilon environment around the condition (A.22), it is sufficient to use one variable ε
that can be split into individual contributions of εθ and εβ ,

f
(π

2
− β − ε, β

)
= cos

(
π
2 − β − ε

)
cos

(
β + π

2 − β − ε
)

sin (β)
− π

2
+ β +

(π

2
− β − ε

)
(A.31)

= sin (β + ε) sin (ε)

sin (β)
− ε (A.32)

=
(
sin (β) + ε cos (β) + O (

ε2
)) (

ε + O (
ε2

))

sin (β)
− ε (A.33)

= (1 + ε cot (β)) ε + O (
ε3

) − ε (A.34)

= ε2 cot (β) + O (
ε3

)
> 0, (A.35)

where we have used Taylor series up to first order in ε in the third line. The last line is always true due to the
cotangents being larger than zero in the definition range of β. With that proven, we showed that the energy of
a liquid in a V-shaped groove is indeed minimized with increasing filling length if and only if α < 0. 	


Proof 5

We want to find the critical contact angle of Gaussian grooves.

Proof We start by drawing the limit |α| → 0 in Eq. (33) carefully. Note that R|α| cannot be disregarded, since
it will converge to a finite value in the limit. Evaluation of the limit leads to:

σ tan θ = σ f ′ (x0) = 2
( x0

σ

)
e−( x0

σ

)2
. (A.36)

A graphical representation of this equation is found in Fig. 12 where the straight lines represent the left side
of the equation. From this Figure, it can easily be seen that this equation can have two, one, or zero solutions
in x0/σ depending on the value of σ tan θ .
We can cast Eq. (A.36) into the Lambert W relation [37],

W (z) expW (z) = z, (A.37)
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Fig. 12 Graphical representation of Eq. (A.36) where the red curves depict the left hand side, whereas the thick black curve
represents the right hand side. Depending on the value of σ tan θ there might be none, one or two solutions in x0/σ . There is a
critical contact angle θcrit below which two solutions exist. For any contact angle above θcrit the equation does not have a solution

by identifying z = − (σ tan θ)2 /2 and W (z) = −2 (x0/σ)2. As before, depending on the value of z, this
equation can have two or no solutions. To be more specific, a solution only exists for −1/e ≤ z < 0. In our
variables, this yields the condition

θ ≤ arctan

(
1

σ

√
2

e

)
=: θcrit (A.38)

where we have identified the critical contact angle θcrit. Ultimately, this yields that the Gibbs free energy has
extremal points only in the range where the contact angle between the liquid and the surface is below a critical
contact angle, depending on the groove width σ . From the curvature of the groove it can be found that the first
zero at lower x0 is the state of a maximum of the Gibbs energy, whereas the second zero point gives the cross
section of minimal energy. 	
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