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Abstract In physically (statistically) based theories for rubber-likematerials, networkmodels serve as a bridge
that connects chain dynamics to continuum constitutive relations. However, there is no existing network model
that accounts for the size-dependentmechanical properties of nano/microsize polymeric structures. The present
work aims to fill this gap and derive a physically based strain gradient continuum. To establish a quantitative
relation between the microscopic Helmholtz free energy due to polymer chain stretch and the macroscopic
counterpart that depends on all details of the strain field, we connect strain and strain gradient measures to
the positions of all chain ends. Taking the continuum displacement field to be interpolatory at the chain ends,
a general framework is constructed, which is not restricted to any specific network structure. Applying the
general framework to the commonly used 8-chain network model, we derive a first-order strain gradient elastic
continuum, where size of the representative network turns out to be the characteristic length scale of strain
gradient material. According to the scalar invariants of strain gradient tensor that remain at last, the assumption
of parameter reduction in the simplified strain gradient elasticity theory is justified.

1 Introduction

The wide application of polymers in engineering requires the effectiveness of design and simulation, which
puts forward a demand for an appropriate constitutive model [1] that enables to capture its complicated
behavior, including nonlinear elasticity, visco-elastic-plastic phenomena and the so-called Mullins effect, etc.
As a polymeric structure can be made small and smaller, with the development of manufacturing techniques,
variations of its mechanical properties with the overall size should also be taken into account [2,3].

Physically based constitutive theories of rubber take a bottom-up approach. The energetics of every single
chain can be analyzed through statisticalmechanics, and then through synthesizing the accurate results obtained
at the bottom level, it is hopeful to derive the description of macroscopic polymeric structures [4–8]. However,
a critical component is missing in the bottom-up procedure: we have no idea how the conformation of a chain is
geometrically related to the configuration of macroscopic continuum. The relation must be assumed manually,
and therefore several network models appear in order to provide this connection, such as the 3-chain model
[9], 4-chain model [10,11], 8-chain model [12], and the non-affine microsphere model [13–15]. For a detailed
comparison of rubber-network models, reader can refer to [1,8]. Each network model aims to improve upon
previous ones in either the number of parameters to calibrate, or the stretch range of validity.
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However, to the best knowledge of authors, there is no existing network model accounting for the size
dependence of mechanical properties of nano/microsize polymeric structures. With the development of man-
ufacturing techniques [2], the polymeric structure can be made small enough to exhibit size effects, which is
substantiated by experiments [3], where the normalized bending rigidity of the polymeric beams are found to be
size-dependent.We aim to construct a networkmodel that connects conformation of chains to the configuration
of continuum with size-dependent properties.

To capture size effects, several generalized continuum theories have been proposed, among which com-
monly used are the strain gradient elasticity [16–18], integral-type nonlocal elasticity [19,20], and micromor-
phic theory [21,22]. All the information about size dependence of properties are encoded in the intrinsic length
and additional parameters [23,24]. Although the abovementioned theories show great success in predicting
mechanical behaviors of micro/nanostructures [25–30], however, they suffer from two apparent and widely
acknowledged shortcomings. One is the ambiguous and controversial physical interpretations of the intrinsic
length. [31–35], and the other is too many parameters to calibrate [36,37]. For example, in Mindlin’s strain
gradient elasticity theory [16], we need five additional parameters to determine the energy of an isotropic
material, which is difficult to implement. To improve the latter shortcoming, a simplified strain gradient elas-
ticity theory (SSGET) [38,39] is later developed with reduction of parameters. This reduction, however, is not
rigorously justified in the original work. Recently, there have been many efforts contributing to homogenizing
heterogeneous materials to strain gradient media, where the intrinsic length, the additional constants and the
assumption for parameter reduction may hopefully be physically interpreted [40–43].

The chain conformation is governed by its energetics and the strain gradient continuum is governed by its
constitutive relations. If a rigorous connection can be established between the chain conformations and the
strain gradient continuum configurations, a quantitative relation can be established between two expressions
of energy: the microscopic expression for free energy due to chain stretch and the macroscopic counterpart
that depends on all details of the strain field. In this way the size-dependent properties of nano/microsize
polymeric structures can be captured by the derived strain gradient continuum, where the artificially introduced
characteristic length shall be equippedwith a clear physical interpretation by the concrete geometry of network.
Furthermore, if only a few scalar invariants of strain gradient tensor remain at last, the assumption of parameter
reduction in the simplified strain gradient elasticity theory (SSGET) can be justified.

In this work, we aim to establish the connection between chain conformations and strain gradient config-
urations. First, a general framework is proposed, which puts no restriction on geometry of network structure.
The order of strain gradient continuum depends on the specific network geometry. Next, a first-order strain
gradient constitutive relation is derived by applying the general framework to the “8-chain” network.

2 Problem statement

In this study, we seek to derive a physically based strain gradient continuum which can only be possible when
a connection between the conformation of a chain and the configuration of a strain gradient continuum is
established. The conformation of a chain is governed by the chain dynamics, which is described accurately by
statistical mechanics.

2.1 Energetics of a single polymer chain

In theory of statistical mechanics, taking one end of the polymer chain as the origin, each point in space is
equipped with a probability density describing how likely for the other end to reside in the neighborhood
(Fig. 1). For instance, the Gaussian statistics assumes an isotropic probability density distribution P (r), i.e.,
P (r) = P (|r|) does not depend on the direction angles (β, θ).

When a single chain stretches, its end moves to another point with less probability density, resulting in the
decrease of entropy, and thus the increase of Helmholtz free energy. Ultimately, resistance to energy increase
gives resistance to tension. For freely jointed chains [5], Gaussian statistics and the Langevin statistics render
two common approaches, and the latter extends the former via accounting for limited extendability. The explicit
expression of free energy will be provided in a later section (Eq. (2)) and immediately used.
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Fig. 1 The chain-network-continuum bottom-up procedure

2.2 Importance of strain gradients

Effective moduli of micropolymeric beams have been found size-dependent by bending experiments where
large gradients of strain field exist [3]. To see why a large strain gradient makes a difference formicrostructures,
we need to take a closer look at the network models. For instance, as shown in Fig. 1, in the existing 8-chain
network model, eight equivalent chains start from eight vertices of a cube and join at the center. Size of the
cube (side length L) is negligible compared to macro-structures, which renders the cube as an infinitesimal
differential element of the macro-size continuum, where the strain field inside is viewed uniform. However, for
micro/nanosize continuum, the cube cannot be taken as infinitesimal, and thus it may perceive finite variations
of strain field (Fig. 1).

The strain field can be approximated by its Taylor expansion in spatial variables, where the coefficients
render the source of high-order strain measure (see Eq. (3)), i.e., strain gradients (of arbitrary order). When
the strain gradients are large, their effects cannot be neglected. Qualitatively speaking, when the average strain
is the same, i,e., fixing eight vertices of the cube, changes in the position of the connection point will result
in different values of total Helmholtz energy of the eight chains. In other words, in order to derive the strain
gradient continuum, eight chains inside the network are allowed to undergo different stretch.

2.3 The key problem in connecting chain conformations and strain gradient continuum configurations

The chain conformation is governed by its energetics and the strain gradient continuum is governed by its
constitutive relations. In deriving the physically based (bottom up) strain gradient theory of rubber, the only
thing missing is the connection between chain conformation and the strain gradient continuum configuration,
which is completely geometric.

On one hand, in the statistical description of a single chain, all that matters is the relative position of chain
ends. For example, in the eight-chain network, all the microscopic information is encoded in 9 (8 vertices
and 1 connection points) discrete points. On the other hand, in continuum description, the total strain energy
depends on all details of the entire strain field inside.

We aim to construct the abovementioned connection, which poses the key problem: to derive the strain and
strain gradients measure from positions of all the chain ends.

3 General framework

In this section, we connect chain conformations and strain gradient continuum configurations. A general
framework is proposed, which puts no restrictions on geometry of networks. In this work, we focus on size-
effects and assume infinitesimal strain with large strain gradients.
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3.1 Two versions of free energy

In order to proceed, we need to check what is available. We have two expressions for the same free energy. The
microscopic expression is obtained through statistical mechanics and provides physical interpretations for the
macroscopic counterpart.

3.1.1 Helmholtz free energy in terms of statistical mechanics

Considering the freely jointed chains which permit the additivity of energy [5], the total Helmholtz free energy
Wmicro inside the representative volume is given as the sum of contributions from all chains inside (total number
of chains denoted by NC ), i.e.,

Wmicro =
NC∑

N=1

WN . (1)

For mild stretch, the Gaussian statistics renders an accurate description [5], which gives the Helmholtz free
energy of a single chain as

WN = 3

2
kBT

(
rN
r0

)2

= 3

2
kBTλ2N , (2)

where kB is the Boltzmann constant and T is the absolute temperature. The N th chain stretches from its initial
end-to-end distance r0 (where we assume that all chains equal the initial length) to the final value rN , having
the stretching ratio:

λN = rN
r0

.

It can be observed from Eq. (2) that the free energy is proportional to temperature. The higher the temperature
is, the larger the free energy becomes.

In this study, we only consider the isothermal condition. Thus, the free energy is only proportional to the
stretching ratio λN . Furthermore, we assume that λN → 1.

3.1.2 Helmholtz free energy in the viewpoint of continuum mechanics

The representative volume Vrt is viewed as a rather small (but not infinitesimal) part of the continuum, inside
which the displacement field can be approximated by its Taylor expansion in space variables x as follows
[31,34]:

u (x) = u0 + A1 · x + 1

2! A2 : (x ⊗ x) + 1

3! A3
... (x ⊗ x ⊗ x) + ... (x ∈ Vrt ) , (3)

where “·,” “:,” “...” denote scalar products of vectors, second-order tensors and third-order tensors, respectively;
and A1, A2, A3 are constant second-order, third-order and fourth-order tensors, respectively; u0 denotes the
original displacement at the center of a representative volume; and ⊗ is the tensor product. These tensors
render the source of higher-order strain measure, and the order of strain gradient continuum depends on the
order of truncation. Distribution of displacement field inside the representative volume Vrt determines the total
Helmholtz free energy inside, i.e.,

Wmacro = Wmacro [u] , (4)

where the square bracket denotes Wmacro as a functional of u.
Deriving a physically based strain gradient continuum constitutive relation means to find a quantitative

relation between the two energies, which will only be possible when we establish the connection between
chain conformations and strain gradient continuum configurations.
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3.2 Connection between chain conformations and strain gradient continuum configurations

Based on the following considerations:

(a) Microscopically, the free energy of a freely jointed chain only depends on the stretching ratio, which can
be completely determined by specifying the position of its two ends. Therefore, the total free energy is
given as

Wmicro = Wmicro

(
r(1)
1 , r(1)

2 , ..., r(Nc)
1 , r(Nc)

2

)
, (5)

where r(i)
1 , r(i)

2 denote the position vectors at two ends of the i th chain (Fig. 2). In other words, the
microscopic information is concentrated in a few discrete points (chain ends).

(b) Macroscopically, once we adopt the polynomial form (3), the functional dependence of free energy
Wmacro on the whole displacement field reduces to function dependence on the constant coefficients
(A1)i j , (A2)i jk, (A3)i jkl , etc if we process a volume integration. That is,

Wmacro [u] = Wmacro (A1, A2, A3, ...) , (6)

where square brackets denote functional dependence, and round brackets denote function dependence. In
other words, the macroscopic kinematic information is concentrated in finitely many variables.

We establish the connection (Fig. 2).
The chains lie in the representative volume with the displacement field (3) specified for each point in space,

and the displacement field is taken to be interpolatory at the chain ends.Mathematically,

r(1)
1 − r(1)

01 =: u(1)
1 = u

(
r(1)
01

)
(7)

r(1)
2 − r(1)

02 =: u(1)
2 = u

(
r(1)
02

)

...

r(NC )
1 − r(NC )

01 =: u(NC )
1 = u

(
r(NC )
01

)

r(NC )
2 − r(NC )

02 =: u(NC )
2︸ ︷︷ ︸

microscopic

= u
(
r(NC )
02

)

︸ ︷︷ ︸
macroscopic

where we have two sets of descriptions:

(a) Microscopic descriptions include r(1)
01 , r(1)

02 , ..., r(Nc)
01 , r(Nc)

02 that denote initial positions of chain ends,

r(1)
1 , r(1)

2 , ..., r(Nc)
1 , r(Nc)

2 that denote final positions, and u(1)
1 , u(1)

2 ,..., u(NC )
1 , u(NC )

2 that denote the thus
defined displacement vectors.

(b) Macroscopic descriptions include u
(
r(1)
01

)
, u
(
r(1)
02

)
, ..., u

(
r(NC )
01

)
, u
(
r(NC )
02

)
that denote the values of

continuum displacement field taken at corresponding points.

Equations (3) and (7) give r(1)
1 , r(1)

2 , ..., r(Nc)
1 , r(Nc)

2 as functions of A1, A2, A3, ..., and thus we may tie
Wmicro to Wmacro in the following way

Wmacro (A1, A2, A3, ...) = ΔWmicro

(
r(1)
1 (A1, A2, A3, ...) , r(1)

2 (A1, A2, A3, ...) , ...
)

, (8)

where the zero of Wmacro corresponds to initial values of Wmicro, i.e.,

ΔWmicro := Wmicro

(
r(1)
1 , r(1)

2 , ..., r(Nc)
1 , r(Nc)

2

)
− Wmicro

(
r(1)
01 , r(1)

02 , ..., r(Nc)
01 , r(Nc)

02

)
. (9)

As a scalar quantity, Wmacro is invariant with respect to coordinate transformation and thus should be able to
be expressed by scalar invariants [44]. Then, Eq. (8) can be ultimately given as

Wmacro (Invarants {A1, A2, A3, ...}) = ΔWmicro

(
r(1)
1 , r(1)

2 , ..., r(Nc)
1 , r(Nc)

2

)
, (10)

where “Invarants {A1, A2, A3, ...}” denote the invariants of all possible combinations of A1, A2, A3, ....
In this section, we make no restrictions on any geometrical details of the representative network, In the

next section, we follow the general framework proposed in this section to form a concrete constitutive model.
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Fig. 2 The connection between chain conformations and continuum configurations

Fig. 3 Illustration of the 8-chain network

4 Strain gradient elasticity based on the eight-chain model

In this section, we proceed with the general framework further by applying it to a concrete network structure.
The “8-chain” network is adopted (Fig. 3). The representative volume is a cube with length L , occupying the
three-dimensional space

[− L
2 , L

2

]× [− L
2 , L

2

]× [− L
2 , L

2

]
. The Cartesian coordinate system is shown in Fig.

3, the origin being at the center of the cube.

4.1 Microscopic and macroscopic descriptions of the eight-chain network

As for the total Helmholtz free energy Wmicro inside the representative volume, we have the number of chains
NC = 8 and Eq. (1) becomes

Wmicro =
8∑

N=1

WN , (11)

where WN is given by Eq. (2):1

WN = 3

2
kBT

(
rN
r0

)2

= 3

2
kBTλ2N .

1 Note that in the original work proposing the “8-chain” network [12], Langevin statistics is used to account for limited
extendability. However, in the present work, we focus on large strain gradients instead of large finite strain, and thus the Gaussian
statistics renders accurate.
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As for the macroscopic expression of Helmholtz free energy Wmacro, the first step is to assign the dis-
placement field. Since the free energy is invariant with respect to rigid-body motions, we impose an additional
translation such that the displacement at the origin is zero, i.e., u0 = 0 in Eq. (3). Therefore, eight chain-ends
at the eight vertices of the cube render the complete microscopic description, resulting in 24 independent
variables which account for 3 displacement components of the 8 vertices. In the macroscopic counterpart, we
may have the same number of independent variables by truncating the Taylor expansion (3): (Here we use
another set of notations for the coefficients A1 → E, A2 → D, the convenience of which will be illustrated
by their physical meanings later in this section)

u (x) = E · x + 1

2
D : (x ⊗ x) , (12)

where the second-order tensor E and the third-order tensor D are constant, equipped with the following
symmetry

Ei j = E ji , Di jk = Dik j . (13)

Indices i ( j, k) take values of 1, 2, 3, and summation is invoked on repeated indices (in the following). We
arrived at total (6 + 18 = 24) coefficients. The corresponding strain and strain gradient render

〈ε〉 =
〈
1

2
(u∇ + ∇u)

〉
= E, (14)

〈ε∇〉 = ε∇ = 1

2

(
Di jk + Djik

)
ei ⊗ e j ⊗ ek,

where “〈·〉” denotes volume average, “∇” denotes the nabla operator, and ei (i = 1, 2, 3) denotes the Cartesian
basis vector (Fig. 3).

4.2 Non-dimensionalization

To proceed further, we rearrange all equations in a dimensionless setting. A new coordinate ξ j is adopted such
that

−1

2
≤ ξ j= x j

L
≤ 1

2
. (15)

The dimensionless displacement field can then be expressed as

ui
L

= Ei jξ j + 1

2
LDi jkξ jξk . (16)

Since the volume-averaged strain gradient tensor only depends on the combination 1
2

(
Di jk + Djik

)
, we may

equip the third-order tensor D with additional symmetry:

Di jk = Djik (17)

which qualifies it as the strain gradient tensor. Introducing the notations ūi = ui
L , Hi jk = LDi jk , Eq. (16)

becomes

ūi = Ei jξ j + 1

2
Hi jkξ jξk . (18)

The dimensionless Helmholtz free energy of a single chain is defined as

W̄N := WN
3
2kBT

= λ2N (19)
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which is given in terms of displacement as

W̄N = λ2N (20)

=
(
rN
r0

)2

= r2N
3
4 L

2

= u2 (xN ) + x2N + 2u (xN ) · xN
3
4 L

2

= 4

3
ū2 (ξN ) + 1 + 8

3
ū (ξN ) · ξN ,

where the square of the initial chain length is r20 = 3
4 L

2 in the “eight-chain” representative volume. The
link (Eq. (7)) between microscopic and macroscopic descriptions of deformation is invoked, where xN is the
position vector of the N th chain end on the vertex, non-dimensionalized as ξN according to Eq. (15). The
change in free energy ΔWN is given by subtracting the initial free energy from Eq. (20):

ΔW̄N (ξN ) = 4

3
ū2 (ξN ) + 8

3
ū (ξN ) · ξN (21)

which only depends on ξN . Total Helmholtz free energy changes inside the volume are given as

ΔW̄micro =
8∑

N=1

ΔW̄N (ξN ). (22)

4.3 Strain gradient elasticity continuum model

We substitute each ξN (N = 1, 2, ..., 8) into Eqs. (16) and (21), sum up and rearrange terms to form scalar
invariants.2 Eventually, we arrive at the following expression:

ΔW̄micro = 16

3
Eii + 8

3
Ei j Ei j + 1

3
Hi jk Hi jk − 1

6
Hi j j Hikk =: W̄macro. (23)

Restoring dimensions of all quantities using Hi jk = LDi jk and Wmacro := 3
2kBT

(
W̄macro

)
, we obtain

Wmacro = 3

2
kBT

(
16

3
Eii + 8

3
Ei j Ei j + L2

3
Di jk Di jk − L2

6
Di j j Dikk

)
. (24)

With introducing density n of chains (number of chains per unit volume), the free energy density w can be
expressed in terms of averages of strain

〈
εi j
〉
and strain gradient

〈
εi jk
〉
given in Eq. (14) as

w = Wmacro

8
n = nkBT

(
〈εi i 〉 + 1

2

〈
εi j
〉 〈

εi j
〉+ L2

16

〈
εi j,k

〉 〈
εi j,k

〉− L2

32

〈
εi j, j

〉 〈
εik,k

〉)
. (25)

We interpret independent variables in continuum models as the volume averages
〈
εi j
〉
,
〈
εi j,k

〉
, get rid of the

square brackets, and arrive at the constitutive model in the form of free energy

w
(
εi j (x) , εi j,k (x)

) = nkBT

(
εi i + 1

2
εi jεi j + L2

16
εi j,kεi j,k − L2

32
εi j, jεik,k

)
, (26)

where x ∈ Vcontinuum denotes material points of the whole structure from now on, and the strain energy renders
a spatially varying function only through its dependence on strain εi j (x) and strain gradient εi j,k (x).

2 This is a lengthy calculation, simplified by non-dimensionalization to some extent.
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One of the most questions of common interest is whether the classical continuum theory can be recovered
from the proposed strain gradient theory when considering a neglectable strain gradient effect. That is, when
the intrinsic characteristic length L of strain gradient continuum is much smaller than geometric dimensions
of the whole structure, the constitutive relation shall reduce to its classical counterpart. In case of the original
work where the eight-chain model is proposed (refer to Eq. (21) in Arruda and Boyce [12]), the strain energy
density wc can actually be expressed as

wc = nkBT

(
1

2
(I1 − 3) + O (I 21

))
, (27)

where the so-called first invariant has the relation: I1 = λ21 + λ22 + λ23, with λ1, λ2, λ3 representing the stretch
values of the representative volume along three directions. The truncation error of the strain energy density wc
is O (I 21

)
.

For infinitesimal deformations, λ1 → 1, λ2 → 1, λ3 → 1, permitting the following representation:

λ1 = 1 + ε11, (28)

λ2 = 1 + ε22,

λ3 = 1 + ε33

with ε11 → 0, ε22 → 0, ε33 → 0. Substituting Eq. (28) into Eq. (27) and getting rid of higher-order terms,
we get

wc = nkBT

(
ε11 + ε22 + ε33 + 1

2

(
ε211 + ε222 + ε233

))
(29)

= nkBT

(
εi i + 1

2
εi jεi j

)
.

It is clear that the classical eight-chain model (29) can be recovered from the proposed strain gradient model
(26) when neglecting the strain gradient effect (L = 0). It shall be noted that in addition to the classical
eight-chain model (29), many other statistical mechanics models have been developed, including the 3-chain
network model, the 4-chain network model, and the full network model [8]. It is hopeful that the proposed
framework of strain gradient theory can also be used for developing their strain gradient counterparts based
on a similar procedure in Sect. 3.2.

Furthermore, we have the following remarks for the constitutive relation defined by the proposed strain
gradient model (26).

(a) The constitutive relation (26) describes a first-order strain gradient continuum, and more specifically, it
belongs to the simplified strain gradient elasticity theory (SSGET [38,39]) according to the scalar invariants
of strain gradient tensor in use, justifying the assumption on parameter reduction.

(b) The intrinsic characteristic length L now has a natural and unambiguous physical meaning, i.e., size (side
length) of the representative network shown in Fig. 3.

(c) There exists a hydrostatic residual stress:

σ
(0)
i j = ∂w

∂εi j

∣∣∣∣
εi j=0

= nkBT δi j , (30)

where δi j is the Kronecker delta.
(d) Only two parameters (nkBT, L) need to be calibrated.

5 Application to static bending of beams

In this section, we aim at the illustration of how to apply the proposed strain gradient model (26) to different
beam models, and correspondingly, the size-dependent behaviors can be examined.
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Note that starting from Eq. (26), we use the notation x ∈ Vcontinuum to denote material points of the whole
structure. In the following context, the zero hydrostatic residual stress in Eq. (30) is invoked, i.e., σ

(0)
i j = 0,

and correspondingly the free energy density (26) can be simplified as

w
(
εi j (x) , εi j,k (x)

) = nkBT

(
1

2
εi jεi j + L2

16
εi j,kεi j,k − L2

32
εi j, jεik,k

)
. (31)

Consider a rectangular Euler–Bernoulli beam with thickness h and width b much smaller than its length l.
The displacement field of Euler–Bernoulli beam theory can be given by

u1 = −x3
du3
dx1

, (32)

u2 = 0,

u3 = u3 (x1) ,

where 0 ≤ x1 ≤ l, −b/2 ≤ x2 ≤ b/2,−h/2 ≤ x3 ≤ h/2. The only nonzero components of strain and strain
gradient tensors are

ε11 = −x3
d2u3
dx21

, (33)

ε11,1 = −x3
d3u3
dx31

,

ε11,3 = −d2u3
dx21

.

The stain gradient in the thickness direction is non-zero, although the strain component in the thickness direction
is zero. The size-dependent effect of ε11,3 is often assumed to be neglected in the size-dependent model of
beams and plates, originally aiming at reducing the complexity of size-dependent beam and plate models [45].
It shall be noted that the effect of the stain gradient in the thickness direction plays a very important role in
statics and dynamics of beams [45–47].

5.1 Size dependence in the viewpoint of free energy

Theories of strain gradient elasticity are often applied to explain the size-effects. Now we want to find out:
at what scale of the thickness h, will the variation of mechanical properties be observable? In other words,
the strain gradient-induced elastic energy is non-negligible compared to the strain energy. Integrating the
energy density (31) along the thickness using (33), taking the ratio γ of strain gradient-induced energy to
strain-induced energy, we get

γ :=
L2
(

d3u3
dx31

)2
h3
12 + 2L2

(
d2u3
dx21

)2

h

16

(
d2u3
dx21

)2
h3
12

= 1

16

(
L

�def

)2

+ 3

2

(
L

h

)2

, (34)

where we define the characteristic length of deformation �def as follows:

�def = φ/φ′, (35)

φ : = d2u3
dx21

,

φ′ : = dφ

dx1
= d3u3

dx31
.

Here we have three length scales:
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Fig. 4 Size-dependent ratio of energies

(a) characteristic length L of the strain gradient material,
(b) beam thickness h,
(c) deformation characteristic length �def .

When either h or �def is closed to L , the strain gradient-induced energy will account for a large portion of the
total free energy, thus exhibiting significant size effects. A quantitative study is shown in Fig. 4.

5.2 Governing equation in terms of displacement field and effective bending rigidity

In the following, we shall take a closer look at the effective mechanical properties affected by the beam
thickness h. To examine the size dependence of mechanical properties, we derive the equations of motion
using the principle of virtual work.

To simplify derivations, the strain energy density (31) can be, alternatively, expressed as

w = μεi jεi j + A1εi j,kεi j,k + A2εi j, jεik,k, (36)

where we have defined

μ := 1

2
nkBT, (37)

A1 := L2

16
nkBT,

A2 := − L2

32
nkBT .

Inwhat follows, the proposed strain gradientmodel (36) is used to predict different results for static bending
of two different beammodels in the framework of Euler–Bernoulli beam theory: one-dimensional beammodel
and three-dimensional beam model.

5.2.1 One-dimensional beam model

This subsection is based on the assumption that the strain gradient Euler–Bernoulli beam can be physically
viewed as an one-dimensional model, where the effect of boundary conditions on the top and bottom surfaces
of the beam is assumed to be neglectable [48].

Plugging in the strain field (33), the constitute relation (36) can be expanded as

w = μ(x3)
2

(
d2u3
dx21

)2

+ (A1 + A2) (x3)
2

(
d3u3
dx31

)2

+ A1

(
d2u3
dx21

)2

. (38)
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The total strain energy is given as the integral over the entire beam volume V

W =
∫

V

wdV (39)

which can be expressed as

W = μI
∫ l

0

(
d2u3
dx21

)2

dx1 + (A1 + A2) I
∫ l

0

(
d3u3
dx31

)2

dx1 + A1a
∫ l

0

(
d2u3
dx21

)2

dx1 (40)

with the definitions

I := b
∫ h/2

−h/2
(x3)

2dx3, (41)

a:= b
∫ h/2

−h/2
dx3.

Next, we invoke the principle of virtual work to derive the governing equations and boundary conditions.
The first variation of the total strain energy is

δW = μI δ

⎡

⎣
∫ l

0

(
d2u3
dx21

)2

dx1

⎤

⎦+ (A1 + A2) I δ

⎡

⎣
∫ l

0

(
d3u3
dx31

)2

dx1

⎤

⎦+ A1aδ

⎡

⎣
∫ l

0

(
d2u3
dx21

)2

dx1

⎤

⎦ , (42)

where δ denotes the variational operator. Integrating by parts, we obtain

δW =
∫ l

0

(
2 (μI + A1a)

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

))
δu3dx1

+ μI

⎛

⎝
[
2

(
d2u3
dx21

)
δ

(
du3
dx1

)]l

0

−
[
2

(
d3u3
dx31

)
δu3

]l

0

⎞

⎠

+ (A1 + A2) I

⎛

⎝
[
2

(
d3u3
dx31

)
δ

(
d2u3
dx21

)]l

0

−
[
2

(
d4u3
dx4

)
δ

(
du3
dx

)]l

0
+
[
2

(
d5u3
dx5

)
δu3

]l

0

⎞

⎠

+ A1a

⎛

⎝
[
2

(
d2u3
dx21

)
δ

(
du3
dx1

)]l

0

−
[
2

(
d3u3
dx31

)
δu3

]l

0

⎞

⎠ . (43)

The external load potential is assumed as

P = −
[
Qu3 + M

(
du3
dx1

)
+ Mh

(
d2u3
dx21

)]l

0

−
∫ l

0
qu3dx1, (44)

where q is the distributed load, and the rest are applied at the beam ends: Q is the external shear force, M
is the external moment, and Mh is the external higher-order moment. The first variation of the external load
potential is given as

δP = −
[
Qδu3 + Mδ

(
du3
dx1

)
+ Mhδ

(
d2u3
dx21

)]l

0

−
∫ l

0
qδu3dx1. (45)

Invoking the principle of virtual work, i.e.,
δW + δP = 0, (46)
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we get

δW + δP =
∫ l

0

(
2 (μI + A1a)

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

)
− q

)
δu3dx1

+
[(

−2 (μI + A1a)

(
d3u3
dx31

)
+ 2 (A1 + A2) I

(
d5u3
dx5

)
− Q

)
δu3

]l

0

+
[(

2 (μI + A1a)

(
d2u3
dx21

)
− 2 (A1 + A2) I

(
d4u3
dx4

)
− M

)
δ

(
du3
dx1

)]l

0

+
[(

2 (A1 + A2) I

(
d3u3
dx31

)
− Mh

)
δ

(
d2u3
dx21

)]l

0

. (47)

Thus, we obtain the size-dependent equation of motion

2 (μI + A1a)

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

)
− q = 0,

and the boundary conditions

−2 (μI + A1a)

(
d3u3
dx31

)
+ 2 (A1 + A2) I

(
d5u3
dx5

)
− Q = 0,

2 (μI + A1a)

(
d2u3
dx21

)
− 2 (A1 + A2) I

(
d4u3
dx4

)
− M = 0,

2 (A1 + A2) I

(
d3u3
dx31

)
− Mh = 0.

For the sake of simplification, as usual, we focus on the cases where the beam’s neutral axis has a constant
curvature [30,49–51], that is,

d2u3
dx21

= constant. (48)

When considering a cantilevered beam subject to an external moment M at its end (x1 = l), from Eqs. (47)
and (48), we arrive at the following relation for the proposed strain gradient theory:

2 (μI + A1a)

(
d2u3
dx21

)
= M. (49)

If the effect of strain gradient is neglectable (A1 = 0), the previous equation can be simplified to that of
classical continuum theory of elasticity:

2μI
d2u3
dx21

= M. (50)

The classical bending rigidity can be easily identified as 2μI . As we know, the classical bending rigidity for a
cantilevered beam is E I where E denotes Young’s modulus. Thus, Young’s modulus E can be viewed as 2μ,
that is,

E = 2μ. (51)

Note that, for the isotropic material, Young’s modulus E have the following relation:

E = μ (3λ + 2μ)

λ + μ
, (52)
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where λ andμ are the Lamé constants. Asmentioned before, since the material property of the 8-chain network
model is characterized by one modulus, we have the relation λ = 0. Thus, the classical isotropic relation (52)
can be simplified to Eq. (51).

Clearly, with the help of the definition (37), the microscopic physical meaning for Young’s modulus E in
the viewpoint of statistical mechanics can be given by

E = nkBT .

5.2.2 Size dependence of one-dimensionally physical model

To explore the size dependence of the proposed strain gradient theory of elasticity, the effective bending rigidity
of Eq. (49) can be obtained in a familiar way [49] as

Reff := M(
d2u3
dx21

) = E I + 2A1a. (53)

The first term actually stands for the classical counterpart (classical bending rigidity Rcl). To see this, we note
from expression of the strain energy density (36) that the stress tensor is

σi j := ∂w

∂εi j
= 2μεi j = Eεi j , (54)

and ultimately we can arrive at the result

E I =

∫

S
σ11 (−x3) dS

d2u3
dx21

=: Rcl, (55)

which is the well-known classical bending rigidity and justify the discussion below Eq. (50) . With the help of
the expression (55) of classical bending rigidity, Eq. (53) can be alternatively expressed as

Reff = Rcl + 2A1a. (56)

The normalized effective bending rigidity is

R̄eff := Reff

Rcl
= 1 + L2

8

a

I
, (57)

where Eq. (37) is used. Recall that the area of cross-section a and the moment of inertia I have been defined
in Eq. (41), and L is the intrinsic length scale of strain gradient material. Plugging in the beam’s width b and
height h, R̄eff renders

Reff

Rcl
= 1 + 3

2

(
L

h

)2

, (58)

which in turn implies that there will be significant variations in normalized bending rigidity when the char-
acteristic length L of the strain gradient material cannot be neglected compared to the beam thickness h. In
addition, Eq. (58) presents a typical type of size-dependence shown by existing literature. For example, in
Niiranen et al. [52], it is shown how several generalized beam models share the same tendency as Eq. (58),
and in Korshunova et al. [53], the origin of such tendency is clarified in the context of 3D octet-truss lattice
beams.
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5.2.3 Three-dimensionally physical beam model

In this subsection, the strain gradient Euler–Bernoulli beam is thought of as a three-dimensionally physical
model, and therefore the boundary conditions on the top and bottom surfaces of the beam are considered
[54–56].

From the strain energy density (36), the stress tensor and the hyper-stress tensor can be obtained as

σi j : = ∂w

∂εi j
= 2μεi j , (59)

τi jk : = ∂w

∂εi j,k
= 2A1εi j,k + 2A2δ jkεim,m .

Using the strain tensor components (33), we obtain all the non-zero components from the previous equations
as

σ11 = 2με11 = 2μ

(
−x3

d2u3
dx21

)
, (60)

τ111 = 2 (A1 + A2) ε11,1 = 2 (A1 + A2)

(
−x3

d3u3
dx31

)
,

τ113 = 2A1ε11,3 = 2A1

(
−d2u3

dx21

)
.

The variation of strain energy can then be given as

δW = b
∫ l

0

∫ h/2

−h/2

(
σ11δε11 + τ111δε11,1 + τ113δε11,3

)
dx3dx1. (61)

Using the displacement field defined in Eq. (32), the previous expression becomes

δW = b
∫ l

0

∫ h/2

−h/2

(
σ11δu1,1 + τ111δu1,11 + τ113δu1,13

)
dx3dx1. (62)

Integrating by parts with respect variable x3, we get

δW = b
∫ l

0

∫ h

−h

(
σ11δu1,1 + τ111δu1,11 − τ113,3δu1,1

)
dx3dx1 + b

∫ l

0

[
τ113δu1,1

]h/2
−h/2 dx1. (63)

Integrating by parts again with respect variable x1, we get

δW = b
∫ h/2

−h/2

∫ l

0

(−σ11,1 + τ111,11 + τ113,31
)
δu1dx1dx3

+ b
∫ h/2

−h/2

[(
σ11 − τ111,1 − τ113,3

)
δu1 + τ111δu1,1

]x1=l
x1=0dx3

− b
∫ l

0

[
τ113,1δu1

]z=h/2
z=−h/2 dx1 + b

[
[τ113δu1]

x1=l
x1=0

]z=h/2

z=−h/2
. (64)

From the last two terms, we get the surface conditions

τ113,1 = 0 on z = ±h/2 (65)

and the edge conditions
τ113 = 0 on z = ±h ∩ x = 0, l. (66)
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Substituting back to Eq. (64) and noting that τ113,3 = 0, the variation of strain energy reduces to

δW = b
∫ h/2

−h/2

∫ l

0

(−σ11,1 + τ111,11
)
δu1dx1dx3

+ b
∫ h/2

−h/2

[(
σ11 − τ111,1

)
δu1 + τ111δu1,1

]x1=l
x1=0dx3. (67)

Using the expressions of the stress and hyper-stress (60) and the following relations

δu1 = −x3
dδu3
dx1

, (68)

δu1,1 = −x3
d2δu3
d2x1

,

we get

δW =
∫ l

0

(
2μI

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

))
δu3dx1

+
[(

−2μI

(
d3u3
dx31

)
+ 2 (A1 + A2) I

(
d5u3
dx51

))
δu3

]l

0

+
[(

2μI

(
d2u3
dx21

)
− 2 (A1 + A2) I

(
d4u3
dx41

))
δ

(
du3
dx1

)]l

0

+
[(

2 (A1 + A2) I

(
d3u3
dx31

))
δ

(
d2u3
d2x1

)]l

0

. (69)

Variation of the external load potential is already given in Eq. (45), for the sake of readability, we write it
herein as

δP = −
[
Qδu3 + Mδ

(
du3
dx1

)
+ Mhδ

(
d2u3
dx21

)]l

0

−
∫ l

0
qδu3dx1,

which gives the total variation as

δW + δP =
∫ l

0

(
2μI

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

)
− q

)
dx1

+
[(

−2μI

(
d3u3
dx31

)
+ 2 (A1 + A2) I

(
d5u3
dx51

)
− Q

)
δu3

]l

0

+
[(

2μI

(
d2u3
dx21

)
− 2 (A1 + A2) I

(
d4u3
dx41

)
− M

)
δ

(
du3
dx1

)]l

0[(
2 (A1 + A2) I

(
d3u3
dx31

)
− Mh

)
δ

(
d2u3
d2x1

)]l

0

. (70)

Invoking the principle of virtual work, we get the governing equation

2μI

(
d4u3
dx41

)
− 2 (A1 + A2) I

(
d6u3
dx61

)
− q = 0
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and the boundary conditions

−2μI

(
d3u3
dx31

)
+ 2 (A1 + A2) I

(
d5u3
dx51

)
− Q = 0,

2μI

(
d2u3
dx21

)
− 2 (A1 + A2) I

(
d4u3
dx41

)
− M = 0,

2 (A1 + A2) I

(
d3u3
dx31

)
− Mh = 0.

To compare with the one-dimensional beam model, considering also a cantilevered beam subject to an
external moment M at its end (x1 = l) and applying the assumption of constant curvature (48), we arrive at
the following relation:

2μI

(
d2u3
dx21

)
= M,

which is the same as the classical relation (50). Thus for static bending, the three-dimensional beam model
results in a size-independent model as

Reff = Rcl.

Here we provide the counterparts (Eqs. (49) and (58)) in the one-dimensional beam model for convenient
comparison:

2μ (I + A1a)

(
d2u3
dx21

)
= M,

Ref f

Rcl
= 1 + 3

2

(
L

h

)2

.

6 Conclusions

In the present work, a general framework is proposed where the connection between chain conformations
and strain gradient continuum configurations is established. The continuum displacement field is taken to be
interpolatory at the chain ends. The framework enables to construct statistically based (physically based) strain
gradient continuum constitutive relations. Applying the general framework, which puts no restriction on the
geometry of the network, to a 8-chain network, we derive a first-order strain gradient material. There are two
important results. First, the size of the representative network turns out to be the characteristic length scale of
the strain gradient material. Second, only two scalar invariants of the strain gradient tensor remain at last, thus
justifying the assumption on parameter reduction made in the simplified strain gradient elasticity theory. With
the help of the proposed physically based strain gradient continuum theory, the microscopic physical meaning
of elastic modulus and high-order elastic constant is clear.
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