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Abstract An analytical solution is developed to study the free vibration of a thin functionally graded (FG)
spherical shell under initial internal static pressure based on Love’s first approximation theory. A coupled
vibro-acoustic analytical model is presented for spherical shells filled with compressible nonviscous fluid. The
non-homogenous material properties are assumed to be graded according to a power-law distribution of the
constituents through the shell thickness. By introducing a stress function, the reformulated coupled equations
of motion of FG spherical shells under the influence of initial stresses are obtained. The wave equation is used
to model the internal acoustic domain. The boundary conditions of continuity of fluid and shell velocities,
as well as the normal pressure acting on the internal surface of the shell from the fluid are imposed. The
frequency equation of the coupled system is obtained utilizing modal expansion along with the orthogonality
properties of the mode shapes. Exact solutions for the free vibration of pressurized empty and fluid-filled shells
are obtained in terms of products of trigonometric and Legendre functions in a spherical coordinate system.
Numerical results are validated with the results of simple cases available in the literature as well as finite
element modeling. Effects of different parameters including material constants, geometry, initial pressure and
vibro-acoustic coupling on natural frequencies are studied. The presented analytical solution is an attempt to
describe the vibrational behavior of FG pressurized fluid-filled spherical shells.

1 Introduction

Studying the vibrational characteristics of thin shells of different shapes and boundary conditions is one of
the problems with numerous applications in engineering structures [1, 2]. Such structures can be subjected to
a variety of static or dynamical loadings, such as internal or external fluids. Among these, free vibration of a
pressurized elastic spherical shell is a problem that is applicable to many structures, such as spherical pressure
vessels, sport balls, biological organs, airbags, and balloons. One possible application of such a study is a
method for noninvasively monitoring pressure changes inside sealed containers [3, 4], intracranial pressure in
human heads [5, 6], and intraocular pressure in the eye [7, 8]. The cross section of the head or eye resembles
an engineering layered sphere in which material properties change through the thickness direction. In the
following, a brief review on the most important papers regarding the vibration of fluid-filled spherical shells
is presented.
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Strutt and Rayleigh [9] were the first who studied the axisymmetric vibrations of a fluid enclosed in a rigid
spherical shell. Extensional axisymmetric free vibrations of an isotropic elastic spherical shell were first solved
by Lamb [10]. Then, Love [11] investigated the problem of free and forced vibrations of a spherical shell filled
with an incompressible fluid based on the exact elasticity theory. Morse and Feshbach [12] presented the free
vibration analysis of a fluid-filled spherical membrane. Rand and DiMaggio [13] treated the axisymmetric
extensional vibrations of fluid-filled isotropic spherical shells and obtained the analytic forms of frequency
equations and mode shapes. In order to present a theoretical model of the human head, Engin and Liu [14]
studied the axisymmetric torsionless vibration of a thin homogeneous fluid-filled spherical shell, including
both membrane and bending effects. Kenner and Goldsmith [15] obtained the response of a spherical shell
filled with a nonviscous compressible fluid under normal dynamic loading. Su [16] examined the effect of
fluid viscosity on the axisymmetric vibrations of a fluid-filled spherical shell and observed a reduction in
frequencies with the increase of viscosity. Zhang and Geers [17] used the Laplace transform and separation
of variables method to solve the transient response of a fluid-filled submerged thin spherical shell excited by
a plane step wave. Chen and Ding [18] investigated the nonaxisymmetric natural vibration of a spherically
isotropic spherical shell filled with a compressible inviscid fluid based on the three-dimensional elasticity. In a
similar work, they studied the free vibration of a fluid-filled FG spherical shell [19] in which they did not take
into account the effect of initial internal static pressure on natural frequencies. Hu et al. [20] investigated the
axisymmetric vibrations of submerged piezoelectric sphere filled with viscous fluid and noted that the fluid
inside the shell had a dominant effect on the vibrational behavior of the submerged shell. Piacsek et al. [3]
conducted experiments on an aluminum spherical shell filled with either air or water subjected to static internal
pressure and observed that resonance frequencies increase as the pressure increases. Fazelzadeh andGhavanloo
[21] studied the coupled axisymmetric oscillation of homogeneous spherical membrane shell filled with an
inviscid fluid based on nonlocal elasticity theory. They observed that the natural frequencies change when
the size effect is considered. El Baroudi et al. [22] presented analytical and numerical analyses of vibrational
modes for the system of brain, cerebro-spinal fluid and skull in spherical coordinate. The influences of the
cerebro-spinal fluid compressibility and thickness on natural frequencies were investigated. Tamadapu et al.
[23] studied the axisymmetric vibrations of a submerged fluid-filled spherically isotropic thick microspherical
shell with partial-slip interface condition. The influences of partial-slip, surface tension, spherical isotropy and
density variation along the thickness on the resonance spectrum were examined. Kuo et al. [24] developed
a model appropriate to free vibrations of an inflated balloon as an elastic spherical shell and considered the
influence of skin tension due to initial pressure and the inertial effect of fluid. They presented analytical solution
for the natural frequencies and compared the results with experimental ones. More recently, Eslaminejad et al.
[4] used experimental modal analysis to study the effect of internal fluid pressure on the frequencies, damping
ratio and mode shapes of an aluminum hemispherical shell filled with water.

In order to facilitate the solution procedure, there were always attempts to reformulate the governing
equations (in terms of displacement field variables) into a reduced number of differential equations in terms
of some potential functions. Gol’denveizer reduced the three governing equations of circular cylindrical shells
within classical theory into one eighth-order equation in terms of some potential functions [25, 26]. Vlasov [27]
introduced the governing equations of classical Donnell-Mushtari-Vlasov theory of thin shells of revolutions
in terms of transverse deflection and stress function with total order of eight and extended the procedure
into nonshallow spherical shells within Love’s first approximation theory [1, 28]. Here, the procedure will be
extended to motion equations of FG spherical shells with initial stress and filled with fluid which facilitates
the solution procedure greatly. Recently, Fallah et al. [28, 29] reformulated the governing equations of FG and
multilayered cylindrical shells [28] as well as sandwich circular plates [29] within first-order shear deformation
theory with total order of ten into three equations in terms of transverse displacement, stress function and a
boundary-layer function. It is worth mentioning that another procedure for decoupling the governing equations
of FGand composite structuresmaybe to introduce the concept of physical neutral surface through the thickness
of structure so that the stretching-bending coupling will disappear [30, 31].

The above review indicates that while there are number of researchers who have studied the vibrational
characteristics of fluid-filled spherical shells, there exists no analytic solution on the free vibration of a thin FG
spherical shell filled with compressible inviscid fluid and subjected to initial internal pressure. In the present
paper, based on theLove’s first approximation theory and introduction of a stress function, the coupled equations
of motion for a pressurized FG spherical shell are reformulated. The motion of compressible inviscid fluid
containedwithin the spherical shell and the fluid–solid interaction are taken into account. The exact solution for
frequency equation and mode shapes are derived in terms of trigonometric and Legendre functions. Finally, the
effects ofmaterial distribution, shell geometry, initial internal pressure and internal acousticwave onmembrane
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Fig. 1 Geometry of FG spherical shell, its loading and the coordinate system

and bending natural frequencies are studied. The analytical formulation and frequency results presented here
can serve as a benchmark for various approximate theories or numerical approaches.

2 Formulation

2.1 Governing equations

Consider a thin FG spherical shell of uniform thickness h and radius R, described in a spherical coordinate
system (r, ϕ, θ) as shown in Fig. 1. The FG material is modelled as a non-homogenous isotropic linear elastic
material whose properties vary continuously through the thickness of the shell as a function of the volume
fraction and properties of the constituents as follows:

(1)

where g is the power-law index and the subscripts m and c indicate metal and ceramic, respectively. Also, z is
the distance measured along the outward normal to the middle surface (see Fig. 1). Equation (1) is used as a
model for the effective Young’s modulus (E) and mass density (ρ). Here, it is assumed that Poisson’s ratio (ν)
is constant through the shell thickness. It is worth mentioning that the following formulation is applicable to
any distribution of Young’s modulus and mass density through the shell thickness and their distribution may
be assumed to be different from each other according to different laws. Based on Love’s first approximation
theory, the shell displacement field is given as [1]:

Uϕ(ϕ, θ, z, t) � uϕ(ϕ, θ, t) + zβϕ(ϕ, θ, t),

Uθ (ϕ, θ, z, t) � uθ (ϕ, θ, t) + zβθ (ϕ, θ, t),

Uz(ϕ, θ, z, t) � w(ϕ, θ, t), (2)

where uϕ , uθ , andw are the in-plane and transverse displacements of a point on the middle surface of the shell.
In addition, βϕ and βθ represent rotation functions. Assumption of neglecting transverse shear deformation
leads to:

βϕ � 1

R

(
uϕ − ∂w

∂ϕ

)
,

βθ � 1

R

(
uθ − 1

sin ϕ

∂w

∂θ

)
. (3)

Using Love’s strain–displacement relations of elasticity [1], the nonzero components of strain are found
to be as follows:

εϕ � ε0ϕ + zkϕ,

εθ � ε0θ + zkθ ,



3098 A. Ghaheri et al.

εϕθ � ε0ϕθ + zkϕθ , (4)

where the membrane normal and shear strains (ε0ϕ, ε0θ , ε
0
ϕθ ) as well as the changes in bending and twisting

curvatures (kϕ, kθ , kϕθ ) are:

ε0ϕ � 1

R

(
∂uϕ

∂ϕ
+ w

)
,

ε0θ � 1

R

(
1

sin ϕ

∂uθ

∂θ
+ cot ϕuϕ + w

)
,

ε0ϕθ � 1

R

(
∂uθ

∂ϕ
− cot ϕuθ +

1

sin ϕ

∂uϕ

∂θ

)
, (5)

kϕ � k0ϕ + ε0ϕ/R,

kθ � k0θ + ε0θ /R,

kϕθ � k0ϕθ + ε0ϕθ/R, (6)

k0ϕ � − 1

R2

(
∂2w

∂ϕ2 + w

)
,

k0θ � − 1

R2

(
1

sin2 ϕ

∂2w

∂θ2
+ cot ϕ

∂w

∂ϕ
+ w

)
,

k0ϕθ � 2

R2 sin ϕ

(
cot ϕ

∂w

∂θ
− ∂2w

∂ϕ∂θ

)
. (7)

By using Hamilton’s principle and neglecting the transverse shear deformation and rotatory inertia, Love’s
differential equations of motion under the influence of initial stresses are obtained [32]:

∂

∂ϕ

(
sin ϕNϕ

)
+

∂Nϕθ

∂θ
− cosϕNθ + sin ϕQϕ � ρhR sin ϕ

∂2uϕ

∂t2
, (8a)

∂

∂ϕ

(
sin ϕNϕθ

)
+

∂Nθ

∂θ
+ cosϕNϕθ + sin ϕQθ � ρhR sin ϕ

∂2uθ

∂t2
, (8b)

∂

∂ϕ

(
sin ϕQϕ

)
+

∂Qθ

∂θ
− sin ϕ

(
Nϕ + Nθ

)
+
sin ϕNr

R
∇2w � ρhR sin ϕ

∂2w

∂t2
− qR sin ϕ, (8c)

R sin ϕQϕ � ∂

∂ϕ

(
sin ϕMϕ

)
+

∂Mϕθ

∂θ
− cosϕMθ ,

R sin ϕQθ � ∂

∂ϕ

(
sin ϕMϕθ

)
+

∂Mθ

∂θ
+ cosϕMϕθ , (9)

in which Qϕ and Qθ are transverse shear stress resultants, q(ϕ, θ, t) is the net external distributed load
in normal direction, Nr � PR/2 for an spherical shell under uniform internal radial static pressure

(P), ρ � 1
h

h/2
∫

−h/2
ρ(z)dz, and ∇2 � 1

sin ϕ
∂
∂ϕ

(
sin ϕ ∂

∂ϕ

)
+ 1

sin2 ϕ

∂2

∂θ2
. The membrane forces and bending moments

in (8) and (9) are defined as follows:

(
Nϕ, Nθ , Nϕθ

) �
∫ h/2

−h/2

(
σϕ, σθ , σϕθ

)
dz,

(
Mϕ, Mθ , Mϕθ

) �
∫ h/2

−h/2

(
σϕ, σθ , σϕθ

)
zdz. (10)

Using the linear constitutive relations of an isotropic material, the membrane forces and bending moments
of FG spherical shells are obtained:

Nϕ � A
(
ε0ϕ + νε0θ

)
+ B

(
kϕ + νkθ

)
,

Nθ � A
(
ε0θ + νε0ϕ

)
+ B

(
kθ + νkϕ

)
,
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Nϕθ � A(1 − ν)

2
ε0ϕθ +

B(1 − ν)

2
kϕθ , (11)

Mϕ � B
(
ε0ϕ + νε0θ

)
+ D

(
kϕ + νkθ

)
,

Mθ � B
(
ε0θ + νε0ϕ

)
+ D

(
kθ + νkϕ

)
,

Mϕθ � B(1 − ν)

2
ε0ϕθ +

D(1 − ν)

2
kϕθ , (12)

where (A, B, D) � ∫h/2
−h/2 E(z)

(
1, z, z2

)
dz/

(
1 − ν2

)
are stiffness coefficients of the FG spherical shell. Sub-

stitution of relations (6) into (11) leads to:

Nϕ � (A + B/R)
(
ε0ϕ + νε0θ

)
+ B

(
k0ϕ + νk0θ

)
,

Nθ � (A + B/R)
(
ε0θ + νε0ϕ

)
+ B

(
k0θ + νk0ϕ

)
,

Nϕθ � (A + B/R)(1 − ν)

2
ε0ϕθ +

B(1 − ν)

2
k0ϕθ . (13)

By introducing relations (6) and (13) into (12) we have:

Mϕ � D
(
k0ϕ + νk0θ

)
+
R

ξ
Nϕ,

Mθ � D
(
k0θ + νk0ϕ

)
+
R

ξ
Nθ ,

Mϕθ � D(1 − ν)

2
k0ϕθ +

R

ξ
Nϕθ , (14)

in which D � D − BR/ξ and ξ � R(B + AR)/(D + BR). Upon substitution of the relations (14) into the
moment equation (9), and using the first two equations of motion (8a) and (8b), the transverse shear stress
resultants are found as follows:

Qϕ

(
1 +

1

ξ

)
� − D

R3

∂

∂ϕ

(∇2w + 2w
)
+

ρhR

ξ

∂2uϕ

∂t2
,

Qθ

(
1 +

1

ξ

)
� − D

R3

1

sin ϕ

∂

∂θ

(∇2w + 2w
)
+

ρhR

ξ

∂2uθ

∂t2
. (15)

In the following, we consider the fact that ξ is a very large number for a thin spherical shell and assume
(1 + ξ) ≈ ξ (see Fig. 5). For a homogenous isotropic spherical shell (B � 0,A � Eh/(1 − ν2) and D �
Eh3/12(1−ν2)), we have ξ � 12R2/h2. Now, we introduce a stress function F(ϕ, θ, t) through the following
relations [1]:

Nϕ � 1

R2

(
1

sin2 ϕ

∂2F

∂θ2
+ cot ϕ

∂F

∂ϕ
+ F − ρR2(1 + ν)

E

∂2F

∂t2
+
D

R

(∇2w + 2w
))

,

Nθ � 1

R2

(
∂2F

∂ϕ2 + F − ρR2(1 + ν)

E

∂2F

∂t2
+
D

R

(∇2w + 2w
))

,

Nϕθ � 1

R2

(
cosϕ

sin2 ϕ

∂F

∂θ
− 1

sin ϕ

∂2F

∂ϕ∂θ

)
, (16)

where E � ∫h/2
−h/2 E(z)dz/h. By substituting relations (16) into Eqs. (8a) and (8b), also using the transverse

shear stress resultants in relations (15), the terms containing the effect of tangential inertia are obtained as:

ρhR
∂2uϕ

∂t2
� −ρ(1 + ν)

E

∂

∂ϕ

(
∂2F

∂t2

)
,

ρhR
∂2uθ

∂t2
� −ρ(1 + ν)

E

1

sin ϕ

∂

∂θ

(
∂2F

∂t2

)
. (17)
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By substitution of relations (15), (16) and (17) into the third equation of equilibrium (8c) and carrying out
some manipulations, the first reformulated differential equation of motion in terms of w and F is obtained as
follows:

1

R2

(∇2F + 2F
)
+

ρ(1 + ν)

E

(∇2

ξ
− 2

)
∂2F

∂t2
+

D

R3

(∇2 + 2
)(∇2w + 2w

)
+ ρhR

∂2w

∂t2
− 1

R
Nr∇2w � qR.

(18)

Next, we use the compatibility equation in spherical coordinates [1]:

∂

∂ϕ

(
sin2 ϕ

∂ε0θ

∂ϕ

)
+

∂2ε0ϕ

∂θ2
− sin ϕ cosϕ

∂ε0ϕ

∂ϕ
+ 2 sin2 ϕε0ϕ − sin2 ϕ

R

(∇2w + 2w
) � ∂

∂ϕ

(
sin ϕ

∂ε0ϕθ

∂θ

)
. (19)

The membrane strains are obtained from relations (13) in terms of membrane forces and transverse dis-
placement as

ε0ϕ � R(
1 − ν2

)
(B + AR)

(
Nϕ − νNθ

) − BR

B + AR
k0ϕ,

ε0θ � R(
1 − ν2

)
(B + AR)

(
Nθ − νNϕ

) − BR

B + AR
k0θ ,

ε0ϕθ � 2R

(1 − ν)(B + AR)
Nϕθ − BR

B + AR
k0ϕθ . (20)

Upon substitution of the relations (20) into (19) as well as using Eqs. (7) and (16), the compatibility
equation is rewritten as follows:

1

R2

[∇2F + (1 − ν)F
] − ρ

(
1 − ν2

)
E

∂2F

∂t2
+

D

R3 (1 − ν)
(∇2w + 2w

) − Eh

R
w � 0. (21)

Therefore, the dynamic behavior of thin FG spherical shells under the influence of initial stresses (e.g. a
pressurized shell) can be predicted by solving the coupled equations in (18) and (21).

2.2 Natural frequencies of pressurized FG spherical shells

Here, the frequency equations for pressurized FG spherical shells without considering the internal acoustic
domain (the solution of equations in (18) and (21)) are obtained. By assumption of zero normal loading (q � 0)
as well as F � F∗(ϕ, θ)eiωt and w � w∗(ϕ, θ)eiωt for time-harmonic vibrations, the differential equations
of motion in (21) and (18) are reduced to

∇2 + 1 − ν +
(
1 − ν2

)
�2

R2 F∗ +
[
D

R3 (1 − ν)
(∇2 + 2

) − Eh

R

]
w∗ � 0,

∇2 + 2 − (
1 − ν2

)
�2

(∇2

ξ
− 2

)
R2 F∗ +

[
D

R3

(∇2 + 2
)(∇2 + 2

) − Eh

R
�2 − Nr

R
∇2

]
w∗ � 0, (22)

in which �2 � ρR2ω2/E is the square of normalized natural frequency and ω is the angular frequency. After
some mathematical manipulations, Eqs. (22) are reduced to two sixth-order differential equations with the
same form and coefficients governing the behavior of F∗ and w∗ as follows:

∇6
{

w∗
F∗

}
+ c1∇4

{
w∗
F∗

}
+ c2∇2

{
w∗
F∗

}
+ c3

{
w∗
F∗

}
� 0,

c1 � 4 +
(
1 − ν2

)
�2 − R2

D
Nr ,

c2 � R2

D

{
Eh

(
1 − �2) − Nr [1 − ν +

(
1 − ν2

)
�2]},
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c3 � EhR2

D

{
2 + �2[1 + 3ν − (

1 − ν2
)
�2]}. (23)

In the following, the general solution for w∗ is presented and it is obvious that F∗ will have the same
general solution. To this end, Eq. (23) is rewritten in the following form:

(∇2 + λ1
)(∇2 + λ2

)(∇2 + λ3
)
w∗ � 0, (24)

where the parameters λα(α � 1, 2, 3) satisfy the cubic equation

−λ3 + c1λ
2 − c2λ + c3 � 0. (25)

The general solution of (24) can be expressed as:

w∗ �
3∑

α�1

wα,

(∇2 + λα

)
wα � 0, α � 1, 2, 3 (26)

The general solution of the differential equation in (26) in the spherical coordinate system can be written
as [1]:

wα �
∞∑

m�0

[
Aαm Pm

μα
(cosϕ) + BαmQ

m
μα

(cosϕ)
]
[Cαm cos(mθ) + Dαm sin(mθ)],

λα � μα(μα + 1), (27)

inwhich Aαm, Bαm,Cαm, Dαm are unknown coefficients, and Pm
μα

(cosϕ) and Qm
μα

(cosϕ) denote the Legendre
functions of first and second kinds of degree μα and order m. Because the Legendre functions of the second
kind are singular at ϕ � 0, the coefficients Bαm should be set to zero in relation (27), i.e., Bαm � 0. Also, in
order to have a valid solution, the Legendre functions Pm

μα
which are singular at ϕ � π , must be substituted

by Legendre polynomials. Therefore, μα must be an integer (n � 0, 1, 2, . . .). Finally, the general solution
becomes:

w∗ �
∞∑
n�0

n∑
m�0

wnm, (28a)

wnm � Pm
n (cosϕ)[Cnm cos(mθ) + Dnm sin(mθ)], (28b)

where wnm satisfies the relation

∇2wnm � −λnwnm, λn � n(n + 1) (28c)

and Pm
n (cosϕ) denote the Legendre polynomials of degree n and order m [33]. Upon substitution of relation

(28a) in (23) and utilizing the orthogonality properties of mode shapes presented in (28b), the frequency
equations for vibration of FG spherical shells under initial stress are obtained:

2a�2
1 � b −

√
b2 − 4ac, 2a�2

2 � b +
√
b2 − 4ac,

a � 1 − ν2,

b � 1 + 3ν +

(
1 +

1 − ν2

Eh
Nr

)
λn +

D
(
1 − ν2

)
EhR2

λ2n,

c � −2 +

(
1 − 1 − ν

Eh
Nr

)
λn − D

EhR2

(
4 − R2

D
Nr

)
λ2n +

D

EhR2
λ3n. (29)

So, the natural frequencies arrange themselves into two branches, where the �1 branch is dominated by
transverse motion and the �2 branch is dominated by in-plane motion (see Fig. 2).
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(a)

(b)

Fig. 2 a The first six dominant bending mode shapes and b two dominant in-plane mode shapes for a homogenous spherical shell

2.3 Natural frequencies of Pressurized fluid-filled FG spherical shells: The coupled vibro-acoustic analytical
model

The motion of the compressible inviscid fluid medium contained within the spherical shell of radius R is
governed by the following wave equation [34]:

∇2φ � 1

c2f

∂2φ

∂t2
, v � ∇φ, p � −ρ f

∂φ

∂t
, (30)
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where c f and ρ f are the speed of sound and the density of the fluid, p is the acoustic pressure and φ(ϕ, θ, r, t)
is the acoustic velocity potential. The general solution of wave equation in spherical coordinate system may
be written as [34]:

φ �
∞∑
n�0

n∑
m�0

φnme
iωt , (31a)

φnm � jn

(
ω

c f
r

)
Pm
n (cosϕ)[Anm cos(mθ) + Bnm sin(mθ)], (31b)

where jn is the spherical Bessel functions. The continuity of elastic shell’s velocity and fluid particles’ velocity,
and the net normal force acting on the shell are as follows:

∂w

∂t
� ∂φ

∂r
, (32a)

q � −ρ f
∂φ

∂t
− f, (32b)

where f (ϕ, θ, t) is the external distributed load (see Fig. 1). Now, the governing equations ofmotion in (18) and
(21) while coupled with the internal acoustic domain through Eq. (32) are solved. To this end, the expansions
of w and F in terms of the associated normal modes are considered as follows:

w �
∞∑
n�0

n∑
m�0

wnme
iωt , F �

∞∑
n�0

n∑
m�0

Fnme
iωt , (33a)

wnm � Pm
n (cosϕ)[Cnm cos(mθ) + Dnm sin(mθ)], (33b)

Fnm � Pm
n (cosϕ)[Gnm cos(mθ) + Hnm sin(mθ)]. (33c)

By direct substitution of expansions (31) and (33) into the continuity equation (32a), one gets

iωCnm � Anm
ω

c f
j
′
n

(
ω

c f
R

)
, iωDnm � Bnm

ω

c f
j
′
n

(
ω

c f
R

)
. (34)

By assumption of zero external load and introducing the relations (31), (32b) and (33) into the equations
of motion (18) and (21), we obtain the same equations for the pairs (Gnm,Cnm) and (Hnm, Dnm):[
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⎤
⎦Cnm � 0, (35)

Finally the natural frequencies of the coupled system are calculated by setting the corresponding coefficient
matrix of relations (35) equal to zero.

3 Numerical examples

Here, verification examples and case studies are presented. In Sect. 3.1, two verification examples for natural
frequencies of homogenous and FG spherical shells are presented and compared with the existing ones in
the literature. In Sect. 3.2, the effects of internal static pressure, geometrical parameters, fluid to solid wave
velocity and density ratio on the dynamical behavior of fluid-filled homogenous shells are studied. In Sect.
3.3, FG spherical shells are considered and the effects of material gradient, initial internal pressure, vibro-
acoustic coupling, and thickness to radius ratio on their natural frequencies are studied. For the purpose of
numerical illustrations, the geometric and mechanical properties of homogenous and FG spherical shells as
well as properties of internal fluid are considered as presented in Table 1. Due to lack of relevant studies on the
subject, most parametric studies in Sects.3.2 and 3.2 are validated with the results of finite element modeling
(ABAQUS [35]). It is to be noted that up to 2,400 eight-node doubly curved thin shell, reduced integration
"S8R5" elements were used in the FE modeling of homogenous and FG spherical shells. Moreover, 15,200
20-node quadratic acoustic brick "AC3D20" elements were used in meshing of the fluid part.
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Table 1 Geometric parameters and mechanical properties of homogenous and FG spherical shells as well as internal fluid

Homogenous shells FG shells Fluid

Geometry R � 0.1m

h �
{
0.001m
0.005m

R � 0.1m

h �
{
0.001m
0.005m

R � 0.1m

Mechanical properties E � 210GN/m2

ρ � 7800 kg/m3

ν � 0.3

{
Em � 70GN/m2

Ec � 380GN/m2

{
ρm � 2700 kg/m3

ρc � 3950 kg/m3

ν � 0.3

c f � 1481m/s

ρ f � 1000 kg/m3

Table 2 Comparison of normalized natural frequencies of an isotropic homogenous spherical shell with the results of Ref. [1]

h � 0.005m h � 0.001m

�1 �2 �1 �2

n Present Ref. [1] Present Ref. [1] Present Ref. [1] Present Ref. [1]

0 0 0 1.6903 1.6903 0 0 1.6903 1.6903
1 0 0 2.0705 2.0704 0 0 2.0702 2.0702
2 0.7360 0.7366 2.8544 2.8543 0.7348 0.7349 2.8534 2.8534
3 0.8810 0.8816 3.8120 3.8120 0.8705 0.8705 3.8103 3.8103
4 0.9594 0.9600 4.8205 4.8205 0.9246 0.9246 4.8182 4.8182
5 1.0355 1.0360 5.8471 5.8472 0.9528 0.9528 5.8443 5.8443

Table 3 Comparison of normalized breathing mode frequencies of functionally graded empty sphere with the results of Ref. [36]

b/a 1.02 1.05 1.1 1.25

Present 1.4424 1.4213 1.3875 1.2950
Ref. [36] 1.4423 1.4203 1.3835 1.2753

3.1 Verification examples

Here, two verification examples for natural frequencies of homogenous and FG spherical shells are presented
and compared with the available results in the literature. In addition, it is to be emphasized that most parametric
studies in Sects. 3.2 and 3.3 are validated with the results obtained through finite element modeling.

Example 1 The normalized natural frequencies (�2
1,2 � ρR2ω2/E .) for a homogenous isotropic spherical

shell (see Table 1) are obtained and compared with the results of Ref. [1] in Table 2. Excellent agreement is
observed.

Example 2 An empty FG spherical shell of inner radius a and outer radius b is considered. The material
properties are assumed to vary in radial direction according to a power law E � E0(r/b)η, ρ � ρ0(r/b)η as
defined in Ref. [36] and Poisson’s ratio is considered to be constant through the shl thickness. In Ref. [36]
the axisymmetric radial free vibration of hollow FG sphere is investigated using 3D elasticity theory. Table
3 compares the dimensionless breathing mode natural frequency, β � aω

√
ρ0(1 + ν)(1 − 2ν)/E0(1 − ν), of

functionally graded (η � 5) empty spheres (b/a � 1.02, 1.05, 1.1 and 1.25) with the results of Ref. [36]. It is
to be noted that the vibration analysis in [36] is based on 3D elasticity theory while the present formulation is
based on the classical shell theory. The results of present study for thin shells (b/a � 1.02, 1.05) are in good
agreement with the ones reported in [36]. As the shell becomes thicker, the difference between the results
increases.

3.2 Dynamical behavior of homogenous shells

In order to study the effect of initialmembrane stresses on natural frequencies of spherical shells, a thin spherical
steel shell with geometric parameters and mechanical properties as given in Table 1, under different values of
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Table 4 Normalized natural frequencies of an isotropic homogenous spherical shell for different values of initial stress and
thickness, along with FEM results

h � 0.005m h � 0.001m

Nr � 0 Nr � 10MN/m Nr � 0 Nr � 2MN/m

n Present FEM Present FEM Present FEM Present FEM

�1 2 0.7360 0.7366 0.7624 0.7669 0.7348 0.7349 0.7613 0.7653
3 0.8810 0.8813 0.9342 0.9395 0.8705 0.8705 0.9243 0.9294
4 0.9594 0.9591 1.0457 1.0506 0.9246 0.9246 1.0139 1.0192
5 1.0355 1.0335 1.1578 1.1612 0.9528 0.9527 1.0847 1.0901
6 1.1332 1.1280 1.2911 1.2913 0.9712 0.9712 1.1517 1.1572
7 1.2648 1.2533 1.4545 1.4490 0.9863 0.9862 1.2205 1.2259
8 1.4358 1.4145 1.6522 1.6377 1.0014 1.0011 1.2930 1.2985
9 1.6481 1.6121 1.8856 1.8577 1.0183 1.0178 1.3702 1.3756
10 1.9011 1.8442 2.1549 2.1077 1.0386 1.0379 1.4525 1.4578

�2 0 1.6903 1.6903 1.6903 1.6960 1.6903 1.6903 1.6903 1.6960
1 2.0705 2.0702 2.0736 2.0840 2.0702 2.0702 2.0733 2.0840

Table 5 Comparison of normalized natural frequencies of a homogenous spherical shell filled with water with the results of FEM
for different values of initial stress and thickness

h � 0.005m h � 0.001m

Nr � 0 Nr � 10MN/m Nr � 0 Nr � 2MN/m

n Present FEM Present FEM Present FEM Present FEM

0 1.1526 1.1526 1.1526 1.1536 1.0134 1.0132 1.0134 1.0140
1 0.7232 0.7232 0.7240 0.7238 0.9143 0.9045 0.9148 0.9062
2 0.4994 0.4993 0.5149 0.5103 0.3008 0.3004 0.3112 0.3116
3 0.6389 0.6385 0.6731 0.6681 0.3921 0.3915 0.4150 0.4161
4 0.7374 0.7361 0.7981 0.7921 0.4561 0.4554 0.4980 0.4993
5 0.8298 0.8261 0.9213 0.9132 0.5063 0.5056 0.5734 0.5748

initial stress (Nr � 0, 2, 10MN/m) is considered. Table 4 presents the lowest normalized eigenfrequencies
(�2

1,2 � ρR2ω2/E) obtained via the present analytical study and the FEMmodeling. Good agreement is seen
to exist between the results. Also, the corresponding mode shapes of dominant bending and in-plane modes
are illustrated in Figs. 2a and b, respectively. It can be seen that an increase in internal pressure is associated
with an increase specially in bending vibrational natural frequencies (�1). Also, when the thickness to radius
ratio becomes larger, the difference between the analytical and FEM results increases, due to the thin classical
shell theory used in the formulation.

Figures 3a and b display the variations of bending normalized natural frequency (�1) versus the membrane
stress (Nr ) for homogenous spherical shells of thickness h � 0.005 m and h � 0.001 m, respectively. As can
be seen, a compressive membrane stress reduces the natural frequencies to zero at critical buckling loads, while
a tensile membrane stress increases the natural frequencies. Additionally, the rate of change in magnitude of
natural frequencies with respect to membrane stress is larger for a higher mode number (n).

Next, a homogenous spherical shell (see Table 1) is considered and supposed to be filled with water
under internal pressure. Table 5 presents the analytical and FEM results of lowest normalized natural fre-
quencies (�2 � ρR2ω2/E) of homogenous fluid-filled spherical shells with different values of initial stress
(Nr � 0, 2, 10MN/m). It can be seen that the natural frequencies obtained through the solution of coupled
system of equations have a great accuracy when compared with the FEM results. Compared with the results
presented in Table 4, it is observed that the natural frequencies of fluid-filled shells are smaller than those of
empty ones. It is also observed that as the shell becomes thinner, the effect of vibro-acoustic coupling on natural
frequencies increases. This effect reduces for higher mode numbers (n) as the bending becomes dominant.

Furthermore, Fig. 4 illustrates the variations of normalized natural frequency (�) of homogenous spherical
shells with the ratio of fluid to solid wave velocities (c f /cs), where cs � √

E/2(1 + ν). Two different values
of density ratio (ρ f /ρ � 0.1, 0.5) and shell thickness h � 0.005 m and h � 0.001 m are considered. It
is observed that an increase in fluid to solid wave velocity ratio is associated with an increase in all natural
frequencies and except for the breathing mode (n � 0) whose corresponding frequency grows unboundedly,
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(a)

(b)

Fig. 3 Variations of normalized bending natural frequency (�1) versus the membrane stress (Nr ) for a homogenous spherical
shell of thickness a h � 0.005 m and b h � 0.001 m

all other frequencies converge to specific values. In addition, for higher fluid to solid density ratio, the effect
of fluid on the dynamic behavior of coupled system is dominant and the frequency convergence happens in
lower velocity ratios. Also, normalized natural frequencies decrease for higher density ratios (due to the added
inertia effect) and lower shell thickness.

3.3 Dynamical behavior of FG shells

In the remaining, FG spherical shells are considered and the effects ofmaterial gradient, initial internal pressure,
vibro-acoustic coupling, and thickness to radius ratio on their natural frequencies are studied. To this end, thin
spherical aluminum–alumina shells with geometric parameters and mechanical properties as given in Table 1,
under different values of initial stress (Nr � 0, 2, 10MN/m) are considered.

The results obtained through analytical solution for normalized natural frequencies (�2
1,2 � ρR2ω2/E)

of FG spherical shells with power-law index, g � 3, and different values of initial stress and thickness are
presented in Table 6 and are compared with the results of FEM modeling. The results are in good agreement.
As explained before, the difference of analytical and FEM results increases for larger thickness to radius ratios
and an increase in internal pressure is associated with an increase in bending vibrational natural frequencies
(�1). In order to model through-the-thickness variations of mechanical properties of FGM in ABAQUS, the
FG shell is considered to be laminated with10 sub-layers.



Free vibration analysis of a fluid-filled functionally graded spherical shell 3107

Fig. 4 Variations of normalized natural frequency (�) versus the ratio of fluid to solid wave velocities (c f /cs ) for a homogenous
spherical shell of thickness h � 0.005 m and h � 0.001 m, and density ratios of ρ f /ρ � 0.1, 0.5

Table 6 Normalized natural frequencies of functionally graded spherical shell (g � 3) for different values of initial stress and
thickness, along with FEM results

h � 0.005m h � 0.001m

Nr � 0 Nr � 10MN/m Nr � 0 Nr � 2MN/m

n Present FEM Present FEM Present FEM Present FEM

�1 2 0.7358 0.7339 0.7543 0.7550 0.7348 0.7344 0.7533 0.7556
3 0.8791 0.8756 0.9164 0.9164 0.8704 0.8697 0.9082 0.9109
4 0.9531 0.9485 1.0142 1.0130 0.9243 0.9235 0.9872 0.9900
5 1.0208 1.0143 1.1083 1.1054 0.9521 0.9512 1.0455 1.0483
6 1.1052 1.0959 1.2195 1.2136 0.9699 0.9689 1.0986 1.1013
7 1.2184 1.2038 1.3575 1.3464 0.9840 0.9829 1.1520 1.1546
8 1.3664 1.3437 1.5268 1.5080 0.9975 0.9963 1.2081 1.2107
9 1.5516 1.5171 1.7293 1.6993 1.0123 1.0109 1.2682 1.2706
10 1.7743 1.7231 1.9655 1.9197 1.0297 1.0281 1.3327 1.3349

�2 0 1.6903 1.6903 1.6903 1.6942 1.6903 1.6903 1.6903 1.6942
1 2.0705 2.0780 2.0726 2.0875 2.0702 2.0718 2.0723 2.0814

Figure 5 shows the variations of non-dimensional parameter ξ with power-law index g for FG spherical
shells of radius R � 0.1m and thickness h � 0.005 m as well as h � 0.001 m. This parameter is considered
to be large and assumed that (1 + ξ) ≈ ξ in relations (15). Figure 4 shows the correctness of this assumption.
Moreover, it can be seen that parameter ξ has a maximum value when material is homogenous and has a
minimum value when the power-law index is near to g � 1.

Figure 6a presents the variations of normalized bending natural frequencies (�1) of FG spherical shells
(see Table 1) with zero initial stress versus power-law index for the first nine bending mode shapes (n �
2 . . . 10). It can be observed that the variations in normalized natural frequencies with power-law index are
more pronounced for higher mode numbers for which the effect of bending is dominant (see Fig. 2). The results
for mode numbers n � 2 and n � 10 are depicted in separate figures in Fig. 6b for the sake of clarification.
It is observed that the natural frequencies of all modes of vibration have the same trend of variations with
material power-law index andminimum normalized frequency occurs when power-law index is close to g � 2.
Similarly, Fig. 7a shows the variations of first four dominant membrane natural frequencies (�2) versus power-
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Fig. 5 Variations of non-dimensional parameter ξ of FG spherical shell of thickness h � 0.005 m and h � 0.001 m with
power-law index g

Table 7 Normalized natural frequencies of functionally graded spherical shell for different values of material constant and
thickness

h � 0.005m h � 0.001m

n g � 0.1 g � 1 g � 10 g � 0.1 g � 1 g � 10

�1 2 0.7360 0.7358 0.7359 0.7348 0.7348 0.7348
3 0.8812 0.8792 0.8798 0.8705 0.8704 0.8704
4 0.9601 0.9536 0.9556 0.9246 0.9243 0.9244
5 1.0371 1.0219 1.0266 0.9528 0.9522 0.9524
6 1.1363 1.1074 1.1163 0.9714 0.9701 0.9704
7 1.2699 1.2220 1.2368 0.9866 0.9842 0.9849
8 1.4434 1.3718 1.3940 1.0018 0.9978 0.9990
9 1.6585 1.5592 1.5902 1.0190 1.0128 1.0146
10 1.9148 1.7844 1.8251 1.0397 1.0304 1.0331

�2 0 1.6903 1.6903 1.6903 1.6903 1.6903 1.6903
1 2.0705 2.0705 2.0705 2.0702 2.0702 2.0702

law index. For more clarification, the results are also depicted in separate figures in Figs. 7b. The trend of
variations of all membrane normalized natural frequencies with power-law index is the same but the changes
are small specially when compared with changes in bending natural frequencies in Fig. 6. So, it is concluded
that material index has a considerable effect on dominant bending frequencies and this effect becomes more
pronounced for higher mode numbers (n). The normalized membrane and bending natural frequencies of FG
spherical shells of thickness h � 0.005 m and h � 0.001 m, for different material constants (g � 0.1, 1, 10)
are given in Table 7. It is observed that as the shell becomes thinner, the material constant has a smaller effect
on normalized frequencies with the same trend of variations as discussed in Figs. 6 and 7.

Finally, Table 8 provides analytical results for natural frequencies of FG fluid-filled spherical shells (see
Table 1) with power-law index (g � 3) under different values of internal pressure (Nr � 0, 2, 10MN/m). The
results of analytical vibro-acoustic model are also compared with the ones obtained through FEM modeling.
As before, results are in good agreement. As expected, the natural frequencies increase for a thicker shell
and for higher values of internal pressure. Also, compared with the results presented in Table 6, the natural
frequencies of pressurized fluid-filled shells are smaller than those of pressurized empty shells.

4 Conclusions

In the present work, the vibration of a thin spherical FG shell under internal pressure is revisited using the
Love’s first approximation theory. Also, a coupled vibro-acoustic analytical solution is given for a fluid-filled
pressurized FG spherical shell. Coupled governing equations of motion are reformulated by introduction of
stress function. This reformulation conveniently makes it possible to present exact solution in terms of product
of trigonometric and Legendre functions. The results of the present analytical solution are validated with the
ones available in the literature and the results of FEM modeling. The current study confirms that the flexural



Free vibration analysis of a fluid-filled functionally graded spherical shell 3109

(a)

(b)

Fig. 6 a Variations of normalized bending natural frequencies (�1) of FG spherical shells (R � 0.1m, h � 0.005 m) with zero
initial stress versus power-law index for nine bending mode shapes (n � 2 . . . 10) and b repeated results for n � 2, 10

dynamic characteristics of spherical FG shells are notably influenced by initial membrane stress and material
distribution. In particular, it is observed that.

• Higher mode number frequencies have greater rate of change with respect to initial membrane stress.
• Natural frequencies decrease when the pressurized spherical shell is filled with fluid and the internal acoustic
domain is considered.

• Normalized natural frequencies increase when the fluid to solid wave velocity ratio increases.
• FG material index has a considerable effect on dominant bending frequencies and this effect becomes more
pronounced for higher mode numbers. The minimum normalized frequency of different mode shapes occurs
around g � 2.
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(a)

(b)

Fig. 7 a Variations of four dominant normalized membrane natural frequencies (�2) of FG spherical shells (R � 0.1m, h �
0.005 m) with zero initial stress versus power-law index and b repeated results for n � 0, 3
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Table 8 Comparison of normalized natural frequencies of a functionally graded spherical shell (g � 3) filled with water, for
different values of initial stress and thickness with the results of FEM

h � 0.005m h � 0.001m

Nr � 0 Nr � 10MN/m Nr � 0 Nr � 2MN/m

n Present FEM Present FEM Present FEM Present FEM

0 0.6908 0.6907 0.6908 0.6909 0.6128 0.6126 0.6128 0.6129
1 0.4885 0.4887 0.4900 0.4888 0.6374 0.6349 0.6381 0.6334
2 0.3605 0.3603 0.3665 0.3669 0.2105 0.2100 0.2152 0.2152
3 0.4762 0.4758 0.4902 0.4909 0.2778 0.2772 0.2886 0.2887
4 0.5686 0.5680 0.5955 0.5964 0.3280 0.3273 0.3483 0.3484
5 0.6548 0.6537 0.6984 0.6990 0.3694 0.3685 0.4027 0.4027
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