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Abstract When writing movement equations in stresses for continuous media, it makes no difference whether
the media are solid or fluid. The fundamental difference in the solution of these two problems relies on the
respective constitutive laws. For solids, shear stresses are related to shear strains, resulting the Navier–Cauchy
equation. For fluids, shear stresses are related to the time rate of shear strains, resulting in the Navier–Stokes
equation. For solid and fluid isothermal problems, the pressure is related to the volumetric change. Based on
hyperelastic solid mechanics equations, we present an alternative total Lagrangian unified model to simulate
free surface compressive viscous isothermal fluid flow and simple viscoelastic solids. The proposed model
is based on the deformation gradient multiplicative decomposition, which enables to establish a consistent
Lagrangian constitutive law for quasi-Newtonian and non-Newtonian fluids, as well as for Kelvin–Voigt-like
solids. The proposed constitutive model and the resulting positional prismatic finite element formulation are
explored in numerical examples.

1 Introduction

The finite element method (FEM) has been successfully employed to solve solids and structural problems.
Its development in the solid mechanics context is quite old, and, among others, pioneers works as [1–5] can
be mentioned. Originally, the solution of linear problems, with small displacements and simple constitutive
relations, has been in the focus of FEM researches. Formulations considering large displacements and small
strains are part of the FEM evolution in solids and structures analyses [6–10] and are still an up-to-date subject.

More challenging problems involving nonlinear constitutive laws, considering effects such as plasticity and
damage mechanics, have been widely studied by the FEM, even though considering small displacements and
strains [11, 12]. Problems involving large strains, large displacements, and hyperelastic nonlinear constitutive
relations, also solved by FEM, bring important contributions to the understanding of highly deformable solids
as one can see in Refs. [13–17]. Viscoelastic formulations, where strain rates also introduce stresses, are
considered for both small and large strains in Refs. [18–21]. When large strains and nonlinear constitutive
laws (plasticity or viscoplasticity) are considered, the incompressibility consideration and flux laws appear.

In general, formulations that consider plasticity and large strains use the Kröner–Lee [22, 23] multiplicative
decomposition of total strain into elastic and plastic parts, for which an intermediary space appears [24–27];
moreover, it is usual to consider local plastic potentials to define the flux direction. The use of plastic potentials
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is a very important tool for developing elastoplastic large strain formulations, enabling the solution of very
important problems, such as metal forming and stamping among others [28, 29].

Far from imagining the absence of proper fluid mechanics models (out of FEM scope) or the lack of
computational frameworks for solving fluidmechanics problems, several important studies demonstrate efforts
to develop general numericalmethods, as can be seen in textbooks like [30–33].Due to some aspects, such as the
facility to use arbitrarily unstructured meshes, and, particularly, due to the simplicity of boundary conditions
enforcement over complex boundaries, the FEM has been conquering space in fluid mechanics. However,
fluid dynamics analyses under Eulerian description may present dominant convection terms, and the direct
use of standard Galerkin method to the governing equations leads to nonsymmetrical matrices with spurious
behavior [32–35]. Many researchers have developed techniques to increase FEM stability and robustness for
fluid dynamics, such as [36–41] among others.

For free surface flow problems, it is not possible to apply a pure Eulerian description, as the fluid domain is
dynamically deformed, denoting a moving-boundary problem. In this context, Arbitrary Lagrangian Eulerian
(ALE) stabilized formulations have been developed [42–44], and also the stabilized space–time formulation
[45, 46]. Such methods allow deforming the fluid domain discretization by an extensive updating.

As an alternative to ALE, the updated Lagrangian description has been applied together with particle
methods concepts to develop the Particle Finite Element Method (PFEM) [44, 47, 48]. This strategy provides
a good solution for free surface flows with topological changes in the fluid domain. However, it demands
constant remeshing and special attention regarding the physical properties.

In this study, we describe an alternative link between solid mechanics and fluid mechanics constitutive
models proposing a total LagrangianFEMformulation that have a solidmechanics appeal and that can be further
improved in the context of the above-mentioned ALE fluid formulation. In this sense, the work of Radovitzky
and Ortiz [49] should be mentioned, as they develop a total Lagrangian formulation with some similarities with
the one proposed here. However, in their formulation only fluids are modeled, and the Lagrangian constitutive
relation is made by a pushing back of the Eulerian fluid model, instead of using a hyperelastic solid mechanics
motivation as presented here.

Here, we take advantage of the large strain solid mechanics developments and its tensor algebra (in a more
fundamental stage) to propose a total Lagrangian formulation to be applied in both Kelvin-like viscoelastic
solids and isothermal–compressible–viscous free surface flows with finite distortions and free of topological
changes (no surface break and no fluid–fluid surface contact). To achieve this goal, we apply a multiplicative
decomposition to split the total strain into elastic volumetric and deviatoric parts, also including viscous volu-
metric and deviatoric stresses. A simple demonstration where the Eulerian shear stress intensity is compared
with the Lagrangian deviatory counterpart allows reaching the desired strain split and the searched constitutive
law. Simple low compressible flows and Kelvin–Voigt-like simple visco-hyperelastic examples are used to
validate the proposed model and to illustrate its possibilities.

2 Developments: constitutive model conceptualization

In this Section, we divide the developments into 3 topics: the first two are of basic preparatory nature, and the
third one presents the constitutive model we seek.

2.1 Equilibrium equations: strong and weak forms

In this topic, starting from the Eulerian local (strong) equilibrium equations, we write the Lagrangian weak
form of the equilibrium equations in a suitable shape for modeling the continuum problem by the positional
FEM.

The movement equations in the Eulerian description are written using the Cauchy stress tensor as:

∇ · σ t + �b � ρ �̈y (1)

and

σ � σ t (2)

where σi j is the Cauchy stress component acting on plane i in the direction j, ρ is the mass density, ÿi
is the i-th particle acceleration (material derivative of velocity) component, and bi is the i-th body force
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component. Equation (2) corresponds to the 3 moment equilibrium equations that are satisfied for static and
dynamic problems by the symmetry of the stress tensor [50]. Equation (1) contains the 3 translation equilibrium
equations (i direction translation) in its strong (local) form.

There are many ways to achieve the weak form of Eq. (1), preparing it to FEM implementation. Here, we
apply the virtual work concept as:

δw �
(
∇ · σ t + �b − ρ �̈y

)
· δ�y � 0 (3)

in which δyi is a variation in positions yi .
Integrating Eq. (3) over the spatial domain, the virtual work is written as:

δW �
∫

V

(
∇ · σ t + �b − ρ �̈y

)
· δ�y dV � 0, (4)

and, by distributing the integral, one gets:
∫

V
ρ �̈y · δ�y dV −

∫

V

�b · δ�y dV −
∫

V

(∇ · σ t) · δ�y dV � 0. (5)

In order to deal with the last term at the left hand side of Eq. (5), we use the following property:
(∇ · σ t) · δ�y � ∇(

σ t · δ�y) − σ t : ∇(δ�y). (6)

Introducing Eq. (6) in the last term of Eq. (5), and applying the divergence theorem, one can write [50]:

δW �
∫

V
ρ �̈y · δ�y dV −

∫

V

�b · δ�y dV −
∫

S
σ t · δ�y · �n dS +

∫

V
σ t : ∇(δ�y) dV � 0 (7)

where n j is the j-th component of the normal unity vector to the surface S of the analyzed continuum. By the
Cauchy formula, hi � σ j i n j (where hi is the distributed force over the Neumann boundary), and taking into
account the stress tensor symmetry, we write:

δW �
∫

V
ρ �̈y · δ�y dV −

∫

V

�b · δ�y dV −
∫

S

�h · δ�y dS +
∫

V
σ : δε dV � 0 (8)

with δεi j � (δyi, j + δy j,i )/2 being a variation in real strain (measured in Eulerian reference), which is mostly
known in its rate form: ε̇i j � (ẏi, j + ẏ j,i )/2 [50]. Notice that Eq. (8) has the following terms:

δW � δK + δP + δΨ, (9)

where K is the kinetic energy, P is the work of external forces, and Ψ is the Helmholtz free energy [50]
for isothermal states that includes, in this study, the specific strain energy and viscous dissipation. Moreover,
Eq. (8) is the weak form of the equilibrium equation for the continuum media in the Eulerian reference.

To obtain the Lagrangian description of equilibrium, the continuity theorem [49, 50] is applied to the first
term of Eq. (8), i.e.,

∫

V
ρ �̈y.δ�y dV �

∫

V0
ρ0 �̈y · δ�y dV0, (10)

and volume forces are considered proportional to density,
∫

V

�b · δ�y dV �
∫

V
ρ �g · δ�y dV �

∫

V0
ρ0 �g · δ�y dV0. (11)

In this work, we consider that tractions over a Neumann boundary are conservative forces or are treated as
equivalent concentrated forces acting on finite element nodes. Cauchy stress tensor σ , second Piola–Kirchhoff
stress tensor S, real strain variation δε, and Green strain variation δE (energetically conjugate to the second
Piola–Kirchhoff stress) are related by [50, 51]:

σ � 1

J
A · S · At and σ : δε � S : δE (12)
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where Ai j is the deformation gradient as usually given in large strain elasticity, see [50], for instance, and J
is its determinant.

From Eqs. (11) and (12), the week form of the equilibrium equation in the Lagrangian description is written
as:

δW �
∫

V0
ρ0 �̈y · δ�y dV0 −

∫

V0

�b0 · δ�y dV0 −
∫

S0

�h · δ�y dS0 +
∫

V0
S : δE dV0 � 0. (13)

Equation (13) will be recalled later to define the FEM, in this work using positions as parameters.

2.2 Hyperelastic constitutive law

In spite of the subject of this Section being basic and well known, its introduction is fundamental to provide
understanding of our proposal for fluid viscous flows and simple viscoelasticity. We describe the multiplicative
decomposition of the deformation gradient and the establishment of a general hyperelastic constitutive law
from an elastic potential decomposed into two parts: volumetric and deviatoric (or isochoric).

We start by remembering that, for elastic applications, the Helmholtz free energy of Eq. (9) is not always
known; when explicit formulas are known, one is dealing with hyperelastic solids. However, in the context of
virtual work, its variation is always known. Adopting the Green strain as reference, one writes:

δψ � ∂ψ

∂E
: δE with

∂ψ

∂E
� S, (14)

It is usual to split the Helmholtz free energy (strain energy in this Section) into two parts, volumetric and
isochoric, according to:

ψ � ψvol + ψ iso1 + ψ iso2, (15)

whose parameters are parts of the deformation gradient to be discussed in the sequence.
In order to have a complete separation of the volumetric and isochoric parts of the Helmholz energy, it is

necessary to use a multiplicative decomposition of the Cauchy–Green stretch tensor, see, for instance, [50–53].
As mentioned in Eq. (12), A is the deformation gradient, so Flory’s multiplicative decomposition [54] can be
written as:

A � Â · A (16)

with

Â � J 1/3 I ⇒ Det
(
Â
)

� J and (17)

A � J−1/3A ⇒ Det
(
A
) � 1. (18)

Using the shape of Eq. (16) and taking advantage of the definitions given by Eqs. (17) and (18), we calculate
the Cauchy–Green stretch as:

C � J 2/3A
t · A � J 2/3C or C � J−2/3C (19)

resulting in Det(C) � 1, constant.
Defining

Ĉ � Ât · Â � J 2/3 I (20)

results in the multiplicative decomposition, directly applied to the Cauchy–Green stretch as:

C � Ĉ · C � C · Ĉ . (21)

One may observe that Det(Ĉ) � J 2 � Det(C).
When dealing with large strains, the meanings of Lagrangian strains directions are not obvious. In order

to make possible the definition of the desired time strain rate direction, it is interesting to perform a direction
check using the Cauchy stress components. This is done here making a hyperelastic step-by-step deductive
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process, identifying the Green–Lagrange strain components responsible for the hydrostatic and deviatoric
Cauchy stress components. During this deductive process, we find scalar values that are partially responsible
for the stress intensity and tensors that are responsible (in the Lagrange space) for Cauchy stress directions.
From this elastic identification, we propose time rates for deviatoric and hydrostatic strain components in order
to build the alternative viscous model used both in solid and fluid applications.

The volumetric elastic part of the Helmholtz free energy potential is written as an exclusive function of the
Jacobian of the deformation function, as:

ψvol
elas � ψvol

elas(J ) � ψvol
elas

(√
det(C)

)
, (22)

from which one calculates the corresponding second Piola–Kirchhoff stress as:

Svol
elas � ∂ψvol

elas

∂ J

∂ J

∂E
� α Evol (23)

with α being a scalar and Evol a symmetric tensor of the same order of the Green strain. It is simple to show
that:

Evol � ∂ J

∂E
� JC−1. (24)

Applying Eq. (12) to the second Piola–Kirchhoff stress of Eq. (23) results in:

σvol
elas � 1

J
A · Svol

elas · At � 1

J
A · α JC−1 · At � α I � σhyd , (25)

which means that Evol is the Lagrangian strain direction corresponding to the hydrostatic stress in the Cauchy
space and α � ∂ψvol

elas/∂ J corresponds to the hydrostatic Piola–Kirchhoff stress intensity. The identification of
the hydrostatic stress intensity and the corresponding strain direction in the Lagrangian reference is important
to define the proposed model.

The first isochoric elastic part of the Helmholtz free energy potential is written as an exclusive function of
the first invariant (I 1) of the isochoric part of the Cauchy–Green stretch tensor C , written in a generic form as:

ψ iso1
elas � ψ iso1

elas

(
I 1
)
, (26)

from which one calculates the corresponding second Piola–Kirchhoff stress as:

Siso1elas � ∂ψ iso1
elas

∂ I 1

∂ I 1
∂E

� β Eiso1 (27)

where β is a scalar and Eiso1 is a symmetric tensor of the same order of the Green strain. It is not usual to see
the following expressions, but it is well known and straightforward to show that:

Eiso1 � ∂ I 1
∂E

� ∂tr
(
C
)

∂E
� ∂

(
J−2/3tr(C)

)

∂E
(28)

from which one finds:

Eiso1 � −2

3
J−2/3tr (C)C−1 + 2J−2/3 I, (29)

Considering Eq. (29) and applying the transformation (12) to Eq. (27), it results:

σiso1 � β

{
2J−5/3

(
A · At − tr

(
At · A)
3

I

)}
. (30)

As tr
(
At · A) � A : At � At : A � tr (A · At ), one achieves:

σiso1 � β

{
2J−5/3

(
A · At − tr

(
A · At

)

3
I

)}
� σdev (31)
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which means that Eiso1 is the first isochoric Lagrangian strain direction and corresponds to a deviatoric
strain, and β � ∂ψ iso1

elas /∂ I 1 has an intrinsic correspondence with the associated second Piola–Kirchhoff stress
intensity.

The second isochoric elastic part of the Helmholtz free energy potential is written as an exclusive function
of the second invariant of the isochoric Cauchy–Green stretch tensor I 2 in a generic form as:

ψ iso2
elas � ψ iso2

elas

(
I 2
)

(32)

from which we calculate the corresponding second Piola–Kirchhoff stress as:

Siso2elas � ∂ψ iso2
elas

∂ I 2

∂ I 2
∂E

� γ Eiso2, (33)

with γ and Eiso2 being, respectively, a scalar and a symmetric tensor of the same order as the Green–Lagrange
strain tensor. It is interesting to write:

I 2 � J−4/3 I2 � J−4/3{(C11C22 − C12C21) + (C11C33 − C13C31) + (C22C33 − C23C32)} (34)

in which I2 is the second invariant of the Cauchy stretch. With some algebraic effort for Eq. (34), it results:

Eiso2 � ∂ I 2
∂E

� 2J−4/3
(

−2

3
C−1 I2 +

{
tr (C)I − Ct}

)
. (35)

Using Eq. (12) in Eq. (33) and considering Eq. (35), we write:

σiso2 � γ 2J−7/3
[(
tr (C)

(
A · At) − (

A · At) · (A · At)) −
(
2

3
I2

)
I

]
. (36)

Again, as tr(C) � tr
(
At · A) � tr

(
A · At

)
it results:

tr (A · At )tr (A · At ) − tr ((A · At ) · (A · At )) � 2I2. (37)

From Eq. (37), one calculates Tr(σiso2) as

Tr(σiso2) � 2γ J−7/3(2I2 − 2I2) � 0. (38)

Thus,

σiso2 � σdev, (39)

meaning thatEiso2 is the second isochoricLagrangian strain direction that corresponds to a deviatoric strain, and
γ � ∂ψ iso2

elas /∂ I 2 has an intrinsic correspondence with the intensity of the second deviatoric Piola–Kirchhoff

stress. Thus, Evol/
√
Evol : Evol , Eiso1/

√
Eiso1 : Eiso1, and Eiso2/

√
Eiso2 : Eiso2 are the Lagrangian hydro-

static, deviatoric 1, and deviatoric 2 strain unitary directions.
With the presented stress split and its corresponding Lagrangian strain directions, we chose a Rivlin–Saun-

ders–Hartmann–Nef type hyperelastic constitutive model [52, 53] as:

ψvol � K

8n2
(
J 2n + J−2n − 2

)
(40)

and

ψ iso1 + ψ iso2 � G

4

(
I 1 − 3

)
+
G

4

(
I 2 − 3

)
, (41)

where K is the bulk modulus and G is the transversal elasticity modulus, both material constants measured
under small strains. Other hyperelastic potentials that respect Flory’s [54] volumetric and isochoric split can
also be chosen.

Differentiating Eqs. (40) and (41) regarding the Green strain, using information and results of Eqs. (15),
(23), (27), and (33), we find the second Piola–Kirchhoff elastic stress as:

Selas �
{
K

4

(
J − J−3)

}
Evol +

G

4
Eiso1 +

G

4
Eiso2 (42)

in which n � 1 is adopted in Eq. (40).
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2.3 Proposed constitutive model for viscous fluids and simple Kelvin–Voigt-like solids

The isothermal constitutive model proposed in this topic seems obvious when analyzing Eq. (42) under the
light of the strain components Evol , Eiso1, and Eiso2 meanings. Let us consider the Helmholtz free energy
written as the sum of two parts, one elastic (that can be written in an explicit form) and another viscous, that
can only be represented in its differential form [55, 56], so that:

ψ � ψelas + ψvis � ψvol
elas + ψ iso1

elas + ψ iso2
elas + ψvol

vis + ψ iso1
vis + ψ iso2

vis . (43)

The total second Piola–Kirchhoff stress tensor is then given by:

S � ∂ψ

∂E
�
(

∂ψvol
elas

∂E
+

∂ψ iso1
elas

∂E
+

∂ψ iso2
elas

∂E

)
+

(
∂ψvol

vis

∂E
+

∂ψ iso1
vis

∂E
+

∂ψ iso2
vis

∂E

)
, (44)

where the first bracket terms are given by Eq. (42).
The primary idea to extend the hyperelastic model to incorporate viscosity by the second bracket terms in

Eq. (44) would be assuming that the time rate of the split strain directions of Eq. (42) would fulfil a constitutive
relation, i.e.,

S∗
vis � K

4
Ėvol +

G

4
Ėiso1 +

G

4
Ėiso2. (45)

However, the time derivatives of volumetric and isochoric strain components do not preserve direction.
Thus, S∗

vis serves only as an inspiration for the following developments. Inspired by Eq. (45), in order to keep
isotropy and considering unit strain directions, one is able to infer the proposed viscous virtual work in the
following form:

δψ � K

4
√
Evol : Evol

d Jα

dt
δ J +

G(i)

4
√
Eiso(i) : Eiso(i)

d I
γ

i

dt
δ I i

�
(

K

4
√
Evol : Evol

α Jα−1 J̇
∂ J

∂E
+

G1

4
√
Eiso1 : Eiso1

γ1 I
γ1−1
1 İ 1

∂ I 1
∂E

+
G2

4
√
Eiso2 : Eiso2

γ2 I
γ2−1
2 İ 2

∂ I 2
∂E

)
: δE, (46)

resulting in the following expression for the second Piola–Kirchhoff viscous stress:

Svis � K

4

α Jα−1 J̇Evol

√
Evol : Evol

+
G1

4

γ1 I
γ1−1
1 İ 1Eiso1

√
Eiso1 : Eiso1

+
G2

4

γ2 I
γ2−1
2 İ 2Eiso2

√
Eiso2 : Eiso2

(47)

in which K is related to the fluid volumetric viscosity [57] and Gi are related to the shear (isochoric directions
1 and 2) viscosities. In order to be coherent with the viscosity understanding, we assume G � G1 � G2.
As shown in the Appendix, adopting the viscous parameters γ1 � γ2 � 1/2 we reproduce quasi-Newtonian
fluids and simple Kelvin–Voigt visco-hyperelasticity. Notice that, as the strain rate is written as function of
dimensionless scalars (strain invariants), any value of α and γi can be adopted resulting in different viscous
behavior. When these parameters are zero, one may define the logarithm viscosity. The dependence of the fluid
behavior regarding different choices of γi is shown in the Appendix, in which the Eulerian quasi-Newtonian
behavior for γ1 � 1/2 appears. Values of α are related to volumetric viscosity and can be used to calibrate the
behavior of compressive and near incompressible fluids [57].

In short, Eq. (44) becomes:

S � Selas + Svis . (48)

At this point, it should be clarified that, for fluids, when calculating Selas we consider only the first (volumetric)
part of Eq. (42); the portions related to deviatoric elastic stresses are neglected. However, the deviatoric elastic
part is considered to model solids.
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To define the numerical solution procedure (in the next item), it is necessary to know the viscoelastic
tangent constitutive tensor, given by:

C � ∂S

∂E
� ∂Selas

∂E
+

∂Svis

∂E
� Celas +Nvis . (49)

The first term can be calculated as:

Celas � Cvol + Ciso1 + Ciso2 � ∂2Ψelas

∂E ⊗ ∂E
(50)

with

Cvol � ∂2Ψvol

∂E ⊗ ∂E
� ∂2Ψvol

∂ J 2
∂ J

∂E
⊗ ∂ J

∂E
+

∂Ψvol

∂ J

∂2 J

∂E ⊗ ∂E
, (51)

Ciso1
i jk� � ∂2Ψiso1

∂E ⊗ ∂E
� ∂2Ψ 1

iso(
∂ I 1

)2
∂ I 1
∂E

⊗ ∂ I 1
∂E

+
∂Ψ 1

iso

∂ I 1

∂2 I 1
∂E ⊗ ∂E

, (52)

Ciso2
i jk� � ∂2Ψiso2

∂E ⊗ ∂E
� ∂2Ψ 2

iso(
∂ I 2

)2
∂ I 2
∂E

⊗ ∂ I 2
∂E

+
∂Ψ 2

iso

∂ I 2

∂2 I 2
∂E ⊗ ∂E

(53)

in which ∂ J/∂E is given by Eq. (24), ∂ I 1/∂E is given by Eq. (28), ∂ I 2/∂E is given by Eq. (35), and the other
terms are given, in index notation, as:

∂2Ψvol

∂ J 2
� K

4

(
1 + 3J−4), (54)

∂2 J

∂E jγ ∂Eoz
� J

{
Djγ Doz − 2DjoDzγ

} � ∂Evol
jγ

∂Eoz
, (55)

∂2 I 1
∂Ei j∂Ek�

� 4

3
J−2/3

{
1

3

{
Di j Dk� + 3Dik D�j

}
I1 − Di jδk� − Dk�δi j

}
� ∂Eiso1

i j

∂Ek�
, (56)

and

∂2 I 2
∂Ei j∂Ek�

� 8

3
J−4/3

⎧⎪⎪⎨
⎪⎪⎩

[
2

3
Di j Dk� + Dik D�j

]
I2 − [

Czz
(
Di jδk� + Dk�δi j

)]
+

+Di jCk� + Dk�Ci j +
3

2

[
δi jδk� − δ jkδi�

]

⎫⎪⎪⎬
⎪⎪⎭

� ∂Eiso2
i j

∂Ek�
, (57)

in which Di j � C−1
i j . One may note that in this model ∂2Ψ 1

iso/
(
∂ I 1

)2 � 0 and ∂2Ψ 2
iso/

(
∂ I 2

)2 � 0.
As the goal of this study is to give a numerical solution for both fluids and solids, we approximate the strain

invariant rates in Eq. (47) by backward finite differences, instead of using backward-Euler stress integration
(usual in solid mechanics) so that:

Svis � Kα Jα−1
s+1

4
√
Evol
s : Evol

s

(
Js+1 − Js

Δt

)
Evol +

G1γ1 I
γ1−1
1(s+1)

4
√
Eiso1
s : Eiso1

s

((
I 1
)
s+1 − (

I 1
)
s

Δt

)
Eiso1

+
G2γ2 I

γ2−1
2(s+1)

4
√
Eiso2
s : Eiso2

s

((
I 2
)
s+1 − (

I 2
)
s

Δt

)
Eiso2. (58)

Differentiating Eq. (58) regarding current strain (s + 1), it results in the following numeric tangent consti-
tutive tensor at the current instant (t + Δt):

Nvis � ∂Svis

∂E
� K

4Δt
√
Evol
s : Evol

s

(
α2 Jα−1Evol ⊗ Evol + α Jα ∂2 J

∂E ⊗ ∂E

)

+
G1

4Δt
√
Eiso1
s : Eiso1

s

(
γ 2
1 I

γ1−1
1 Eiso1 ⊗ Eiso1 + γ1 I

γ1
1

∂2 I 1
∂E ⊗ ∂E

)
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+
G2

4Δt
√
Eiso2
s : Eiso2

s

(
γ 2
2 I

γ2−1
2 Eiso2 ⊗ Eiso2 + γ2 I

γ2
2

∂2 I 2
∂E ⊗ ∂E

)
. (59)

Notice that terms of Eq. (58) related to the past do not appear in Eq. (59) as they are constant.
Substituting Evol , Eiso1, and Eiso2 by their respective definitions (22), (26), and (33), and using index

notation, it results:

Nvis
i jk� � 1

4Δt

{
K√

Evol
s : Evol

s

(
α2 Jα−1 ∂ J

∂Ei j

∂ J

∂Ek�
+ α Jα ∂2 J

∂Ei j∂Ek�

)}

+
G1√

Eiso1
s : Eiso1

s

(
γ 2
1 I

γ1−1
1

∂ I 1
∂Ei j

∂ I 1
∂Ek�

+ γ1 I
γ1
1

∂2 I 1
∂Ei j∂Ek�

)

+
G2√

Eiso2
s : Eiso2

s

(
γ 2
2 I

γ1−1
2

∂ I 2
∂Ei j

∂ I 2
∂Ek�

+ γ2 I
γ2
2

∂2 I 2
∂Ei j∂Ek�

)}
(60)

in which, for simplicity, only the past time is indicated.

3 Brief description of the adopted positional FEM

Position-based FEM has been used by authors in several applications, see [58–60], for example. The difference
between this alternative and the classic FEM is the adoption of positions as nodal parameters instead of
displacements, making the description more compact and direct, as the current geometry parameters are also
the nodal variables. This gives to the technique a simple association with geometrically nonlinear problems of
deformable solids and of simple low compressible free surface flows modeling. Firstly, one chooses the nodal
positions �Y as the analysis parameters; thus, the continuum position and acceleration are represented by:

�y � φ · �Y , (61)

�̈y � φ · �̈Y (62)

in which φ are usual FEM shape functions. Volume and surface forces, if desired, can be approximated by
their nodal values:

�b0 � φ · �B0 (63)

and

�h � ϕ · �P (64)

where ϕ are surface shape functions. If one prefers, external loads can be applied without using the above
approximations.

The strain variation δE should also be given as a function of virtual position change δ �Y , as:
δE � ∂E

∂ �Y · δ �Y . (65)

Introducing such values in the weak form of the equilibrium (Eq. (13)), one finds:
(∫

V0
ρ0 φ ⊗ φ dV0 · �̈Y −

∫

V0
φ ⊗ φ dV0 · �B0 −

∫

S0
ϕ ⊗ ϕ dS0 · �P +

∫

V0
S :

∂E

∂ �Y dV0

)
· δ �Y � 0. (66)

As the virtual position change δ �Y is arbitrary, Eq. (66) turns into the following nonlinear system of equations:

M · �̈Y − �Fext + �Fint � �0 (67)

in which the last term of Eq. (66) has been called internal force, and its calculation is clarified in the definition
of the finite element kinematics. It is worth noting that this equation is similar to the one given by [49]; however,
the calculation of internal force is quite different, and its formulation is developed only for fluids.
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Fig. 1 Deformation function described by prismatic elements

In this work, fluids and solids are discretized by triangular-base prismatic three-dimensional finite elements
with linear or cubic approximations in their base directions (ξ1, ξ2), and with any order of approximation along
its thickness direction (ξ3). Figure 1 shows a finite element with linear approximation at ξ3 direction and cubic
approximation at ξ1 and ξ2 directions.

The position-based kinematics description is given in a brief way as more details can be seen in Refs. [56,
58–60], for instance. In Fig. 1, one observes that the initial configuration mapping �f 0, represented by the finite
element, describes the initial coordinates of continuous points xi as functions of the dimensionless coordinates
ξi and of the initial coordinates of nodes α, written as Xαi . Similarly, current continuum coordinates yi are
written as functions of the same dimensionless coordinates and current nodal coordinates (unknown of the
problem) Yαi . These mappings are represented in index notation as:

f 0i � xi � φα

(�ξ
)
Xαi and f 1i � yi � φα

(�ξ
)
Yαi (68)

in which the last one is on index version of Eq. (61). The gradients of these mappings are given by:

A0
i j � ∂xi

∂ξ j
and A1

i j � ∂yi
∂ξ j

, (69)

and, thus, the gradient A of the deformation function �f is given by:
A � A1 · (A0)−1

. (70)

The gradient A is numerically written at each integration point for a trial position �Y covering all nodes of the
problem. As the formulation is total Lagrangian, one may observe that the gradient of the initial configuration
mapping is calculated only once in the numerical process. Moreover, it is clear the dependence of A regarding
�Y .

After calculating the deformation gradient, one calculates the Cauchy–Green stretch tensor and the Green
strain as:

C � AT · A and E � 1

2
(C − I ). (71)

From this point, all necessary variables, such as Evol , Eiso1, Eiso2, J̇ , İ 1, and İ 2, can be numerically
calculated for each integration point of Eq. (66) and are functions of the nodal positions �Y .

Equation (67) is valid at any instant, and time is a continuous variable. However, the numerical solution
imposes that time should be a discrete variable, i.e., the current instant is written as the previous instant plus a
time step, as:

ts+1 � ts + �t (72)
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in which ts+1 is the current instant. Thus, one writes Eq. (67) as:

�gs+1 � M · �̈Y s+1 + C · �̇Y s+1 − �Fext
s+1 +

( �Fvis
s+1 + �Felas

s+1

)
� �0 (73)

where, for simplicity, time t is omitted and the internal force is split in elastic and viscous parts. Only for
completeness, a damping matrix C is also included, following usual solid mechanics works [58].

As the formulation is total Lagrangian, we adopted the Newmark approximation to perform the time
marching, written as:

�Ys+1 � �Ys + �̇Y s �t +

[(
1

2
− β

)
�̈Y s + β �̈Y s+1

]
�t2, (74)

�̇Y s+1 � �̇Y s + (1 − γ )�t �̈Y s + γ�t �̈Y s+1 (75)

in which β and γ are free parameters, generally adopted as β � 1/4 and γ � 1/2.
Isolating current velocity and current acceleration from Eqs. (74) and (75), it results:

�̈Y s+1 � �Ys+1
β�t2

− �Qs (76)

and

�̇Y s+1 � γ

β�t
�Ys+1 + �Rs − γ�t �Qs, (77)

with the following auxiliary values:

�Qs �
( �Ys

β�t2
+

�̇Y s

β�t
+

(
1

2β
− 1

)
Ÿs

)
and �Rs �

[ �̇Y s + �t(1 − γ ) �̈Y s

]
. (78)

Substituting Eqs. (76) and (77) into (73) results in:

�g
( �Ys+1

)
� �Felas

s+1 + �Fvis
s+1 +

M
β�t2

�Ys+1 − M · �Qs+
γC
β�t

· �Ys+1 + C · �Rs − γ�tC · �Qs − �Fext
s+1(t) � �0. (79)

Equation (79) is understood simply as �g
( �Ys+1

)
� 0, revealing the nonlinear behavior of equilibrium

equations regarding
( �Ys+1

)
, solved in this work by the Newton Raphson method.

Following previous works [58–60], using a truncated Taylor expansion, we have:

�0 � �g( �Ys+1) ∼� �g
( �Y 0

s+1

)
+ ∇�g

( �Y 0
s+1

)
� �Y (80)

where

∇�g
( �Ys+1

)
� H � ∂ �Felas

∂ �Y

∣∣∣∣∣
s+1

+
∂ �Fvis

∂ �Y

∣∣∣∣∣
s+1

+

(
M

β�t2
+

γC
β�t

)
� Helas + Hvis + Hdin (81)

with Helas and Hdin being, respectively, the elastic and dynamic parts of the Hessian matrix. The viscous
term Hvi s as achieved is an original expression and a key value in the total Lagrangian isothermal fluid model
and simple viscoelastic model proposed here, see Eq. (90).

From Eq. (80), we write the linear system of equations from which the position correction � �Y is achieved
as:

∇�g
( �Y 0

s+1

)
· � �Y � −�g

( �Y 0
s+1

)
or H · � �Y � −�g

( �Y 0
s+1

)
, (82)

in which �Y 0
s+1 is a trial position. In the beginning of a time step, �Y 0

s+1 is assumed as the result of the previous
step, i.e., �Ys . Solving the correction � �Y in Eq. (82), a new trial for �Ys+1 is calculated as:

�Y 0
s+1 � �Y 0

s+1 + � �Y . (83)
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At the beginning of each iteration, acceleration and velocity should be recalculated as:

�̈Y s+1 � �Ys+1
β�t2

− �QS e �̇Y s+1 � γ

β�t
�Ys+1 + �Rs − γ�t �Qs . (84)

As �Qs and �Rs are values of the past, they remain unaltered during iterations, being updated only after the
convergence of a time step. The stopping test is given by:

∥∥∥�g( �Y 0)
∥∥∥

∥∥∥ �Fext
∥∥∥

≤ T OL or

∥∥∥� �Y
∥∥∥

∥∥∥ �X
∥∥∥

≤ T OL , (85)

where T OL is the prescribed numerical tolerance.
When the result converges, �Y 0

s+1 becomes the solution �Ys+1 and the first trial solution for the next time step.
In the first time step, the initial acceleration is calculated by the dynamic equilibrium equation as:

�̈Y 0 � M−1
[ �Fext

0 − �Felas − �Fvis − C �̇Y 0

]
. (86)

The elastic and viscous parts of the Hessian matrix are deduced for each finite element from the derivative
of Eq. (73) [see Eq. (81)] regarding the current position vector, as:

Helas � ∂ �Felas

∂ �Y �
∫

V0

∂

∂ �Y
(

∂ψelas

∂E
:

∂E

∂ �Y
)
dV0 �

∫

V0

(
∂E

∂ �Y :
∂2ψelas

∂E ⊗ ∂E
:

∂E

∂ �Y +
∂ψelas

∂E
:

∂E

∂ �Y ⊗ ∂ �Y
)
dV0,

(87)

Hvis � ∂ �Fvis

∂ �Y �
∫

V0

∂

∂ �Y
(

∂ψvis

∂E
:

∂E

∂ �Y
)
dV0 �

∫

V0

(
∂E

∂ �Y :
∂2ψvis

∂E ⊗ ∂E
:

∂E

∂ �Y +
∂ψvis

∂E
:

∂E

∂ �Y ⊗ ∂ �Y
)
dV0

(88)

or

Helas �
∫

V0

(
∂E

∂ �Y : C :
∂E

∂ �Y + Selas :
∂2E

∂ �Y ⊗ ∂ �Y
)
dV0, (89)

Hvis �
∫

V0

(
∂E

∂ �Y : N :
∂E

∂ �Y + Svis :
∂2E

∂ �Y ⊗ ∂ �Y
)
dV0 (90)

in which Selas and C are given by Eqs. (42) and (50), and Svis and N are given by Eqs. (58) and (59). For
fluids, only the volumetric part of elastic terms and the deviatoric parts of the viscous terms are used. The
buckling viscosity [57] can also be adopted if it has relevance.

4 Examples

In this Section, we present some selected examples to verify the proposed formulation and to explore some of
its possibilities. As results are more easily compared with 2D solutions present in the literature, we chose to
present only one 3D fluid example. However, for solid applications we used three simple 3D examples.

In most cases, we adopt α � 1 and γ1 � γ2 � 1/2 and G � 3μ (Eulerian quasi-Newton fluid),
see Appendix for more information. Other parameters are also tested in the 3D fluid example, in order to
measure their qualitative influence. In all fluid examples, T OL � 1 × 10−7 is adopted together with a �t
sufficiently small to limit the number of iterations to 3. Limiting the number of iterations proved to produce
faster processing time than adopting large time steps. For solid examples, the same tolerance is adopted, but
the number of iterations was not controlled.
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(a) (b)

Fig. 2 Analyzed problem

Fig. 3 Definition of used meshes–number of elements and basis approximation

4.1 Dam rupture: fluid

The present example is based on the experimental work of Ref. [61], reproduced numerically by [62] using an
ALE fluid formulation. The analyzed problem is a dam initially with width W and height H , filled with fluid
initially at rest. The dam suffers a subtle disrupt at the right wall (Gate), see Fig. 2. This problem is considered
a first benchmark to test free surface flows solvers. The geometric and physical non-dimensional properties
are [62]: W � 0.35 dm, H � 0.70 dm, g � 1.0 dm/s2, ρ � 1 kg/(dm)3, μ � 10−2 kg/(dm s) � 10−3 Pa s,
in which dm � 10m. As Ref. [62] treats the fluid as incompressible, we adopted a high value for the bulk
modulus (K � 2.15 × 109 kg/(dm s2)) to check the formulation overall behavior.

Figure 3 shows various adopted meshes, with number of nodes and element order. The elements are 3D
prismatic with unitary thickness and linear approximation in this direction. Both vertical and horizontal walls
are slip walls, and the adopted time step is 2.5 × 10−4 s. The analysis is carried out for 6700 time steps with
the maximum of 3 iterations at each time.

In a first analysis stage, with the intact reservoir, the water is allowed to conform to meet the initial
hydrostatic stress distribution. In the second stage, the right side wall (gate) is instantly removed, and the fluid
is free to flow.We compare the obtained results with the experimental values of [62], since the numerical results
of [49, 62] are practically coincident with ours, see Fig. 4. However, it is important to mention that reference
works consider incompressible Newtonian flows, while in this work we consider a nearly incompressible flow
with a very high bulk modulus K � 2.15× 109 kg/(dm s2). The dimensionless time used by the references to
make graphics is obtained by the conversion t∗ � t

√
2g/W .
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Fig. 4 Relative enlargement of the fluid base along time

Fig. 5 Element distortion to keep near incompressibility

Fig. 6 Snapshots for selected instants—discretization 392 Cubic

As one can observe, the unstructured cubic approximation meshes present excellent results and practically
coincide with the results presented by [49, 62]. The structured cubic approximation mesh also shows very good
results, with a small reduction in total displacement noticed only for the poorest mesh. The unstructured mesh
with linear approximation presents an excessive displacement due to the large elements distortion to ensure
the nearly incompressible behavior, see Fig. 5. No regularization strategies are used for any results.

Figure 6 presents some snapshots for discretization 392-Cubic,with colormaps representing displacements,
from 0 (red) to the maximum displacement at present instant (blue).

In Ref. [63], an erratum of Ref. [62], the author presents a very smooth pressure profile along time that
can be reproduced by our formulation if a smaller bulk modulus is employed. The following reasoning is
presented for general interest. For the high bulk modulus, our formulation exhibits, at the first time step
(�t � 2.5 × 10−4 s), after the instantaneous disrupt, a result that indicates the need of a smaller time step in
order to verify the pressure wave propagation, see Fig. 7. In Fig. 8, using a time step of �t � 7.0 × 10−7 s,
the pressure wave is detected. It are shown (Fig. 8) the twenty first time steps of this analysis, being the first
static. Remember that the pressure wave velocity is calculated as Cp � √

K/ρ � 4.63 × 104 dm/s. In order
to characterize the wave in Fig. 8, the color scale is different by frame, that is, the pressure level is not the
same for each presented time.
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Fig. 7 Stress disruption—�t � 2.5 × 10−4 s (inappropriate time step)

Fig. 8 Pressure wave propagation for small time step

Fig. 9 Pressure profile

Using this small time step and this high bulk modulus, the numerical result of the pressure wave dis-
perses for the total time necessary to represent the dam flow. Thus, we relaxed the bulk modulus value to
K � 215 kg/(dm s2) in order to ensure the stabilized pressure calculation. This procedure is justified by the
artificial wave speed (directed related to an artificial compressibility) adopted in Ref. [62] to capture quasi-
static pressures in incompressible fluids. In Fig. 9, the achieved pressure profile is qualitatively compared with
the one presented by [63] as the reference does not present time or values. The sign of the pressure is negative
because it is calculated here as in solid mechanics, i.e., the hydrostatic part of the stress tensor.
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Fig. 10 Solitary wave in smooth-walled reservoir

Fig. 11 Used discretizations

It should be noted that, since there is no elastic shear wave in fluids, the time intervals required for the
proper modeling of pressure waves and the overall movement of viscous fluids are very different. It is also
noteworthy that the discretization with linear approximation did not present precise results in our formulation,
see the end of example 4.3 for an attempt for a geometrical explanation.

4.2 Solitary wave: fluid

In this example, the propagation of a solitary wave in a water tank is studied. The adopted physical properties
are: ρ � 1000 kg/m3, μ � 0.001 Pa s, and K � 2.15GPa. The problem consists of water confined between
three smooth walls, with free surface on the top, as shown in Fig. 10. The adopted dimensions for the numerical
analysis are: � � 16.0m, H � 0.3m, and d � 1.0m.

The tank thickness is 1 m, and the adopted gravity acceleration is g � 9.8m/s2. Initial conditions are
calculated based on the analytical solutions given by [64] for t � 0 s, i.e.:

h � d + H

(
sech

(√
3H

4d3
x

))2

, vx � √
gd

H

d

(
sech

(√
3H

4d3
x

))2

,

vy � √
3gd

(
H

d

)3/2( y
d

)(
sech

(√
3H

4d3
x

))2

tanh

(√
3H

4d3
x

)
.

In this work, it is prescribed a volumetric force of by � ρg that is responsible to develop the gravity pressure.
We adopt �t � 0.01 s and two FEM meshes with cubic approximation (see Fig. 11).

Figure 12 shows the vertical displacement of the upper right and left points for the two discretizations,
without considering surface tension. Figure 13 shows the effect of the water surface tension (ts � 0.072N/m)
using the richer mesh.

The solution of the richer discretization, without considering the surface tension, has such a good agreement
with the solution presented by [49, 62, 65] that it was not necessary to place the solution of the references in
the Figures. In addition, it is observed that the solution with poorer discretization is already sufficiently precise
for this problem.

The application of surface tension is performed in a specific way for two-dimensional simulations, mul-
tiplying the surface tension by the semi-thickness and applying it as forces on the boundary nodes in the
direction of its neighboring node. As expected due to the dimensions of the problem, the surface tension has
little influence, even so, there is a reduction in the peak of the second wave (on the right point) and a slight
smoothing of the overall response.
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(a) (b)

Fig. 12 Vertical displacements

(a) (b)

Fig. 13 Surface tension (St) influence—richer mesh

Fig. 14 Discretization with linear approximation

Fig. 15 Some snapshots for selected instants (colors represent displacements)

From the experience of the first example, the high-order structured mesh is adopted. A structured mesh
with linear approximation is also used, see Figs. 14 and 15, to stress that linear elements are not recommended
to be used with our formulation.

Figure 15 shows position snapshots for different instants and different discretizations, including the totally
inadequate linear approximation. The presented maximum displacements corresponding to the finer cubic
discretization are uy(2.4 s) � 0.722m, uy(7.0 s) � 0.671m, uy(11.6 s) � 0.675m.
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Fig. 16 Bubble behavior along time K � 2.15GPa (cubic approximation)

4.3 Formation of a flat bubble: fluid

In this example, a 1.0 m3 water volume, initially in the shape of a unit-side cube, is released to move in the
directions x1 and x2, under the sole action of the considered surface tension ts � 72×10−3 N/m.The application
of this surface tension is made as explained in the previous example, and its value is f � 36 × 10−3 N.

The other water properties are: density ρ � 1000 kg/m3, shear viscosity μ � 1.02 × 10−3 Pa s, bulk
modulus K � 2.15GPa, and volume alternative viscosity K � 2.5 × 10−3 Pa s and α � 0.5. The adopted
time interval is �t � 10−2 s.

Two types of analyses are performed, without any damping (for which the bubble vibrates indefinitely)
and another introducing an artificial mass proportional damping (c � 1 kg.(10−3 s)/m3) in order to find a final
static position. In addition, a relaxation in water compressibility is adopted for the poorest cubic discretization,
for linear discretization, and for an additional analysis of pressure behavior (eliminating pressure wave effects).
For damped analyses, the water volume converges to the circular shape, as shown in Figs. 16 and 17. Two
cubic approximations at the plane (x1, x2) with linear approximation along thickness x3 are adopted. One has
4×4 elements and 338 nodes and the other 8×8 elements and 1250 nodes.

Figure 16 shows solutions without compressibility relaxation using the two adopted discretizations. In
Fig. 17, using the 4×4 discretization, the same problem is solved by increasing the compressibility of the
fluid, i.e., reducing the bulk modulus to K � 2.15 × 10−4 GPa. As one can see in Fig. 16, when the fluid
is almost incompressible, a more refined mesh is needed to reproduce the expected behavior. For a more
compressive fluid, the expected response is achieved without any relaxation, see Fig. 17.

The pressure for the 8×8 cubic approximation and near incompressible bulkmodulus (K � 2.15GPa) and
for the 4×4 cubic approximation with bulk modulus K � 2.15 × 10−4 GPa oscillates after the displacement
convergence, see Fig. 18. This fact occurs because thewave speed of volumetric stresses is high and the time for
their mitigation is very high, not reached in our analysis. Only in the case with large compressibility, for both
cubic and linear approximations, the stresses distribution is very close to the expected static value, calculated
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Fig. 17 Bubble behavior along time K � 2.15 × 10−4 GPa (cubic)

analytically as p � −1.44× 10−10 GPa. The sign of the pressure is negative because it is calculated here as in
solid mechanics, i.e., the hydrostatic part of the stress tensor. For the compressible case K � 2.5× 10−9 GPa,
the pressure wave has a very low speed, and the related behavior is almost static.

Figure 19 shows the final artificially damped result obtained for a structured linear mesh with 24×24
elements and 1250 nodes.As one can see, the linear element locks completely, even for lowfluid compressibility
K � 2.15 × 10−6 GPa. The behavior is as if a truss has been formed in the hydrostatic stress distribution,
making the continuum rigid. When imposing a very compressive behavior (K � 2.15×10−9 GPa � 2.15 Pa),
elements unlock and results become coherent.

It should be noted that volumetric locking is a known phenomenon that is easily established by a constraint
equation that represents the null volumetric change δ J � 0, which for a finite element of any order is written
simply as:

∂ J

∂E
: δE � ∂ J

∂E
:

∂E

∂ �Y · δ �Y � 0 or (a)

as δ �Y is arbitrary, resulting is the following nonlinear system of equations written in the finite element degrees
of freedom:

∂ J

∂E
:

∂E

∂ �Y ( �Y ) � �0, (b)
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Fig. 18 Pressure with negative sign (GPa)—time 120 s—damped cases (cubic)

(a) (b) (c)

Fig. 19 Linear mesh behavior—volumetric locking
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Fig. 20 Constant area (volume)—free point movement restricted to a straight line

Fig. 21 Initial position and flow direction

This system of equations indicates (due to the imposed volumetric restriction) that a degree of freedom
is removed from the set of degrees of freedom of the finite element. As an attempt to do a geometrical
interpretation of the phenomenon, the identification of this restriction can be done by leaving only one node of
the finite element free and studying its possible movement. In two-dimensional space, for high-order elements
this movement is a curve and allows accommodation of the nodes for more or less complex problems.

For linear elements, this accommodation is more limited, even when compressibility relaxation is imposed,
see Fig. 19. This additional limitation is due (in cases incompressible or poorly compressible) to the only
possible movement of the free point being a straight line. See Fig. 20 in which 2 nodes of the base of a linear
2D finite element are constrained, and, in order to maintain its area (volume), the trajectory of the upper (free)
node is restricted to a straight line.

Finally, this numerical example demonstrates that, even when a large bulk modulus reduction is applied,
movements are not released for linear elements. Note that we use only one integration point in the plane of the
linear element, and, thus, there is no way to apply the reduced integration technique. For these reasons, in the
next examples, the use of linear elements is abandoned.

4.4 Oil passing through funnel: fluid

A high viscosity oil G � 0.2356 Pa s with density ρ � 846.6 kg/m3 and high compressibility, with K �
2.15 × 104 Pa, is subject to gravity acceleration g � 10m/s2 and is suddenly released to flow through the
funnel shown in Fig. 21. The oil touches the horizontal surface and flows without friction until it stops. The
adopted surface tension is ts � 0.032N/m.

The wall boundary conditions are of frictionless contact without the possibility of detachment, that is, dry
to shear and wet to detachment, via Lagrange multiplier. No previous static analysis was performed, that is,
the acceleration of gravity occurs suddenly at the beginning of the analysis. To model the fluid, only elements
with cubic approximation and structured mesh are adopted (see Fig. 22). Each contact surface is modeled by
a single rigid straight line.



2674 H. B. Coda, R. A. K. Sanches

Fig. 22 Used mesh–structures 12×12

We adopted �t � 0.25ms (in which ms � 10−3 s) until the contact instant, i.e., 67.5ms, from which
�t � 0.125ms is used to increase stability and keep the number of iterations in 3, as mentioned in the
introduction of this Section.

The evolution of the fluid movement is presented in Fig. 23. Pressure values are presented stressing that
this fluid has a very high viscosity and not so high bulk modulus; therefore, pressure results are stable without
using any relaxation. The sign of the pressure is negative because it is calculated here as in solid mechanics,
i.e., the hydrostatic part of the stress tensor.

As one can see in Fig. 23, a smooth response is obtained, with a large inertial spread of the fluid. In the
return response, due to the surface tension, a configuration is reached that indicates a tendency of almost
rupture of the surface, which would promote the separation of a drop of fluid at the end of the flow. To model
this rupture is beyond the objectives of this work.

4.5 Simplified slump test: fluid

This example shows the applicability of the proposed formulation in a simple 3D fluid problem, as well as the
model’s possibilities in representing fluidswith different values of γi . It is a simplified simulation of a slump test
of a cement paste whose physical properties are given by [66]. We adopted the following values: G � 1.4 Pa s,
ρ � 2500 kg/m3, and g � 10m/s2. The bulk modulus is considered K � 215 kPa that is sufficient to model
near incompressibility. The employed time step is �t � 0.1ms with total analysis time of t � 0.6 s. The test
consists of retaining the cement paste in an inverted hollow bucket, with its subsequent instantaneous release
on a smooth surface. Figure 24 depicts the initial configuration geometry (Dinf � 80mm, Dsup � 70mm and
H � 40mm) and the applied discretizations. Due to the symmetry around the z axis, only 1/4 of the geometry
is discretized by curved elements with cubic approximation in both basis and height. In discretization (a), the
base and the top are divided into 8 curved triangular elements with 4 divisions in height, totalizing 32 prismatic
finite elements of cubic approximation (637 nodes). In discretization (b), the base and the top are divided into
16 elements with 4 height divisions, totalizing 64 prismatic elements of cubic approximation (1183 nodes).

In this example, three different exponents for the viscous law are adopted: γ1 � γ2 � 0.5 (Eulerian
quasi-Newtonian, see Appendix), γi � 0.25, and γi � 0.75 (non-Newtonian). Figures 25 and 26 show some
top views (γi � 0.5) for selected instants for both discretizations, indicating the diameter of the base for each
selected time step. The color in the maps shows the vertical displacement.

From these results, we conclude that a reasonable discretization for this qualitative example is the discretiza-
tion (b). Figures 27 and 28 present, respectively, top views for γi � 0.25 and γi � 0.75 using discretization
(b). Again colors mean vertical displacements, and the diameters are listed.

The experimental final diameter (at t � 0.2 s) informed by reference [66] is 169 mm that includes a
residual shear stress of (20 Pa). The diameter achieved by the proposed formulation (γi � 0.5) at the same
time (t � 0.2 s) is near to the experimental result. However, the proposed formulation solution continues to
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Fig. 23 Overall movement snapshots, pressure (g/[(ms)2 cm])

(a) (b)

Fig. 24 Geometry and discretizations
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Fig. 25 Selected snapshots—top view, discretization (a) γi � 0.50

Fig. 26 Selected snapshots—top view, discretization (b) γi � 0.50

Fig. 27 Selected snapshots—top view, discretization (b) (γi � 0.25)

Fig. 28 Selected snapshots—top view, discretization (b) (γi � 0.75)
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Fig. 29 Lower diameter behavior along time

Fig. 30 Schematic representation of the problem and discretization (linear elements)

flow as it does not consider residual stresses. In further developments, we think it being possible to include
residual stresses in the proposed formulation, enabling the appropriate modeling of pastes and gels.

Figure 29 shows the time history of the relation Dnum
inf (t)/Dexp

f inal for the three adopted rheological models,
i.e., γi � 0.25, γi � 0.5, and γi � 0.75.

As one can see, the viscous behaviors are quite different, remembering that the case (γi � 0.5) is the
quasi-Newtonian one, see Appendix.

4.6 Creep test: solid

In this example, a 3D block of unitary dimension is subjected to a constant tensile force on one of its faces
(F � 40 kN), and its longitudinal strain (λ3 − 1) is evaluated along time (creep test). Figure 30 presents the
test geometry and the discretization of only 1/4 of the specimen to take advantage of symmetry. We used
4 prismatic elements with linear approximation totalizing 12 nodes. The following physical parameters are
adopted for all analyses: K � 1.5MPa, G � 9KPa, ρ � 0, g � 0, K � 0, and γ1 � γ2 � 1/2. We
used 3 different values for the shear viscosity: Ga � 2KPa · s, Gb � 1.1KPa · s, and Gc � 0.2KPa · s
and the corresponding time intervals: �ta � 0.4 s, �tb � 0.2 s, and �tc � 0.04 s. The adopted tolerance is
Tol � 10−7.

Figure 31 presents the time response of the stretch in z direction and snapshots of the Cauchy viscous
stresses σvis

11 and σvis
33 for case (c). As expected, one can see that both viscous stresses σvis

11 and σvis
33 approach

zero at the end of the analysis.
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(a) (b) (c)

Fig. 31 Time response of stretch and viscous stress snapshots

(a) (b)

Fig. 32 Viscous and elastic Cauchy stresses along time (σ33)

In Fig. 32, one can see the time response of viscous stress σvis
33 and elastic stress σ elas

33 , both in Cauchy space.
As one can see, the proposed formulation is capable ofmodeling the viscoelastic behavior of highly deformable
bodies that do not present an instantaneous response (Kelvin-like model). It is interesting to mention that the
strain levels reached by the material are quite high.

4.7 Indirect relaxation test: solid

In this example, the specimen of the previous example is made up of two materials, as shown in Fig. 33.
Material 1 is viscoelastic with the following properties: K � 15MPa, G � 9KPa, γ1 � γ2 � 1/2, and
G � 200KPa · s. Material 2 is elastic with the following properties K � 0.15MPa and G � 9KPa. In this
analysis, we adopted ρ � 0, g � 0, and K � 0. Figure 33 also illustrates the adopted discretization, i.e., 4
prismatic elements with cubic approximation (112 nodes). Along z direction, each of the 4 nodes constitutes an
element. In the graphical representation, the approximation following the z direction is fragmented in planes
orthogonal to the z axis.

Initially, material 1 is maintained with all nodes restricted, and the free face of material 2 (elastic material)
is stretched from coordinate z � 1m through coordinate z � 3.4m using 120 equally spaced steps. Figure 34
shows the achieved configuration with the Cauchy elastic stress distribution σ ela

33 . Note that no stresses are
present in material 1, but, as the post-processing is done by nodes, an average value appears at the interface
nodes in Fig. 34.
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Fig. 33 Schematic representation of the analyzed problem and discretization

Fig. 34 Initial configuration for indirect relaxation analysis (stresses in kPa)

Fig. 35 Stresses developed for both materials (σ33)

Figure 35 presents the viscous and elastic Cauchy stresses at point (0.167; 0.167; 0.167)m of material 1
and the elastic Cauchy stress at point (0.167; 0.167; 0.833)m of material 2. These coordinates correspond to
the initial configuration.

As one can see in Fig. 35, the stress developed in material 2 represents the relaxation behavior of the elastic
part of the studied specimen. After the total relaxation, the elastic stresses (or total stress, as there is no viscous
stress at the end of the analysis) in both materials approximate each other. It is important to stress that the
cross section of material 1 varies from 1m2 through 0.31m2 which explains the large difference between the
initial viscous stress and the final elastic stress of material 1. The adopted tolerance is Tol � 10−7, and the
time interval is �t � 0.4 s.



2680 H. B. Coda, R. A. K. Sanches

Fig. 36 Discretization, boundary conditions, and transverse displacement (wmax � 0.7044 cm)

(a) (b)

Fig. 37 a Elastic vertical displacement of the sandwich plate, b viscoelastic displacement at the plate center

Fig. 38 Vertical displacement along time in a dynamic analysis
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4.8 Viscoelastic sandwich circular plate: solid

A simply supported circular plate with radius R � 1m and thickness t � 3 cm is subjected to a transverse
uniform loading. Only 1/4 of the structure is modeled using 300 prismatic finite elements with cubic approx-
imation parallel to the plate surface and linear along thickness, totalizing 3 unitary layers, see Fig. 36. The
simple support condition is applied at nodes of the bottom face. The load is applied as a volume force on the
superior layer of the plate. When viscosity is considered, we used γ1 � γ2 � 1/2, i.e., a Kelvin–Voigt-like
viscoelastic model. Three situations are considered:

(i) Only to verify the discretization, the three layers are considered elastic (steel) with properties: E �
200GPa and ν � 0.25 which corresponds to K � 133GPa and G � 80GPa. The adopted transverse
load is b3 � 5000 kN/m3 on the top lamina, corresponding to a surface force of h3 � 50 kN/m2. For this
case, the achieved central transverse displacement is w � 0.7044 cm, 2.9% larger than the Kirchhoff
kinematics analytical solution that iswk � 0.684 cm. This result is expected as the adopted solid element
ismore flexible than theKirchhoff kinematics. It is important tomention that this element has be validated
for solids in the works [67, 68].

(ii) Keeping the loading of case (i), the material of the central layer is substituted by Polypropylene with
the elastic properties E � 1.088GPa and ν � 0.49 which correspond to K � 18.13GPa and G �
0.365GPa. The adopted shear viscosity property is G � 6.756GPa · s. These values are adapted from
[69]. The central displacement for the elastic and viscoelastic cases is shown in Fig. 37, being the
maximum elastic displacement wmax � 0.7434 cm, 5.52% larger than the steel case (i). We used 100
time steps of �t � 0.01 s for the viscoelastic analysis.

(iii) Considering the steel density ρsteel � 7000 kg/m3 and the polypropylene ρpol � 910 kg/m3, we perform
a dynamic analysis considering the same load of the previous cases suddenly applied. The central dis-
placement along time is compared with the elastic result of case (ii) at Fig. 38. We used 500 time steps
of �t � 0.01 s.

As one can see, the formulation is capable of modeling complex structures using the proposed viscoelastic
model. Other values of γ1 and γ2 can be used to adequate the model to the adopted material, see the Appendix
for a simple calibration example.

5 Conclusions

This work presents a constitutive model for both low compressible isothermal fluids and simple Kelvin–Voigt-
like viscoelastic solids. Thanks to a simple interpretation of hyperelastic multiplicative strain decomposition
we proposed an alternative dissipative internal energy regarding Lagrangian strain directions. Combining
the hyperelastic potential and dissipative internal energy, the unified constitutive law arose. The proposed
constitutive model is successfully implemented in the positional finite element method, resulting in a total
Lagrangian formulation whose nodal parameters are positions. Two-dimensional benchmarks from literature
are successfully used to verify the proposed constitutive model and the developed numerical formulation to
represent quasi-Newtonian fluids. A simple slump test is used to show the applicability of the model to 3D
simple fluid problems. Static and dynamic viscoelastic 3D solid examples are used to demonstrate the unified
characteristic of the proposed approach. As the formulation is based on scalar quantities (Lagrangian strain
invariants), the proposed constitutive model is quite broad and, in the future, may be applied to more general
materials, including clay and gels. Future works include the parallelization of the code to allow more general
applications and the extension of the constitutive model to include residual stresses.

Funding This research has been supported by the São Paulo Research Foundation, Brazil—Grant #2020/05393-4.

Appendix

In this Appendix, we show the shear stress behavior as a function of the dimensionless parameter γi for constant
strain time rate. Before doing so, it is important to mention that both Lagrangian and Eulerian time rates are
considered, and that no units were used in the analysis.

The numerical test consists of a stretched unitary cube (linear approximation), see Fig. 39, with nodes at
xi � 0 constrained at xi direction. Velocity is imposed by moving nodes at face x1 � 1 to the right in two



2682 H. B. Coda, R. A. K. Sanches

(a) Schematic representation (b) Linear discretization (c) Shear stress measurement

z

x

y

SlidingSliding

Sliding

λ

12σ
12σ

12σ
12σ

1x

2x

λ

Fig. 39 Numerical test—geometry, discretization, and stress calculation
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Fig. 40 Cauchy shear stress calculated for Lagrangian strain velocity
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Fig. 41 Cauchy shear stress calculated for Eulerian strain velocity
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ways: (i) for Lagrangian analysis, the current positions are given by y1 � 1+v · t , and (ii) for Eulerian analysis
y1 � e(v·t) and, in this test, correspond to the longitudinal stretch λ. The adopted face velocity is v � 1, the
time step is 4.0 × 10−4, the density is ρ � 0, and viscosity μ � 1.0 × 10−3. The Cauchy shear stress is
calculated as σ12 � (σ11 − σ22)/2.

In Fig. 40, we present the behavior of the Cauchy shear stress σ12 as a function of γ1 � γ2 and G1 � G2

for Lagrangian velocity, and in Fig. 41 the shear stress is presented for the Eulerian velocity. The values of Gi
should also vary because constants γi divide the stress expression (47).

FromFig. 40, we conclude that a “Lagrangian” quasi-Newtonian fluid can bemodeled by adopting γi � 1.0
and Gi � 1.5μ. From Fig. 41, we conclude that an “Eulerian” quasi-Newtonian fluid can be modeled by
adopting γi � 0.5 and G � 3μ. In Examples 4.1 and 4.2, the Eulerian quasi-Newtonian relations are adopted.

References

1. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Trans. Am. Math. Soc. 1–23
(1942)

2. Argyris, J.H.: Energy theorems and structural analysis Part 1. Aircraft Eng. 26, 383 (1954)
3. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.T.: Stiffness and deflection analysis of complex structures. J. Aeronaut.

Sci. 25, 805–823 (1956)
4. Clough, R.W.: Original formulation of the finite element method. In: Proc. ASCE Structures Congress Session on Computer

Utilization in Structural Eng., San Francisco, pp 1–10 (1989)
5. Zienkiewicz, O.C.: Cheung finite elements in the solution of field problems. Engineer 220, 507–510 (1965)
6. Bischoff, M., Ramm, E.: On the physical significance of higher order kinematic and static variables in a three-dimensional

shell formulation. Int. J. Solids Struct. 37, 6933–6960 (2000)
7. Sansour, C., Bednarczyk, H.: The Cosserat surface as a shell-model, theory and finite-element formulation. Comput.Methods

Appl. Mech. Eng. 120(1–2), 1–32 (1995)
8. Jeon, H.-M., Lee, Y., Lee, P.-S., et al.: The MITC3+shell element in geometric nonlinear analysis. Comput. Struct. 146,

91–104 (2015)
9. Gruttmann, F., Wagner, W.: Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections.

Comput. Mech. 27(3), 199–207 (2001)
10. Benson, D.J., Bazilevs, Y., Hsu,M.-C., et al.: (2011) A large deformation, rotation-free, isogeometric shell. Comput.Methods

Appl. Mech. Eng. 200(13–16), 1367–1378 (2011)
11. Havner, K.S.: On formulation and iterative solution of small strain plasticity problems. Q. Appl. Math. 23(4), 323–335 (1966)
12. Miehe, C., Aldakheel, F., Mauthe, S.: Mixed variational principles and robust finite element implementations of gradient

plasticity at small strains. Int. J. Numer. Methods Eng. 94(11), 1037–1074 (2013)
13. Shutov, A.V., Landgraf, R., Ihlemann, J.: An explicit solution for implicit time stepping in multiplicative finite strain vis-

coelasticity. Comput. Methods Appl. Mech. Eng. 265, 213–225 (2013)
14. Latorre, M., Montans, J.F.: Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and

logarithmic strains. Comput. Mech. 56(3), 503–531 (2015)
15. Holzapfel, G.A., Simo, J.C.: Entropy elasticity of isotropic rubber-like solids at finite strains. Comput. Methods Appl. Mech.

Eng. 132(1–2), 17–44 (1996)
16. Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites

at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29(4–5),
340–360 (2002)

17. Vergori, L., Destrade, M., McGarry, P., et al.: On anisotropic elasticity and questions concerning its finite element imple-
mentation. Comput. Mech. 52(5), 1185–1197 (2013)

18. Chen, W.H., Chang, C.M., Yeh, J.T.: An incremental relaxation finite element analysis of viscoelastic problems with contact
and friction. Comput. Methods Appl. Mech. Eng. 9, 315–319 (1993)

19. Argyris, J., Doltsinis, I.S., Silva, V.D.: Constitutive modelling and computation of non linear viscoelastic solids. Part I:
rheological models and integration techniques. Comput. Methods Appl. Mech. Engng. 88, 135–163 (1991)

20. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric struc-
tures. Int. J. Numer. Methods Eng. 39, 3903–3926 (1996)

21. Pascon, J.P., Coda, H.B.: Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements.
Finite Elem. Anal. Des. 133, 25–41 (2017)

22. Kröner, E.: AllgemeineKontinuumstheorie derVersetzungen und Eigenspannungen. Arch. Ration.Mech. Anal. 4, 273 (1959)
23. Lee, E.H.: Elastic–plastic deformations at finite strains. J. Appl. Mech. (ASME) 36, 1–6 (1969)
24. Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes

of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992)
25. Hudobivnik, B., Aldakheel, F.,Wriggers, P.: A low order 3D virtual element formulation for finite elasto-plastic deformations.

Comput. Mech. 63(2), 253–269 (2019)
26. Reese, S., Wriggers, P.: A material model for rubber-like polymers exhibiting plastic deformation: computational aspects

and a comparison with experimental results. Comput. Methods Appl. Mech. Eng. 148(3–4), 279–298 (1997)
27. Jiao, Y., Fish, J.: On the equivalence between the multiplicative hyper-elasto-plasticity and the additive hypo-elasto-plasticity

based on the modified kinetic logarithmic stress rate. Comput. Methods Appl. Mech. Eng. 340, 824–863 (2018)
28. Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng.

Comput. 15(6–7), 750–776 (1998)



2684 H. B. Coda, R. A. K. Sanches

29. Schwarze, M., Vladimirov, I.N., Reese, S.: Sheet metal forming and springback simulation by means of a new reduced
integration solid-shell finite element technology. Comput. Methods Appl. Mech. Eng. 200(5–8), 454–476 (2011)

30. Anderson, J.D.: Computational Fluid Dynamics—The Basics with Applications. McGraw-Hil, New York (1995)
31. Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)
32. Zienkiewics, O.C., Taylor, R.L., Nithiarasu, P.: The Finite ElementMethod: FluidDynamics. ButterworthHeinemannLinacre

House, Oxford (2005)
33. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton

(2010)
34. Elias, R.N., Martins, M.A.D., Coutinho, A.L.G.A.: Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG

formulation. Comput. Mech. 38(4–5), 365–381 (2006)
35. Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular

emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)
36. Akkerman, I., Bazilevs, Y., Calo, V.M., et al.: The role of continuity in residual-based variational multiscale modeling of

turbulence. Comput. Mech. 41(3), 371–378 (2008)
37. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44

(1992)
38. Akin, J.E., Tezduyar, T.E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order

elements. Comput. Methods Appl. Mech. Eng. 193, 1909–1922 (2004)
39. Takizawa, K., Tezduyar, T.E., Otoguro, Y.: Stabilization and discontinuity-capturing parameters for space-time flow compu-

tations with finite element and isogeometric discretizations. Comput. Mech. 62(5), 1169–1186 (2018)
40. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput.

Methods Appl. Mech. Eng. 190(3), 411–430 (2000)
41. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Com-

put. Methods Appl. Mech. Eng. 195(13–16), 1621–1632 (2006)
42. Donea, J., Giuliani, S., Halleux, J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-

structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)
43. Franci, A., Oñate, E., Carbonell, J.M.: Unified Lagrangian formulation for solid and fluid mechanics and FSI problems.

Comput. Methods Appl. Mech. Eng. 298, 520–547 (2016)
44. Duarte, F., Gormaz, R., Srinivasan, N.: Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving

boundaries. Comput. Methods Appl. Mech. Eng. 193, 4819–4836 (2004)
45. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and inter-

faces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput.
Methods Appl. Mech. Engng. 94, 339–351 (1992)

46. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and inter-
faces—the deforming-spatial- domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and
flows with drifting cylinders. Comput. Methods Appl. Mech. Engng. 94, 353–371 (1992)

47. Idelsohn, S.R., Marti, J., Limache, A., Oñate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids:
application to fluid–structure interaction problems via the PFEM.Comput.MethodsAppl.Mech. Eng. 197, 1762–1776 (2008)

48. Idelsohn, S.R., Oñate, E., Pin, F.D., Calvo, N.: Fluid-structure interaction using the particle finite element method. Comput.
Methods Appl. Mech. Eng. 195, 2100–2123 (2006)

49. Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of Newtonian fluid flows. Int. J. Numer. Methods Eng. 43(4),
607–617 (1998)

50. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)
51. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, New York

(1997)
52. Rivlin, R., Saunders, D.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber.

Philos. Trans. R. Soc. Lond. Ser. A 243, 251–288 (1951)
53. Düster, A., Hartmann, S., Rank, E.: p-FEM applied to finite isotropic hyperelastic bodies. Comput. Methods Appl. Mech.

Eng 192, 5147–5166 (2003)
54. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)
55. Lánczos, C.: The Variational Principles of Mechanics. Dover, New York (1970)
56. Sanches, R.A.K., Coda, H.B.: Unconstrained vector nonlinear dynamic shell formulation applied to Fluid Structure Interac-

tion. Comput. Methods Appl. Mech. Eng. 259, 177–196 (2013)
57. Holmes, M.J., et al.: Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J. Phys. Conf. Ser. 269

(2011)
58. Coda, H.B.: Continuous inter-laminar stresses for regular and inverse geometrically non linear dynamic and static analyses

of laminated plates and shells. Compos. Struct. 132, 406–422 (2015)
59. Coda, H.B., Paccola, R.R.: A FEM procedure based on positions and unconstrained vectors applied to non-linear dynamic

of 3D frames. Finite Elem. Anal. Des. 47(4), 319–333 (2011)
60. Pascon, J.P., Coda, H.B.: High-order tetrahedral finite elements applied to large deformation analysis of functionally graded

rubber-like materials. Appl. Math. Model. 37(20–21), 8757–8775 (2013)
61. Martin, J.C., Motce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans.

R. Soc. Lond. Ser. A 244, 312–324 (1958)
62. Nithiarasu, P.: An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split

(CBS) scheme. Int. J. Numer. Methods Fluids 48, 1415–1428 (2005)
63. Nithiarasu, P.: Erratum an arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic

based split (CBS) scheme (Int. J. Numer. Meth. Fluids 2005; 48:1415–1428). Int. J. Numer. Methods Fluids 50, 1119–1120
(2006)

64. Laitone, E.V.: The second approximation to conoidal and solitary waves. J. Fluid Mech. 9, 430–444 (1960)



Unified solid–fluid Lagrangian FEM model 2685

65. Sung, J., Choi, H.G., Yoo, J.Y.: Time-accurate computation of unsteady free surface flows using an ALE-segregated equal-
order FEM. Comput. Methods Appl. Mech. Eng. 190(11–12), 1425–1440 (2000)

66. Bouvet, A., Ghorbel, E., Bennacer, R.: The mini-conical slump flow test: analysis and numerical study. Cem. Concr. Res.
40, 1517–1523 (2010)

67. Carrazedo, R., Paccola, R.R., Coda, H.B.: Vibration and stress analysis of orthotropic laminated panels by active face
prismatic finite element. Compos. Struct. 244, 112254 (2020)

68. Carrazedo, R., Coda, H.B.: Triangular based prismatic finite element for the analysis of orthotropic laminated beams, plates
and shells. Compos. Struct. 168, 234–246 (2018)

69. Fazekas, B., Goda, T.: Characterisation of large strain viscoelastic properties of polymers. Bánki Közlemények 1(1) (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Unified solid–fluid Lagrangian FEM model derived from hyperelastic considerations
	Abstract
	References




