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Abstract In this paper, a dynamic stability analysis of moderately thick viscoelastic plates is performed
employing the Boltzmann integral law with constant bulk modulus. The remarkable and new point of the
proposed method is that the frequency of a Mindlin viscoelastic plate subjected to simultaneous constant and
harmonic in-plane compressive loads is explicitly predictable based on free vibration analysis of an elastic
plate. Moreover, the damped part of frequency is easily calculated. Also, the critical excitation for which
the system becomes unstable is determined. This method is completely new and significantly reduces the
computational cost. The obtained results are compared with other existing results to show the efficiency and
accuracy of the proposed method. This method is used to investigate the effects of viscoelastic properties
and in-plane compressions on the steady-state responses of Mindlin viscoelastic plates under time-dependent
compressive loads.

1 Introduction

Composite structures have been widely used in various engineering applications. Since composite struc-
tures exhibit time-dependent properties, it is necessary to model them by viscoelastic theories. The vibration
responses of plates have many applications in mechanical and structural engineering. The dynamic stability of
plates subjected to in-plane compressive load is one of the most interesting problems in the field of structural
vibration, because the instability may occur below the critical load of the plate even by a small excitation.

The dynamic stability of viscoelastic perfect columns made of Kelvin materials subjected to constant
axial compression was studied by Dost and Glocknwe [1], and Szyszkowski and Glocknwe [2]. Li et al. [3]
investigated the dynamic stability of a simply supported viscoelastic column subjected to a periodic axial force
using the averaging method based on the Kelvin–Voigt fractional derivative stress–strain relation. Leung et al.
[4] considered the steady-state response of a simply supported viscoelastic column based on the fractional
Kelvin constitutive model subjected to axial harmonic excitation with delayed feedback.

The classical Kirchhoff plate theory is effective in solving some plate problems, but its accuracy decreases
as the thickness of the plate increases. Aboudi and Cederbaum [5] considered the dynamic stability of linear
viscoelastic Kirchhoff plates subjected to periodic in-plane loads based on the Boltzmann superposition prin-
ciple. They solved the problem numerically, using Lyapunov exponents. Teifouet [6] presented the nonlinear
vibration analysis of viscoelastic rectangular plates under tangential follower forces based on classical plate
theory. Amabili [7] considered the nonlinear vibration analysis of viscoelastic thin rectangular plates using
the von Kármán assumptions and the Kelvin–Voigt solids. Balasubramanian et al. [8] studied the viscoelastic
response and nonlinear damping of rubber plates in nonlinear vibration of rectangular plates. Amabili [9]
considered the nonlinear damping in nonlinear vibrations of rectangular plates based on the theory of vis-
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coelasticity and experimental validation. Zhou and Wang [10] studied the transverse vibration and dynamic
stability of the axially moving thin viscoelastic plates with two opposite edges simply supported based on the
Kelvin–Voigt model. Amabili et al. [11] investigated the nonlinear vibrations and damping of fractional linear
viscoelastic rectangular plates.

Shear-deformable plates are investigated in some papers. Singha and Daripa [12] considered the nonlin-
ear vibration and dynamic stability analysis of elastic composite shear-deformable rectangular plates under
transverse harmonic pressures. Zamani et al. [13] investigated the free vibration of thick laminated viscoelas-
tic composite plates on a Pasternak viscoelastic medium with simply supported boundary conditions using
the third-order shear deformation theory. Jafari et al. [14] presented the approximation method for geometri-
cally nonlinear analysis of moderately thick time-dependent composite plates based on elasticity responses at
asymptotic times. Arshid et al. [15] considered the bending, buckling, and free vibration analyses of FG-GNP-
reinforced porous nanocomposite annularmicro-plates based on themodified strain gradient theory. Saeed et al.
[16] studied the free vibration of smart annular three-layered plates subjected to amagnetic field in a viscoelastic
medium. Saeed et al. [17] employed the quasi-3D tangential shear deformation theory for size-dependent free
vibration analysis of three-layered FG porous micro-rectangular plates integrated by nanocomposite faces in
hygrothermal environment. Jafari andAzhari [18] considered the free vibration analysis ofMindlin viscoelastic
plates employing the Boltzmann integral lawwith constant bulkmodulus based on the free vibration analysis of
elastic plates. Khorasani et al. [19] investigated the vibration of graphene nanoplatelets’ reinforced composite
plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media using sinusoidal shear
deformation plate theory.

To solve the dynamic stability of viscoelastic problems, the averaging method that belongs to Ilyushin
approximation was used in some papers, although this method loses some information. Ilyasov and Akoz [20]
examined the static and dynamic behavior of viscoelastic triangular plates with simply supported boundary
conditions under static and dynamic loads employing the Boltzmann–Volterra principle based on classical
plate theory. Dynamic stability of viscoelastic plates under linearly increasing compressing loads was numer-
ically studied by Eshmatov [21] using the Bubnov–Galerkin procedure and quadrature formulas. Eshmatov
[22] investigated the nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates
subjected to increasing compressing forces based on weakly singular Koltunov–Rzhanitsyn kernel. Sofiyev
et al. [23] studied the free vibration and dynamic stability of functionally graded viscoelastic plates under
compressive loads and resting on elastic foundations.

An overview of previous studies shows that the literature on the dynamic stability analysis of viscoelastic
plates subjected to constant in-plane compressive loads is abundant. But, due to the difficulty and complexity
of the equations, the dynamic stability analysis of viscoelastic plates under time-dependent in-plane com-
pressive loads is rarely explored, especially for moderately thick plates. Thus, the present paper investigates
the dynamic stability of viscoelastic columns, Kirchhoff viscoelastic plates, and moderately thick viscoelastic
plates subjected to constant and harmonic in-plane compressive loads, simultaneously. Also, an approximated
closed-form solution is proved and introduced, which calculates the frequency of viscoelastic structures explic-
itly, based on the frequency of elastic structures.Moreover, the critical harmonic excitation forwhich the system
becomes unstable is calculated. The stress–strain relation is written based on the Boltzmann integral law with
constant bulk modulus. The shear effect is described by the first-order shear deformation theory. The displace-
ment field is approximated using the separation of variables technique. The Laplace transform is employed to
convert equations from the time domain to the Laplace domain. Constant and decreasing frequencies of simply
supported viscoelastic columns and viscoelastic plates with different properties are easily analyzed with low
computational cost. Many numerical results are presented, demonstrating that the present method is in high
agreement with the corresponding analytical solutions.

Theorganization of this paper is as follows: the extraction of equations ofKirchhoff andMindlin viscoelastic
plates is described in Sect. 2. The numerical results are presented in Sect. 3. Section 4 presents conclusions.
The extraction of equations of viscoelastic columns is described in the “Appendix”.

2 Governing equations

2.1 Dynamic stability analysis of square Kirchhoff viscoelastic plates with simply supported boundary
conditions

The equilibrium equation of a Kirchhoff viscoelastic plate subjected to time-dependent compression, as illus-
trated in Fig. 1, is defined as [5]:
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Fig. 1 A viscoelastic plate subjected to time-dependent in-plane compressive forces

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
− Nx (t)

∂2w(x, y, t)

∂x2
− Ny(t)

∂2w(x, y, t)

∂y2
− ρh

∂2w(x, y, t)

∂t2
� 0 (1)

in which t is time, h is the plate thickness, ρ is the mass of a unit volume of the plate, w is an out-of-plane
displacement, Mx , My , and Mxy are the bending moments, and Nx (t) and Ny(t) are the in-plane compressive
forces.

The bending moment Mi j can be expressed as:

Mi j �
h/2∫

−h/2

zσi j (x, y, t)dz (2)

The constitutive equations of a linear viscoelastic material based on the Boltzmann integral can be given as
[24]:

σ(t) � C(t)ε(0) +

t∫

0

C(t − τ)ε̇(τ )dτ, ε̇ � ∂ε

∂t
(3)

where C(t) is the relaxed modulus tensor and σ is the stress vector associated with the strain vector, ε. The
relaxed modulus tensor of a Kirchhoff plate can be defined as follows:

C(t) �
⎡
⎣ c1(t) c2(t) 0
c2(t) c1(t) 0
0 0 c3(t)

⎤
⎦,

c1(t) � E(t)

1 − υ(t)2
, c2(t) � υ(t)E(t)

1 − υ(t)2
, c3(t) � E(t)

2(1 + υ(t))
. (4)

Assuming the bulk modulus to be constant, K , the elastic modulus, E(t), and Poisson’s ratio, ν(t), can be
stated in the time domain as follows [25]:

E(t) � 9Kη(t)

2 + η(t)
, ν(t) � 1 − η(t)

2 + η(t)
(5)

where the dimensionless relaxation function, η(t), can be defined by the exponential function as follows, [14,
18, 25]:

η(t) � c1 + c2e
−λt , c1 + c2 � 1, λ � 1/ts (6)

c1, c2 are constant parameters, and ts is the relaxation time of a viscoelastic material.
The strain vector of a Kirchhoff viscoelastic plate can be expressed as follows:

ε(x,y,z,t) � −z

⎧⎪⎪⎨
⎪⎪⎩

∂2w(x,y,t)
∂x2

∂2w(x,y,t)
∂x2

2 ∂2w(x,y,t)
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

. (7)
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For the dynamic stability analysis, the displacement vector of a viscoelastic plate can be approximated
using the separation of variables method as follows [5, 10, 26]:

w(x,y,t) � w(x,y)F(t) (8)

Substituting Eq. (8) into Eq. (7), the strain vector of a viscoelastic plate can be expressed as follows:

ε(x,y,z,t) � −z

⎧⎪⎨
⎪⎩

∂2w
∂x2
∂2w
∂x2

2 ∂2w
∂x∂y

⎫⎪⎬
⎪⎭F(t) � −zκF(t), κ �

⎧⎪⎨
⎪⎩

∂2w
∂x2
∂2w
∂x2

2 ∂2w
∂x∂y

⎫⎪⎬
⎪⎭. (9)

Substituting Eq. (9) into Eq. (3), the stress vector associated with the strain vector is defined as follows:⎧⎨
⎩

σx
σy
σxy

⎫⎬
⎭ � C(t)(−z)κF(0) +

t∫

0

C(t − τ)(−z)κḞ(τ )dτ. (10)

Substituting Eq. (10) into Eq. (2), the bending moment vector is defined as follows:⎧⎨
⎩

Mx
My
Mxy

⎫⎬
⎭ � −h3

12
C(t)κF(0) − h3

12

t∫

0

C(t − τ)κḞ(τ )dτ. (11)

Replacing Eq. (11) in Eqs. (1), (12) is obtained:

(12)

−h3

12

E (t)

1 − υ (t)2
F (0)

[
∂4w

∂x4
+

∂4w

∂y4
+ 2

∂4w

∂x2∂y2

]

−
[
∂4w

∂x4
+

∂4w

∂y4
+ 2

∂4w

∂x2∂y2

] t∫

0

h3

12

E (t − τ )

1 − υ (t − τ )2
Ḟ (τ ) dτ

− Nx (t) F (t)
∂2w

∂x2
− Ny (t) F (t)

∂2w

∂y2
− ρhw F̈ (t) � 0.

Considering simply supported boundary conditions, the displacement may be represented by:

w(x,y) � sin
πx

a
sin

πy

b
, a � b � l. (13)

a and b are the lengths of the rectangular plate in the x and y directions, respectively.
Substituting Eq. (13) into Eqs. (12), (14) is derived:

4π4

l4
h3

12
c1(t)F(0) +

4π4

l4
h3

12

t∫

0

c1(t − τ)Ḟ(τ )dτ − Nx (t)F(t)
π2

l2
− Ny(t)F(t)

π2

l2
+ ρh F̈(t) � 0. (14)

Investigating the time-dependent compression in the x direction, Ny(t) � 0, Eq. (15) is obtained:

Nx (t) � Ncr(α1 + β1 cosϕt), 0 ≤ α1 < 1, β1 ≥ 0, 0 < ϕ < π/2 (15)

in which α1 and β1 are arbitrary constant coefficients, and ϕ is the excitation frequency. The critical stability
load of a square Kirchhoff viscoelastic plate with simply supported boundary conditions subjected to uniaxial
compression at time zero, Ncr, is defined as [26]:

Ncr � 4
π2

l2
h3

12
c1(0) � π2h3K

l2
, c1(0) � E(0)

1 − υ(0)2
� 3K . (16)

The time function of a Kirchhoff viscoelastic plate, F(t), can be defined as follows:

F(t) � es0t , Ḟ(t) � s0e
s0t , F̈(t) � s20e

s0t , (17)
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Replacing Eq. (5) in Eq. (4), Eq. (18) is obtained:

c1(t) � E(t)

1 − υ(t)2
� 3Kη(t)(2 + η(t))

(1 + 2η(t))
. (18)

Substituting Eqs. (15–18) into Eqs. (14), (19) is derived:

(19)

h3

12

4π4

l4
3Kη (t) (2 + η (t))

(1 + 2η (t))
+
4π4

l4
h3

12
3K

t∫

0

η (t − τ ) (2 + η (t − τ ))

(1 + 2η (t − τ ))
s0e

s0τdτ

− (α1 + β1 cosϕt)
π2h3K

l2
F (t)

π2

l2
+ ρhs20F (t) � 0.

Defining:

�2 � π4h3K

l4ρh
, D(t) � η(t)(2 + η(t))

(1 + 2η(t))
(20)

in which � is the fundamental natural frequency of free vibration analysis of a thin viscoelastic square plate
with simply supported boundary conditions at time zero [26], Eq. (19) can be rewritten as follows:

�2D(t) + �2s0

t∫

0

D(t − τ)es0τdτ − α1�
2F(t) − β1�

2 cosϕt F(t) + s20F(t) � 0. (21)

Using the Laplace transform and according to the proof presented in the “Appendix”, the convolution
integral of Eq. (21) can be simplified as follows:

�2D∗ +
(
�2s0D

∗
s0 − α1�

2 + s20
)
F∗ − β1�

2(cosϕt F(t))∗ � 0. (22)

One can write Eq. (22) as follows:

�2D∗ +
(
�2s0D

∗
s0 − α1�

2 + s20
) 1

s − s0
− β1�

2

2

(
1

s − s0 + iϕ
+

1

s − s0 − iϕ

)
� 0 (23)

in which:

s0D
∗
s0 � s0η∗

s0

(
2 + s0η∗

s0

)
1 + 2s0η∗

s0

, η∗
s0 �

(
c1
s0

+
c2

s0 + λ

)
. (24)

Considering harmonic responses for viscoelastic materials, s0 cab be replaced by iω0 − α0 so that ω0 and
α0 are real numbers and α0 ≥ 0. So, Eq. (25) is obtained:

s0η
∗
s0 � c1 + c2

iω0 − α0

iω0 − α0 + λ
≈ c1 + c2 + i

c2λ

ω0
, s0D

∗
s0 ≈ 1 + i

2

3

c2λ

ω0
. (25)

According to the proof presented in the “Appendix”, if the Laplace parameter, s, is replaced by i(ω0 + ϕ), by

neglecting D∗ �
(

c1
i(ω0+ϕ)

+ c2
i(ω0+ϕ)+λ

)
(2+sη∗)
(1+2sη∗) , Eq. (23) may be rewritten as:

�2
(
1 + i

2

3

c2λ

ω0

)
− α1�

2 + (iω0 − α0)
2 − β1�

2 (iϕ + α0)
2

2iϕα0 + α2
0

� 0. (26)

Separating the real and imaginary parts:

�2 − ω2
0 + α2

0 − α1�
2 − β1�

2 3ϕ
2α2

0 + α4
0

4ϕ2α2
0 + α4

0

� 0, (27)

�2 2

3

c2λ

ω0
− 2ω0α0 − β1�

2 2ϕ3α0

4ϕ2α2
0 + α4

0

� 0, (28)
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Since α0 � �, λ � �, by ignoring
(

α0
�

)2, ( λ
�

)2
, and λ

�
α0
�
, Eqs. (29–30) are derived:

ω0 ≈ �

√
1 − α1 − 3

4
β1, �2 � π4h3K

l4ρh
, (29)

α0

�
≈

2
3
c2λ
�

+

√(
2
3
c2λ
�

)2 − 4β1
ϕ
�

(
1 − α1 − 3

4β1
)3/2

4 × (1 − α1 − 3
4β1
) . (30)

Employing Eqs. (29–30), the natural frequency, ω0, and viscous damping frequency, α0, of thin square
viscoelastic plates with simply supported boundary conditions are calculated easily, explicitly, and exactly.

Considering Eq. (30) shows that the Kirchhoff viscoelastic plate is always stable if the conditions below
are satisfied:

1 − α1 − 3

4
β1 > 0,

(
2

3

c2λ

�

)2

≥ 4β1
ϕ

�

(
1 − α1 − 3

4
β1

) 3
2

,

0 ≤ α1 < 1, β1 ≥ 0, 0 < ϕ <
π

2
. (31)

2.2 Dynamic stability analysis of moderately thick viscoelastic plates

According to the first-order shear theory, the displacement vector of a time-dependent viscoelastic plate can
be expressed as: ⎧⎨

⎩
u(x,y,z,t)
v(x,y,z,t)
w(x,y,z,t)

⎫⎬
⎭ �

⎧⎨
⎩

−zθx (x,y,t)
−zθy(x,y,t)

w(x,y,t)

⎫⎬
⎭ (32)

in which t is time, θx and θy are the rotations concerning y and x axes, respectively, and w(x,y,t) is an
out-of-plane displacement of the mid surface.

The strain vector of a Mindlin viscoelastic plate can be given as follows:

ε(x,y,z,t) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−zθx,x
−zθy,y

−z
(
θx,y + θy,x

)
w,x − θx
w,y − θy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (33)

2.2.1 Constitutive relations of viscoelastic plates

Employing the constitutive relations introduced in Eq. (3), the stress vector, σ, associated with the strain vector
can be defined as:

σ � σx σy τxy τxz τyz
T
. (34)

2.2.2 Energy definition

At time t , the strain, U (t), kinetic, T (t), and potential, V (t), energies are defined as follows:

U (t) � 1

2

∫

V

σT εdV � 1

2

∫

V

ε(0)TC(t)εdV +
1

2

∫

V

t∫

0

ε̇(τ )TC(t − τ)dτεdV, (35)

T (t) � 1

2

∫

V

ρ

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]
dV, (36)

V (t) � 1

2

∫

A

[
Nx (t)

(
∂w

∂x

)2

+ 2Nxy(t)

(
∂w

∂x

)(
∂w

∂y

)
+ Ny(t)

(
∂w

∂y

)2
]
dA (37)

where ρ is the mass of a unit volume of the plate and Nx (t), Ny(t), Nxy(t) are the in-plane compressive forces.



Dynamic stability analysis of Mindlin viscoelastic plates 2293

2.2.3 Equilibrium equation

At time t , the equation of motion can be expressed as follows:

δU − δT − δV � 0, (38)

The variations of strain, kinetic, and potential energies are written as:

δU �
∫

V

σT δεdV �
∫

V

ε(0)TC(t)δεdV +
∫

V

t∫

0

ε̇(τ )TC(t − τ)dτδεdV, (39)

δT �
∫

V

ρ

[
∂u

∂t

∂δu

∂t
+

∂v

∂t

∂δv

∂t
+

∂w

∂t

∂δw

∂t

]
dV � −

∫

V

ρ

[
∂2u

∂t2
δu +

∂2v

∂t2
δv +

∂2w

∂t2
δw

]
dV, (40)

δV �
∫

A

[
Nx (t)

∂w

∂x

∂δw

∂x
+ Nxy(t)

∂w

∂x

∂δw

∂y
+ Nxy(t)

∂w

∂y

∂δw

∂x
+ Ny(t)

∂w

∂y

∂δw

∂y

]
dA. (41)

2.2.4 Approximation of the displacement using separation of variables

The displacement vector of amoderately thick viscoelastic plate can be approximated employing the separation
of variables method as follows:

u(x,y,t) �
⎧⎨
⎩

w(x,y,t)
θx (x,y,t)
θy(x,y,t)

⎫⎬
⎭ �

⎧⎨
⎩

w(x,y)
θx (x,y)
θy(x,y)

⎫⎬
⎭F(t) � uxy F(t). (42)

The variation of the displacement vector and the rate of displacement vector can be stated as:

δu(x,y,t) � δuxy F, (43)

u̇(x,y,t) � uxy Ḟ(t). (44)

Utilizing Eqs. (42)–(44), the strain vector, the rate of strain vector, and the variation of strain vector may be
written as:

ε �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−zθx,x (x,y)
−zθy,y(x,y)

−z
(
θx,y(x,y) + θy,x (x,y)

)
w,x (x,y) − θx (x,y)
w,y(x,y) − θy(x,y)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
F(t) � εxyz F(t), (45)

ε̇ � εxyz Ḟ(t), (46)

δε � δεxyz F(t). (47)

2.2.5 Discretization

According to discretization based on the simple hp cloud mesh-free method, [25, 27], the displacement vector
can be expressed as:

uxy �
⎧⎨
⎩

w(x,y)
θx (x,y)
θy(x,y)

⎫⎬
⎭ � NUxy (48)

in which N is the vector of the basis functions, and Uxy can be defined as:

Uxy � [UT
1 UT

2 .. .. UT
N

]
,Ui � wi θxi θyi

T
,i � 1 : N . (49)

N is the number of selected nodes in the domain of the plate.
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Substituting Eqs. (42)–(49) into Eqs. (39), (50) is derived:

δU �
∫

V

UxyTBTF(0)C(t)BδUxy F(t)dV +
∫

V

t∫

0

UxyTBT Ḟ(τ )C(t − τ)dτBδUxy F(t)dV . (50)

Inserting Eqs. (42–49) into Eq. (40), Eq. (51) is obtained:

δT � −
∫

V

UxyTNTCm F̈(t)NδUxy F(t)dV . (51)

Substituting Eqs. (42–49) into Eqs. (41), (52) is derived:

δV �
∫

A

UxyTBT
GF(t)Np(t)BGδUxy F(t)dA (52)

where Np(t) is the matrix of in-plane forces as follows:

Np(t) �
[
Nx (t) Nxy(t)
Nxy(t) Ny(t)

]
. (53)

In the above equations,B andBG are the strain–displacement transformationmatrices introduced in Sect. 2.2.8.

2.2.6 Integrating over the thickness

Carrying out integrating over the thickness of the plate, Eqs. (50, 51) can be rewritten as:

δU �
∫

A

UxyTBTF(0)D(t)F(t)BδUxydA +
∫

A

t∫

0

UxyTBT Ḟ(τ )D(t − τ)dτ F(t)BδUxydA, (54)

δT � −
∫

A

UxyTNT F̈(t)DmF(t)NδUxydA (55)

in which the effective modulus tensor of a moderately thick viscoelastic plate can be expressed as:

D(t) �

⎡
⎢⎢⎢⎢⎣

E(t)h3

12
(
1−ν(t)2

)
⎡
⎣ 1 ν(t) 0

ν(t) 1 0
0 0 1−ν(t)

2

⎤
⎦ 0

0 Ehk
2(1+ν(t))

[
1 0
0 1

]

⎤
⎥⎥⎥⎥⎦. (56)

In the above equation, k is the shear correction factor of the first-order shear deformation theory, and h is the
plate thickness. Also, the mass density matrix, Dm, is defined as:

Dm � ρ

⎡
⎣
h 0 0

0 h3
12 0

0 0 h3
12

⎤
⎦. (57)

Substituting Eqs. (52), (54), and (55) into Eqs. (38), (58) is derived:

(58)

∫

A

UxyTBT

⎛
⎝F (0)D (t) F (t) +

⎛
⎝

t∫

0

Ḟ (τ )D (t − τ ) dτ

⎞
⎠ F (t)

⎞
⎠BδUxydA

+
∫

A

UxyTNT F̈ (t)DmF (t)NδUxydA −
∫

A

UxyTBT
GF (t)Np (t) F (t)BGδUxydA � 0.
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Removing δUxy and F(t) from Eq. (58), δUxy �� 0, F(t) �� 0, Eq. (59) is obtained:

(59)

∫

A

UxyTBT

⎛
⎝F (0)D (t) +

t∫

0

Ḟ (τ )D (t − τ ) dτ

⎞
⎠BdA

+
∫

A

UxyTNT F̈ (t)DmNdA −
∫

A

UxyTBT
GF (t)Np (t)BGdA � 0.

2.2.7 Weighted residual statement

Employing the weighted residual method, Eq. (59) can be written as follows:

∞∫

0

W (t)

⎧⎨
⎩
∫

A

BT

⎛
⎝F (0)D (t) +

t∫

0

Ḟ (τ )D (t − τ ) dτ

⎞
⎠BdA +

∫

A

NT F̈ (t)DmNdA −
∫

A

BT
GF (t)Np (t)BGdA

⎫⎬
⎭ dtUxy � 0

(60)

where W (t) is the desired weight function. The weight function can be defined as follows:

W (t) � e−st. (61)

Substituting Eq. (61) into Eqs. (60), (62) is derived:

∞∫

0

⎧⎨
⎩
∫

A

BT

⎛
⎝F (0)D (t) +

t∫

0

Ḟ (τ )D (t − τ ) dτ

⎞
⎠BdA +

∫

A

NT F̈ (t)DmNdA −
∫

A

BT
GF (t)Np (t)BGdA

⎫⎬
⎭ e−stdtUxy � 0.

(62)

Separating the time parts of Eqs. (62), (63) is obtained:

(63)

∫

A

BT

⎧⎨
⎩

∞∫

0

⎛
⎝F (0)D (t) +

t∫

0

Ḟ (τ )D (t − τ ) dτ

⎞
⎠ e−stdt

⎫⎬
⎭BdAUxy

+
∫

A

NTDm

⎧⎨
⎩

∞∫

0

F̈ (t) e−std (t)

⎫⎬
⎭NdAUxy −

∫

A

BT
G

⎧⎨
⎩

∞∫

0

F (t)Np (t) e
−std (t)

⎫⎬
⎭BGdAUxy � 0.

The time function of Mindlin viscoelastic plates, F(t), can be defined as follows:

F(t) � es0t , Ḟ(t) � s0F(t), F̈(t) � s20F(t). (64)

Also, the matrix Np(t) may be defined as follows:

Np(t) � Ncr(α1 + β1 cosϕt)

[
1 k2
k2 k1

]
,

k1 � Ny

Ncr
,k2 � Nxy

Ncr
, 0 ≤ α1 < 1, β1 ≥ 0, 0 < ϕ < π/2 (65)

in which Ncr is the critical stability load of a viscoelastic plate at time zero, α1 and β1 are arbitrary constant
coefficients, and ϕ is the excitation frequency.
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2.2.8 Transformation to Laplace domain

Using the Laplace transform, the convolution integral of Eq. (63) can be simplified as follows:
⎛
⎝
∫

A

BTs0D∗
s0F

∗BdA +
∫

A

NTDms
2
0F

∗NdA −
∫

A

BT
G

(
F(t)Np(t)

)∗BGdA

⎞
⎠Uxy � 0 (66)

in which F∗,D∗, and
(
F(t)Np(t)

)∗ are the Laplace transformation of F(t),D(t), and F(t)Np(t), respectively,
and D∗

s0 is defined in Eq. (69).
Inserting Eqs. (64) and (65) into Eqs. (66), (67) is obtained:⎛

⎝s0F∗
∫

A

BTD∗
s0BdA + s20F

∗
∫

A

NTDmNdA − NcrF
∗
(

α1 + β1
(cosϕt F (t))∗

F∗

)∫

A

BT
G

[
1 k2
k2 k1

]
BGdA

⎞
⎠Uxy

� 0.

(67)

According to the proof presented in the “Appendix”, if the Laplace parameter, s, is replaced by i(ω0 + ϕ)
and by removing F∗, Eq. (68) is derived:
⎛
⎝s0

∫

A

BTD∗
s0BdA + s20

∫

A

NTDmNdA − Ncr

(
α1 + β1

(iϕ + α0)
2

2iϕα0 + α2
0

)∫

A

BT
G

[
1 k2
k2 k1

]
BGdA

⎞
⎠Uxy � 0. (68)

The Laplace transform of the stiffness matrix can be divided into the bending and the shear parts as follows:

K∗
s0 �

∫

A

BTD∗
s0BdA �

∫

A

BT
bD

∗
bBbdA +

∫

A

BT
s D

∗
sBsdA,D∗

s0 �
[
D∗
b 0
0 D∗

s

]
(69)

in which:

Bi
b �

⎡
⎣0 −Ni

,x 0
0 0 −Ni

,y
0 −Ni

,y −Ni
,x

⎤
⎦,Bi

s �
[
Ni

,x −Ni 0
Ni

,y 0 −Ni

]
. (70)

The shear D∗
s and the bending D∗

b effective modulus tensors can be written as [18]:

D∗
b � h3/12

⎡
⎢⎢⎢⎢⎢⎣

3Kη∗
s0

(
2+s0η∗

s0

)
(
1+2s0η∗

s0

) 3Kη∗
s0

(
1−s0η∗

s0

)
(
1+2s0η∗

s0

) 0

3Kη∗
s0

(
1−s0η∗

s0

)
(
1+2s0η∗

s0

) 3Kη∗
s0

(
2+s0η∗

s0

)
(
1+2s0η∗

s0

) 0

0 0 3/2Kη∗
s0

⎤
⎥⎥⎥⎥⎥⎦

, (71)

D∗
s � hk

[
3/2Kη∗

s0 0
0 3/2Kη∗

s0

]
, η∗

s0 �
∞∫

0

η(t)e−s0tdt � c1
s0

+
c2

s0 + λ
, (72)

The mass and geometry matrices are defined as follows:

Km �
∫

A

NTDmNdA, (73)

KG �
∫

A

BT
G

[
1 k2
k2 k1

]
BGdA (74)



Dynamic stability analysis of Mindlin viscoelastic plates 2297

where Bi
G can be defined as follows:

Bi
G �

[
Ni

,x 0 0
Ni

,y 0 0

]
. (75)

Using Eqs. (70–75), Eq. (76) is derived:(
s0K∗

s0 + s20Km − Ncrα1KG − β1
(iϕ + α0)

2

2iϕα0 + α2
0

KG

)
Uxy � 0. (76)

2.2.9 Dynamic stability analysis

To solve Eq. (76), the determinant of its coefficients must be zero. Therefore, Eq. (77) must hold:

det

(
s0K∗ + s20Km − Ncrα1KG − β1

(iϕ + α0)
2

2iϕα0 + α2
0

KG

)
� 0, s0 � iω0 − α0. (77)

Thus, the problem of dynamic stability of a moderately thick viscoelastic plate is reduced to finding ω0 and
α0, which may be calculated by iteration.

3 Numerical results

MATLAB programming is used tomodel the dynamic stability analysis of moderately thick viscoelastic plates.
The mechanical properties of the assumed viscoelastic plates are: K � 3× 107 N/m3,ρ � 7800kg/m3, and the
shear correction factor is supposed to be 5/6. In the calculations, simply supported viscoelastic square plates
having a width-to-thickness ratio of 10 are investigated. In the following, � is defined as the fundamental
natural frequency calculated by the free vibration analysis of moderately thick viscoelastic square plates with
simply supported boundary conditions at time zero. Various numerical examples are presented in this Section.

3.1 Verification

To verify the accuracy of the numerical results, the buckling coefficients of viscoelastic plates at time zero can
be compared with the results obtained for elastic materials. Table 1 shows the buckling coefficients of simply
supported moderately thick square plates under uniaxial compressions.

Also, Table 2 shows the dimensionless natural frequency of simply supported elastic square plates with
two width-to-thickness ratios.

Besides, the results of free vibration analysis (α1 � 0, β1 � 0) of viscoelastic plates are investigated. Table
3 compares the viscous damping, α0, of moderately thick simply supported viscoelastic square plates obtained
by the proposed method and Ref. [18]. Both studies calculate the natural frequency as ω0 � 18.18.

Table 1 Buckling coefficients, k � l2σcr/π2D, D � Eh3/12
(
1 − υ2

)
, of simply supported elastic square plates under uniaxial

compressions

h/a 0.1 0.15 0.2

Present 3.67 3.38 3.07
[28] 3.7414 3.465 3.1527
[29] 3.7344 3.455 3.1344

Table 2 Fundamental natural frequency,1000�h
√

ρ/E , of simply supported elastic square plates with two width-to-thickness
ratios

h/a 0.05 0.1

Present 14.51 57.1
[10] 14.59 56.94
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Table 3 Viscous damping frequency of simply supported Mindlin viscoelastic square plates with different materials (ts �
100s, α1 � 0, β1 � 0)

s0 � iω0 − α0 Present [18]

Case 1:det
(
s0K∗ + s20Km

) � 0 Case 2:det(K∗ + s0Km) � 0 det(K∗ + s0Km) � 0
α0 α0 α0

c1 � 0.1 0.029 0.037 0.037
c1 � 0.2 0.025 0.032 0.032
c1 � 0.3 0.022 0.029 0.029
c1 � 0.4 0.019 0.025 0.025
c1 � 0.5 0.016 0.02 0.02

Table 4 Natural frequency and viscous damping frequency of simply supported Mindlin viscoelastic square plates with different
materials subjected to different compressions (β1 � 0.0001, ϕ/� � 1)

s0 � iω0 − α0 λ/� � 0.1 λ/� � 0.01 �
√
1 − α1 − 0.75β1

α1 � 0 18.17i−0.527 18.19i−0.036 18.18
α1 � 0.25 15.76i−0.694 15.78i−0.05 15.744
α1 � 0.5 12.9i−1.033 12.9i−0.085 12.73
α1 � 0.75 9.46i−2.006 9.15i−0.194 9.09

As the results show, the values of viscous damping frequencies are different in two cases: (i) solving det
(K∗ + s0Km) � 0, and (ii) solving det

(
s0K∗ + s20Km

) � 0. But, due to the existence of complex numbers in
the equations, the correct answers belong to det

(
s0K∗ + s20Km

) � 0.
The results of Tables 1, 2, and 3 indicate a good agreement between the method proposed and the results

in other available references.

3.2 Effect of time-dependent compression

Table 4 shows the natural frequency, ω0, and viscous damping frequency, α0, of moderately thick simply
supported viscoelastic square plates with different λ/� subjected to different axial compressions, Nx (t) � Ncr
(α1 + β1 cosϕt).

The results of Table 4 indicate that the natural frequency of a moderately thick viscoelastic plate subjected
to constant and harmonic compression is approximately equal to ω0 ∼� �

√
1 − α1 − 0.75β1. In addition, by

decreasing λ/�, the viscous damping frequency is decreased.
Using Eqs. (42), (78) is obtained:

w(x,y,t) � w(x,y)F(t), F(t) � eiω0t−α0t � e−α0t cosω0t + ie−α0t sinω0t. (78)

Equation (78) can be normalized as follows:

w(x,y,t)

w(x,y)
� F(t), Real(F(t)) � e−α0t cosω0t, Imag(F(t)) � e−α0t sinω0t. (79)

Figures 2, 3, 4, and 5 show the variations of the imaginary part of the time functions, e−α0t sin(ω0t), for a
moderately thick viscoelastic square plate with simply supported boundary conditions subjected to different
harmonic compressive loads versus time.

The results of Figs. 2, 3, 4, and 5 indicate that by increasing the constant compressive force, α1, the viscous
damping frequency is increased, while the natural frequency, ω0, is decreased. In other words, for the constant
β1, by increasing α1 the transversal displacement converges to zero faster.

Tables 5 and 6 show the natural frequency and viscous damping frequency of moderately thick simply
supported viscoelastic square plates subjected to different axial compressions and different frequencies of
harmonic compression.

As the results show, the frequency of a Mindlin viscoelastic plate subjected to different harmonic com-
pressions is approximately equal to ω0 ∼� �

√
1 − α1 − 0.75β1. Moreover, the viscous damping frequency is
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Fig. 2 Variations of the imaginary part of the time function versus time for a simply supported moderately thick viscoelastic
square plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0, β1 � 0.00001, ϕ/� � 1)

Fig. 3 Variations of the imaginary part of the time function versus time for a simply supported moderately thick viscoelastic
square plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0.25, β1 � 0.00001, ϕ/� � 1)

Fig. 4 Variations of the imaginary part of the time function versus time for a simply supported moderately thick viscoelastic
square plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0.5, β1 � 0.00001, ϕ/� � 1)

Fig. 5 Variations of the imaginary part of the time function versus time for a simply supported moderately thick viscoelastic
square plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0.75, β1 � 0.00001, ϕ/� � 1)
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Table 5 Natural frequency and viscous damping frequency of simply supported Mindlin viscoelastic square plates subjected to
different compressions (β1 � 0.0005, λ/� � 0.1)

s0 � iω0 − α0 α1 � 0 α1 � 0.25 α1 � 0.5 α1 � 0.75

ω0 α0 ω0 α0 ω0 α0 ω0 α0

ϕ/� � 0.5 18.17 0.473 15.75 0.651 12.9 1.007 9.448 2.01
ϕ/� � 1 18.16 0.418 15.75 0.609 12.89 0.981 9.44 1.967
ϕ/� � 1.5 18.16 0.345 15.740 0.567 12.893 0.955 9.433 1.965
ϕ/� � 2 18.16 0.291 15.740 0.504 12.886 0.903 9.428 1.926
�

√
1 − α1 − 0.75β1 18.18 15.74 12.73 9.09

Table 6 Natural frequency and viscous damping frequency of simply supported Mindlin viscoelastic square plates subjected to
different compressions (β1 � 0.001, λ/� � 0.1)

s0 � iω0 − α0 α1 � 0 α1 � 0.25 α1 � 0.5 α1 � 0.75

ω0 α0 ω0 α0 ω0 α0 ω0 α0

ϕ/� � 0.5 18.15 0.418 15.745 0.61 12.895 0.982 9.436 1.969
ϕ/� � 1 18.154 0.291 15.737 0.504 12.888 0.929 9.421 1.928
ϕ/� � 1.5 – – – – 12.867 0.825 9.406 1.887
ϕ/� � 2 – – – – 12.853 0.721 9.386 1.845
�

√
1 − α1 − 0.75β1 18.18 15.744 12.73 9.09

Fig. 6 Variations of the real part of the time function versus time for a simply supported moderately thick viscoelastic square
plate (h/L � 0.1, c1 � 0.1, λ/� � 0.1, β1 � 0.0005, ϕ/� � 1)

increased by increasing α1. Also, by increasing ϕ the viscous damping frequency is decreased, but the variation
of the natural frequency is negligible.

Figure 6 shows the variations of the real part of the time function, e−α0t cosω0t , for a moderately thick vis-
coelastic square plate with simply supported boundary conditions subjected to different constant compressive
loads versus time. The results of Fig. 6 show that by increasing constant in-plane compression, the viscous
damping frequency is increasing, too.

Figure 7 shows the variations of the real part of the time function, e−α0t cosω0t , for a moderately thick
viscoelastic square plate with simply supported boundary conditions subjected to different excitations versus
time. As the results of Fig. 7 illustrate, by increasing the excitation frequency, ϕ/�, the viscous damping
frequency is decreasing.

The natural frequency and viscous damping frequency of moderately thick simply supported viscoelastic
square plates subjected to different harmonic compressions with different excitations are given in Table 7. The
results of Table 7 indicate that the natural frequency and viscous damping frequency, α0, are decreasing by
increasing β1. In addition, by increasing ϕ, the viscous damping frequency is decreased, but the variation of
the natural frequency, ω0, is negligible.

Figure 8 shows the variations of the real part of the time function, e−α0t cosω0t , for a moderately thick
viscoelastic square plate with simply supported boundary conditions subjected to different excitations versus
time. The results of Fig. 8 show that by increasing the value of harmonic in-plane compression, β1, the viscous
damping frequency is decreasing.
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Fig. 7 Variations of the real part of the time function versus time for a simply supported moderately thick viscoelastic square
plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0.5, β1 � 0.001)

Table 7 Natural frequency and viscous damping frequency of simply supported Mindlin viscoelastic square plates subjected to
different compressions (α1 � 0.5, λ/� � 0.1)

s0 � iω0 − α0 β1 � 0 β1 � 0.0005 β1 � 0.001 β1 � 0.0015

ω0 α0 ω0 α0 ω0 α0 ω0 α0

ϕ/� � 0.5 12.910 1.033 12.9 1.0069 12.895 0.9815 12.883 0.9558
ϕ/� � 1 12.91 1.033 12.89 0.9806 12.888 0.9293 12.862 0.8250
ϕ/� � 1.5 12.91 1.033 12.893 0.9548 12.867 0.8247 12.834 0.6174
ϕ/� � 2 12.91 1.033 12.886 0.9027 12.853 0.7208 – –

Fig. 8 Variations of the real part of the time function versus time for a simply supported moderately thick viscoelastic square
plate (h/L � 0.1, c1 � 0.1, λ/� � 0.01, α1 � 0.5, ϕ/� � 1)

Table 8 Natural frequency and viscous damping frequency of simply supported Mindlin viscoelastic square plates with different
materials (α1 � 0, ϕ/� � 1, β1 � 0.0001, λ/� � 0.1, �

√
1 − α1 − 0.75β1 � 18.17)

s0 � iω0 − α0 c1 � 0.1 c1 � 0.2 c1 � 0.3 c1 � 0.4 c1 � 0.5 c1 � 0.6 c1 � 0.7

ω0 18.1693 18.1693 18.1693 18.1693 18.1693 18.1693 18.1693
α0 0.5088 0.4361 0.3816 0.3271 0.2544 0.1817 0.0909

3.3 Effect of materials

The natural frequency and viscous damping frequency of moderately thick simply supported viscoelastic
square plates with different materials subjected to the same harmonic compression are illustrated in Table 8.

As the results show, the natural frequencies do not change by changing c1. Also, ω0 is approximately equal
to�

√
1 − α1 − 0.75β1. Moreover, as the c1 increases and the material tends to be elastic, the viscous damping

frequencies are decreasing, as expected.
Figure 9 shows the variations of the real part of the time function, e−α0t cosω0t , for a simply supported

moderately thick viscoelastic square plate with different materials versus time. As the results of Fig. 9 indicate,
when the material tends to be elastic, the viscous damping frequency is decreasing.
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Fig. 9 Variations of the real part of the time function versus time for a simply supported moderately thick viscoelastic square
plate (h/L � 0.1, λ/� � 0.1, α1 � 0,β1 � 0.0001, ϕ/� � 1)

Table 9 Critical harmonic compressions of simply supported Mindlin viscoelastic square plates (c1 � 0.1, λ/� � 0.1)

β1cr ϕ/� � 0.5 ϕ/� � 1 ϕ/� � 1.5 ϕ/� � 2

α1 � 0 0.0018 0.0009 0.0006 0.00043
α1 � 0.25 0.0027 0.0013 0.0009 0.0006
α1 � 0.5 0.005 0.0025 0.0017 0.00125

Table 10 Critical harmonic compressions of simply supported Mindlin viscoelastic square plates (c1 � 0.1, λ/� � 0.01)

β1cr ϕ/� � 0.5 ϕ/� � 1 ϕ/� � 1.5

α1 � 0 0.000025 0.000012 0.0000084
α1 � 0.25 0.000035 0.00017 0.000011
α1 � 0.5 0.000055 0.00027 0.000019

Table 11 Critical harmonic compressions of simply supported Mindlin viscoelastic square plates (c1 � 0.2, λ/� � 0.1)

β1cr ϕ/� � 0.5 ϕ/� � 1 ϕ/� � 1.5 ϕ/� � 2

α1 � 0 0.0013 0.0006 0.0004 0.00034
α1 � 0.25 0.0021 0.0011 0.0006 0.00051
α1 � 0.5 0.0038 0.0018 0.0012 0.00093

3.4 Calculation of critical β1cr

Tables 9, 10, and 11 show the critical harmonic compressions of simply supported Mindlin viscoelastic square
plates with different materials. The results of Tables 9, 10, and 11 indicate that by increasing ϕ, the critical
harmonic compression, β1cr, is decreasing with the inverse ratio. Also, by increasing α1, the critical harmonic
loads are increasing.

4 Conclusions

The present paper focuses on the dynamic stability analysis of moderately thick viscoelastic plates subjected
to constant and harmonic compressions, simultaneously, and a new solution technique is proposed. The
stress–strain relation is written based on the Boltzmann integral law with constant bulk modulus. The shear
effect is described by the first-order shear deformation theory. The displacement field is approximated using
the separation of variables technique.

The obtained numerical results demonstrated the efficiency of the proposed method. The results were
compared to other available references, and the proposed method showed good agreement.

The results show that the time response of a viscoelastic plate, subjected to time-dependent compression
Nx (t) � Ncr(α1 + β1 cosϕt), can be written as F(t) � eiω0t−α0t so that:
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(i) The natural frequency of the viscoelastic plate is approximately equal to ω0 ∼� �
√
1 − α1 − 0.75β1

in which � is the fundamental natural frequency of the free vibration analysis of a moderately thick
viscoelastic square plate with simply supported boundary conditions at time zero.

(ii) The viscous damping frequency, α0, is increasing by increasing α1. Also, by increasing ϕ, the viscous
damping frequency is decreasing. Moreover, the viscous damping frequency is decreasing by increasing
β1.

(iii) The critical excitation for which the system becomes unstable is calculated.
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Appendix: Dynamic stability analysis of a simply supported viscoelastic column

The equation of a viscoelastic column subjected to a time-dependent compressive load p(t), as illustrated in
Fig. 10, is defined as [2]:

∂2M

∂x2
− p(t)

∂2w

∂x2
� m

∂2w

∂t2
(80)

in which x is the longitudinal axis, w is the transverse displacement, and m denotes the mass per unit length.
The bending moment M can be expressed as:

M �
∫

A

σ(x, y, t)ydA (81)

where y is the transverse axis.
The constitutive equation of a linear viscoelastic material based on the Boltzmann integral can be given as

[24]:

σ(x, y, t) � E(t)ε(0) +

t∫

0

E(t − τ)ε̇(τ )dτ (82)

where E(t) is the relaxation function. It is noted that in case of steady harmonic vibrations employing Eq. (82)
is not necessary, and the problem reduces to the study of the storage and loss modulus [30]. But, since the
goal of this paper is to study the dynamic stability of columns subjected to axial compression, using Eq. (83)
is necessary.

For a Bernoulli beam, the relation between the strain ε and the deflection w can be written as [2]:

ε(x, y, t) � −y
∂2w(x, t)

∂x2
. (83)

Fig. 10 A viscoelastic column subjected to time-dependent axial compressive load
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Considering simply supported boundary conditions and by supposing that all points of the column move in
phase, the deflection may be represented by [1, 4]:

w(x, t) � F(t) sin
πx

l
. (84)

The relaxation function can be defined as follows:

E(t) � E0η(t), η(t) � c1 + c2e
−λt (85)

where E0 is the elasticity modulus at time zero.
Substituting Eqs. (82–85) into Eq. (80), Eq. (86) is obtained:

E(t)
Iπ4

l4
F(0) + E0

Iπ4

l4

t∫

0

η(t − τ)Ḟ(τ )dτ − π2

l2
p(t)F(t) + mF̈(t) � 0 (86)

in which I is the column moment of inertia.
The time-dependent compressive load, p(t), may be given as:

p(t) � (α1 + β1 cosϕt)Pe, Pe � π2E0 I

l2
, 0 ≤ α1 < 1, β1 ≥ 0, 0 < ϕ < π/2 (87)

in which α1 and β1 are constant, and ϕ is the excitation frequency. Replacing Eq. (87) in Eq. (85), Eq. (88) is
obtained:

η(t)F(0) +

t∫

0

η(t − τ)Ḟ(τ )dτ − α1F(t) − β1 cosϕt F(t) +
F̈(t)

�2 � 0 (88)

where the fundamental natural frequency at time zero is defined as follows:

�2 � E0 Iπ4

ml4
. (89)

For a viscoelastic column, the time function can be defined as:

F(t) � es0t . (90)

So, one can write Eq. (91) as follows:

Ḟ(t) � s0F(t), F̈(t) � s20 F(t). (91)

Replacing Eq. (91) in Eq. (88), Eq. (92) is obtained:

η(t) + s0

t∫

0

η(t − τ)F(τ )dτ − α1F(t) − β1 cosϕt F(t) +
( s0

�

)2
F(t) � 0. (92)

If Laplace transform is taken from Eq. (92), Eq. (93) is obtained:

η∗ + s0

∞∫

0

t∫

0

η(t − τ)F(τ )dτe−stdt − α1F
∗ − β1(cosϕt F(t))∗ +

F̈∗

�2 � 0 (93)

in which η∗, F∗, F̈∗, and (cosϕt F(t))∗ are the Laplace transformations of η(t), F(t), F̈(t), and cosϕt F(t),
respectively.
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According to Laplace transform properties, the second term of Eq. (93) can be calculated as:

(94)

s0

∞∫

0

t∫

0

η (t − τ ) F (τ ) dτe−stdt � s0

∞∫

0

t∫

0

η (τ ) F (t − τ ) dτe−stdt � s0

∞∫

0

t∫

0

η (τ ) es0(t−τ )dτe−stdt

� s0

∞∫

0

⎛
⎝

t∫

0

η (τ ) e−s0τdτ

⎞
⎠ e−st+s0tdt.

On the other hand, the convolution integral of Eq. (94) can be calculated as:

s0

∞∫

0

⎛
⎝

t∫

0

η(τ)e−s0τdτ

⎞
⎠e−st+s0tdt � s0

∞∫

0

η(τ)e−s0τdτ

∞∫

0

es0te−stdt � s0η
∗
s0F

∗,

η∗
s0 �

(
c1
s0

+
c2

s0 + λ

)
, F∗ �

∞∫

0

es0te−stdt � 1

s − s0
. (95)

Using Eqs. (90) and (95), Eq. (93) can be simplified as:

η∗ + s0η
∗
s0F

∗ − α1F
∗ +
( s0

�

)2
F∗ − β1(cosϕt F(t))∗ � 0. (96)

Alternatively:

η∗ +
(
s0η

∗
s0 − α1 +

( s0
�

)2) 1

s − s0
− β1

2

(
1

s − s0 + iϕ
+

1

s − s0 − iϕ

)
� 0. (97)

If Eq. (92) is solved in the time domain too, Eq. (98) is derived:(
s0

(
c1
s0

+
c2

s0 + λ

)
− α1 +

( s0
�

)2) 1

iϕ + α0
− β1

iϕ + α0

2iϕα0 + α2
0

� 0. (98)

Comparing Eq. (97) and Eq. (98), the Laplace parameter in Eq. (97) can be replaced by i(ω0 + ϕ), that is,
s � i(ω0 + ϕ).
Replacing s � i(ω0 + ϕ) and ignoring η∗ � c1

i(ω0+ϕ)
+ c2

i(ω0+ϕ)+λ
, Eq. (97) can be rewritten as follows:

s0η
∗
s0 − α1 +

( s0
�

)2 − β1
(iϕ + α0)

2

2iϕα0 + α2
0

� 0, s0η
∗
s0 � c1 +

c2s0
s0 + λ

, s0 � iω0 − α0 (99)

Replacing s0 � iω0 − α0 in Eq. (99) and separating the real and imaginary parts, Eqs. (100) and (101) are
obtained:

c1 + c2
ω2
0 + α2

0 − α0λ

ω2
0 + (−α0 + λ)2

− α1 −
(ω0

�

)2
+
(α0

�

)2 − β1
3ϕ2α2

0 + α4
0

4ϕ2α2
0 + α4

0

� 0, (100)

c2
λω0

ω2
0 + (−α0 + λ)2

− 2
ω0

�

α0

�
− β1

2ϕ3α0

4ϕ2α2
0 + α4

0

� 0. (101)

Since α0 � �, λ � �, by ignoring
(
α0/�

)2, (λ/�)2, and (λ/�)
(
α0/�

)
, Eqs. (102–103) are derived:

c1 + c2 − α1 −
(ω0

�

)2 − 3

4
β1 ≈ 0or

ω0

�
≈
√
1 − α1 − 3

4
β1. (102)

Inserting ω0 in Eq. (103), α0 is obtained:

c2
λ

ω0
− 2

ω0

�

α0

�
− β1

ϕ

2α0
≈ 0. (103)
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Alternatively:

α0

�
≈

c2λ
�

+

√(
c2λ
�

)2 − 4β1
ϕ
�

(
1 − α1 − 3

4β1
)3/2

4 × (1 − α1 − 3
4β1
) . (104)

If the free vibration is studied (α1 � 0, β1 � 0), then ω0 ≈ � and α0 ≈ c2λ
2 , which is consistent with the

results of Ref. [2].
Substituting Eqs. (102) and (103) into Eq. (84), Eq. (105) is derived

w(x, t) � e(iω0−α0)t sin
πx

l
� e−α0t (cosω0t + i sinω0t)sin

πx

l
. (105)

Considering Eq. (104), the viscoelastic column is always stable if the conditions below are satisfied:

1 − α1 − 3

4
β1 > 0,

(
c2λ

�

)2

≥ 4β1
ϕ

�

(
1 − α1 − 3

4
β1

) 3
2

,

0 ≤ α1 < 1, β1 ≥ 0, 0 < ϕ < π/2. (106)

Finally, one can solve Eq. (107) for calculating βcr as follows:(
c2λ

�

)2

� 4βcr
ϕ

�

(
1 − α1 − 3

4
βcr

)3/2

. (107)
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