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Abstract Tremendous attention of researchers has been attracted by the unusual properties of quasicrystals.
In this paper, the static solution of functionally gradient multilayered cubic quasicrystal plates on an elastic
foundation with mixed boundary conditions is presented based on the linear elastic theory of quasicrystals. The
quasicrystal material properties are assumed to have an exponent-law variation along the thickness direction.
The elastic foundation is taken as the Winkler–Pasternak model, which is utilized to simulate the interaction
between the plate and the elastic medium. The multilayered quasicrystal structures with two opposite edges
simply supported and simply/clamped/free supported boundary conditions at other edges are considered. The
semi-analytical method, which makes use of the state-space method in the z-direction, the one-dimensional
differential quadrature method in the x-direction, and the series solution in the y-direction, is adopted to
convert the system of governing partial differential equations into the ordinary one. From the propagator
matrix, the static solution can be derived by imposing the boundary conditions on the top and bottom surfaces
of the multilayered plates. Finally, typical numerical examples are presented to verify the effectiveness of this
method and illustrate the influence of different boundary conditions, stacking sequence, foundation parameters,
and functionally gradient exponential factors on the phonon and phason variables.

1 Introduction

Quasicrystals (QCs) are new type of composite materials, and the ordered and quasi-periodic atomic arrange-
ment in QCs enables them to exhibit some complex structures and special properties in theoretical analysis
and experiments, such as high hardness, high toughness, high abrasion resistance, high resistivity, low friction
coefficient, and low thermal conductivity [1, 2]. These attractive properties in QCs enable them to have many
potential applications [3, 4], such as the solar thin film, thermoelectric converters, and structural enhance-
ment phase of composites. In particular, multilayered structures containing QC with excellent electrical and
mechanical properties would be gradually used in the new generation of information technology and semicon-
ductor fields, such as micro-electromechanical systems and nanoelectromechanical systems [5]. Therefore, it
is tremendously significant to investigate the multilayered QC plate actuators driven by electrostatic or piezo-
electric actuators, which can be helpful for analyzing and designing electromechanical systems. However, the
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mismatch of the material coefficients between the driven diaphragms may initiate the disadvantages of the
debonding, micro-cracks, and delamination.

Functionally graded materials (FGMs) are inhomogeneous composite materials, and the mechanical prop-
erties vary continuously over a macroscale geometrical dimension [6]. Different from the conventional lam-
inated materials, FGMs do not possess discernible internal phase boundaries, which directly avoids slight
stress concentration caused by kinds of external loads [7]. Thus, FGMs can be used to improve the structural
performance of multilayer plates. The structure of Al-Cu-Fe alloys solidified by chill casting was investigated
to reveal the peritectic reactions underlying the metastable to stable QC structure transformation [8]. After
that, a double-layer FG structure reinforced with QC approximant phases has been prepared to alternate the
gradient properties parts [9]. Similarly, Ferreira et al. [10] presented a new FG material to improve the wear
resistance at high temperatures. In order to fully exploit the merits of QC materials, the researchers also per-
formed some theoretical analyses of the FG QC structures. Based on the nonlocal elasticity theory, Zhang
et al. [11, 12] derived the exact solution for a simply supported FG one-dimensional (1D) hexagonal piezo-
electric QC nanoplate under surface mechanical loadings. According to the state-space method and propagator
matrix method, Huang et al. [13] obtained the static solution of the FG multilayered 1D piezoelectric QC
simply-supported plate subjected to mechanical and electrical load on its top surface. Li et al. [14] presented
the thermo-elastic analysis of simply supported FG two-dimensional (2D) QC plates under a thermal load by
using the pseudo-Stroh formalism and propagator matrix method. After that, Li et al. [15] investigated the
static deformation of the FGs layered 2D piezoelectric QC simply supported plate subjected to an electric
potential load by using the same methods. However, in the studies mentioned above, the FG QC laminates
were analyzed with simply supported boundary conditions. In addition, to the best of the authors’ knowledge,
no mechanical analysis of FG three-dimensional (3D) cubic QC with mixed boundary conditions has been
performed so far.

Although the pseudo-Stroh formalism and state-space method can be used to derive the exact solution for
the FG QC laminates with simply supported boundary conditions by using the general displacement and stress
solutions, the plates with the clamped-supported and mixed boundary conditions cannot be solved. However,
some semi-analytical numerical methods [16–18] can be used to derive the solutions of the static response and
free vibration for plates with arbitrary boundary conditions. The differential quadrature method (DQM) has
been approved as highly efficient for the rapid solution of differential equations governing boundary/initial
problems during the past decades [19, 20]. The basic idea of DQM is to approximate an unknown function
and its partial derivatives with respect to a spatial variable at any discrete point are converted into linear
weighted sums. Thus, it is convenient for this method to deal with arbitrary supporting conditions and reduce
the dimension of the final governing equations. Lü et al. [18] analyzed the free vibration of laminated plates
under mixed boundary conditions by using the DQM. Zhou et al. also utilized the same method to analyze the
dynamic response of piezoelectric plates with arbitrary boundary conditions[21]and the cylindrical bending for
piezoelectric laminates with imperfect interfaces [22].

Meanwhile, foundation models have been widely adopted by many researchers to simulate the interaction
between elastic media and plates in engineering fields, such as raft foundations, airport runways, storage tanks,
andmost civil engineering constructions [23, 24]. The basic idea of foundationmodels is an interface boundary
condition, and it can be treated by using DQM. For example, Yas and Jodaei [25] derived the dynamic behavior
of the annular plates on elastic foundations by utilizing the DQM and analyzed the influences of the material
property graded index, circumferential wave number, foundation parameters, and thickness on the natural
frequency of the annular plate with different boundary conditions. At the same time, Yas and Moloudi [26]
presented the solution of the free vibration for a piezoelectric ring plate with the same method and studied
the influence of the Winkler elastic foundation constant on the natural frequency of the plate under different
boundary conditions. After that, based on the 3D elasticity theory, Malekzadeh [27] investigated an accurate
solution procedure for the free vibration analysis of FG thick plates on a two-parameter elastic foundation.

In this paper, the state-space-based differential quadrature method (SS-DQM) is developed to investigate
the static response problems for FG multilayered 3D cubic QC thick plates with mixed boundary conditions
on a two-parameter elastic foundation. Based on the QC linear elasticity theory, FG QC plates with two
opposite edges simply supported and simply/clamped/free supported boundary conditions at the other edges
are considered. The DQM and series solution are utilized to translate the partial differential equation into an
ordinary differential equation. Making use of the boundary conditions of the top and bottom surfaces of the
laminate and foundation model, the solutions can be derived from the global propagator matrix. Finally, the
numerical examples are presented to verify the accuracy of SS-DQM and illustrate the influence of different
boundary conditions, stacking sequence, foundation parameters, and FG exponential factor on the phonon
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and phason variables. The numerical results indicate that the hybrid method is an effective tool to predict the
accurate behavior of FG QC composite laminated structures with mixed boundary conditions. Meanwhile, the
numerical results can also serve as a reference for verifying existing or future FG QC plate theories.

2 Mathematical formulations

Consider anM-layer FG 3D cubic QC rectangular plate with the total thickness H in the vertical direction and
horizontal dimensions x ×y � Lx ×Ly, as shown in Fig. 1. The atomic arrangement of the 3D cubic QC is
quasi-periodic in the x, y, and z directions. The relationship between the global Cartesian coordinate system
and the local material coordinate system of the plates is assumed to be (x, y, z) � (x1, x2, x3). The pth layer
with thickness hp � zp − zp−1 (p � 1, 2, 3, …, M) is bounded by the lower interface at z � zp−1 and the
upper interface at z � zp. It follows that the bottom and top surfaces of the laminate are z0 � 0 and zM � H,
respectively.

2.1 Basic equations

In this part, the material local coordinate system (x1, x2, x3) is utilized to describe the basic equations of 3D
cubic QC material. According to the QC linear elastic theory, the stress–strain relationship of the 3D cubic
QC can be written as [28, 29]

σ11�C11ε11 + C12ε22 + C12ε33 + R1w11 + R2w22 + R2w33,

σ22�C12ε11 + C11ε22 + C12ε33 + R2w11 + R1w22 + R2w33,

σ33�C12ε11 + C12ε22 + C11ε33 + R2w11 + R2w22 + R1w33,

σ23 � σ32 � 2C44ε23 + 2R3w23,

σ13 � σ31 � 2C44ε31 + 2R3w31,

σ12 � σ21 � 2C44ε12 + 2R3w12,

H11 � R1ε11 + R2ε22 + R2ε33 + K11w11 + K12w22 + K12w33,

H22 � R2ε11 + R1ε22 + R2ε33 + K12w11 + K11w22 + K12w33,

H33 � R2ε11 + R2ε22 + R1ε33 + K12w11 + K12w22 + K11w33,

H23 � H32 � 2R3ε23 + 2K44w23,

H13 � H31 � 2R3ε31 + 2K44w31,

H12 � H21 � 2R3ε12 + 2K44w12, (1)

where Cmn (m, n � 1, 2, 4), Kmn, and Ri (i � 1, 2, 3) represent the phonon, phason, and phonon–phason
coupling elastic coefficients, respectively; the phonon stresses and phason stresses are denoted by σ ij (j � 1,
2, 3) and Hij, respectively; εij and wij are defined as the phonon and phason strains, respectively.

Fig. 1 An M-layered FG 3D cubic QC plate
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The strain–displacement relations for 3D cubic QCs [30] are given by

ε11 � ∂u1
∂x1

, ε22 � ∂u2
∂x2

, ε33 � ∂u3
∂x3

, ε12 � ε21 � 1

2

(
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+
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∂x1

)
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(
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(
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2

(
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(
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2
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∂x3
+

∂w3

∂x2

)
, (2)

where ui and wi represent the phonon and phason displacements, respectively.
In the absence of body forces, the static equilibrium equations [28] are governed by

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
� 0,

∂σ21

∂x1
+

∂σ22
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∂x3
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∂H11

∂x1
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∂H12

∂x2
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∂H13

∂x3
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∂H21

∂x1
+

∂H22

∂x2
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It is assumed that the material properties of FG QC are exponentially distributed along the x3-direction.
So, the material constants in Eq. (1) can be rewritten as

F(x3) � F0eηx3, (4)

where η is the exponential factor characterizing the degree of the material gradient in the x3-direction; F0

indicates the initial values of material constants in Eq. (1). It follows that η � 0 represents the homogeneous
QC material case.

2.2 General solution

The Cartesian coordinate system (x, y, z) is utilized to describe the static response of QC laminates. The
state-space approach is based on the mixed equations of the solid mechanics in which ux, uy, wx, wy, σ zz, Hzz,
σ xz, σ yz, Hxz, Hyz, uz, wz are taken as basic unknowns. Eliminating σ xx, σ yy, σ xy, Hxx, Hyy, Hzz from Eqs.
(1)–(3) and following the process of the state-space method, the state equation can be written as

∂

∂z
θ � D`, (5)

where θ is the basic unknown vector and is also called the state vector. The coefficient matrix D is

D �
[

0 D1
D2 0

]
. (6)

The submatrices D1 and D2 in Eq. (6) are

D1 �

⎡
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,
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D2 �
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(7)

where the symmetric part of the matrix is expressed as Sym. The coefficients in Eq. (7) and the following
equations can be found in Eq. (A.1) of “Appendix A”.

The stress components eliminated in Eq. (5) can be written as
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∂wy
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The boundary conditions in the y-direction for the QC laminates can be written as follows:

y � 0, Ly : ux � uz � wx � wz � σyy � Hyy � 0. (9)

The displacement and stress variables, which satisfy these boundary conditions [29, 31], can be written as⎡
⎢⎢⎢⎢⎢⎣

ux (x, y, z)
uy(x, y, z)
wx (x, y, z)
wy(x, y, z)
σzz(x, y, z)
Hzz(x, y, z)

⎤
⎥⎥⎥⎥⎥⎦

�
∞∑
l�1

⎡
⎢⎢⎢⎢⎢⎣

ũx (x, z) sin(qy)
ũ y(x, z) cos(qy)
w̃x (x, z) sin(qy)
w̃y(x, z) cos(qy)
σ̃zz(x, z) sin(qy)
H̃zz(x, z) sin(qy)

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

σxz(x, y, z)
σyz(x, y, z)
Hxz(x, y, z)
Hyz(x, y, z)
uz(x, y, z)
wz(x, y, z)

⎤
⎥⎥⎥⎥⎥⎦

�
∞∑
l�1

⎡
⎢⎢⎢⎢⎢⎣

σ̃xz(x, z) sin(qy)
σ̃yz(x, z) cos(qy)
H̃xz(x, z) sin(qy)
H̃yz(x, z) cos(qy)
ũz(x, z) sin(qy)
w̃z(x, z) sin(qy)

⎤
⎥⎥⎥⎥⎥⎦

, (10)

where ũx , ũ y, w̃x , w̃y, σ̃zz, H̃zz, σ̃xz, σ̃yz, H̃xz, H̃yz, ũz, w̃z are the unknown functions; q � lπ /Ly with l being
the number of superposition.

Incorporating Eq. (5) with Eq. (10) yields

∂

∂z
θ̃ � D̃θ̃ , (11)

where ˜̀(x, z) �
[
ũx , ũ y, w̃x , w̃y, σ̃zz, H̃zz, σ̃xz, σ̃yz, H̃xz, H̃yz, ũz, w̃z

]T
, in which the superscript ‘T’ denotes

transpose; D̃ is the coefficient matrix.
Substituting Eq. (10) into Eq. (8), the equations can be rewritten as

σ̃xx � −a8
∂ ũx
∂x
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∂x
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a6
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∂x
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∂x
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a6
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a6
H̃zz,

σ̃xy � a2qũx + a2
∂ ũ y

∂x
+ a3qw̃x + a3

∂w̃y

∂x
,
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H̃xx � a1
∂ ũx
∂x

+ (a12 + a3)qũy − a16
∂w̃x

∂x
+ (a17 + a4)qw̃y − a18

a6
σ̃zz − a19

a6
H̃zz,

H̃yy � a1
∂ ũx
∂x

+ (a12 + a3)qũy − a16
∂w̃x

∂x
+ (a17 + a4)qw̃y − a18

a6
σ̃zz − a19

a6
H̃zz,

H̃xy � a3qũx + a3
∂ ũ y

∂x
+ a4qw̃x + a4

∂w̃y

∂x
. (12)

However, the solutions of the same form in Eq. (10) cannot satisfy the clamped/free-supported boundary
conditions in the x-direction. Therefore, it is difficult to derive an exact solution for the FG QC plate. Here,
the DQM is used to deal with this problem. And the basic idea of this method is to approximate an unknown
function, and its partial derivativeswith respect to a spatial variable at any discrete point are converted into linear
weighted sums. So the partial differential equation in Eq. (11) can be translated into an ordinary differential
equation. The nth-order derivative of an unknown function f (x) at discrete point r can be written as

∂n f (x)

∂xn

∣∣∣∣
x�xr

�
N∑

k�1

X (n)
rk f (xk) (r � 1, 2, . . . , N ), (13)

whereN is the number of sampling points; f (xk) is the function value at the discrete point r;X
(n)
rk is the nth-order

weighting coefficient matrix.
Five kinds of discrete patterns are taken in Refs. [32, 33]. Here, the Chebyshev–Gauss–Lobatto grid space

model in the in-plane discrete direction is adopted, as follows:

xr � Lx

2

[
1 − cos

(
r − 1

N − 1
π

)]
, r � 1, 2, 3, . . . N , (14)

Thus, the mixed boundary conditions in the x-direction for the FG QC plate can be written as

Simply supported (S) : ũ yd � ũzd � w̃yd � w̃zd � σ̃xxd � H̃xxd � 0, (15)

Clamped (C) : ũxd � ũ yd � ũzd � w̃xd � w̃yd � w̃zd � 0, (16)

Free (F) : σ̃xx � σ̃xy � σ̃xz � H̃xx � H̃xy � H̃xz � 0, (17)

where d � 1 and N ; ‘S’ indicates the simply-supported boundary condition, ‘C’ is the clamped-supported
boundary condition, and ‘F’ is the free-supported boundary condition. For example, ‘CSCS’ denotes a plate
with the clamped-supported boundary condition at x � 0 and x � Lx, and others are simply supported at y �
0 and y � Ly, respectively.

Using DQM to the state space Eq. (11), the new state equations at any discrete points can be rewritten as

dũxr
dz

� a4
a1

σ̃xzr − a3
a1

H̃xzr +

(
a23 − a2a4

a1

)
N∑

k�1

X (1)
rk ũzk,

dũ yr

dz
� a4

a1
σ̃yzr+

a4
a1

H̃yzr +

(
a23 − a2a4

a1

)
qũzr ,

dw̃xr

dz
� −a3

a1
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a2
a1
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(
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a1
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k�1

X (1)
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dσ̃zzr
dz

� −
N∑

k�1

X (1)
rk σ̃xzr + qσ̃yzr ,

dH̃zzr

dz
� −

N∑
k�1

X (1)
rk H̃xzr + q H̃yzr ,
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dσ̃xzr
dz

� a8

N∑
k�1

X (2)
rk ũxk + a2q

2ũxr − a9q
N∑

k�1

X (1)
rk ũ yk + a11
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− a12q
N∑
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a13
a6
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a14
a6
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� a9q
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rk ũxk − a2
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X (2)
rk ũ yk − a8q

2ũ yr + a12q
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k�1

X (1)
rk w̃xk

− a3

N∑
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X (2)
rk w̃yk − a11q
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a13
a6

qσ̃zzr +
a14
a6

q H̃zzr ,

dH̃xzr

dz
� a11

N∑
k�1

X (2)
rk ũxk + a3q

2ũxr − a12q
N∑

k�1

X (1)
rk ũ yk + a16
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X (2)
rk w̃xk + a4q

2w̃xr

− a17q
N∑
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X (1)
rk w̃yk +

a18
a6

N∑
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X (1)
rk σ̃zzk +

a19
a6

N∑
k�1

X (1)
rk H̃zzk,

dH̃yzr

dz
� a12q

N∑
k�1

X (1)
rk ũxk − a3

N∑
k�1

X (2)
rk ũ yk − a11q

2ũ yr + a17q
N∑

k�1

X (1)
rk w̃xk − a4

N∑
k�1

X (2)
rk w̃yk

− a16q
2w̃yr +

a18
a6

qσ̃zzr +
a19
a6

q H̃zzr ,

dũzr
dz

� a13
a6

N∑
k�1

X (1)
rk ũxk − a13

a6
qũyr +

a18
a6

N∑
k�1

X (1)
rk w̃xk − a18

a6
qw̃yr + a20σ̃zzr + a21 H̃zzr ,

dw̃zr

dz
� a14

a6

N∑
k�1

X (1)
rk ũxk − a14

a6
qũyr +

a19
a6

N∑
k�1

X (1)
rk w̃xk − a19

a6
qw̃yr + a21σ̃zzr + a5 H̃zzr . (18)

Similarly, at the same discrete point, Eq. (12) can be rewritten as

σ̃xxr � −a8

N∑
k�1

X (1)
rk ũxk + (a9 + a2)qũyr − a11

N∑
k�1

X (1)
rk w̃xk+(a12 + a3)qw̃yr − a13

a6
σ̃zzr − a14

a6
H̃zzr ,

σ̃yyr � −(a9 + a2)
N∑

k�1

X (1)
rk ũxk + a8qũyr − (a12 + a3)

N∑
k�1

X (1)
rk w̃xk + a11qw̃yr − a13

a6
σ̃zzr − a14

a6
H̃zzr ,

σ̃xyr � a2qũxr + a2

N∑
k�1

X (1)
rk ũ yk + a3qw̃xr + a3

N∑
k�1

X (1)
rk w̃yk,

H̃xxr � a1

N∑
k�1

X (1)
rk ũxk + (a12 + a3)qũyr − a16

N∑
k�1

X (1)
rk w̃xk + (a17 + a4)qw̃yr − a18

a6
σ̃zzr − a19

a6
H̃zzr ,

H̃yyr � a1

N∑
k�1

X (1)
rk ũxk + (a12 + a3)qũyr − a16

N∑
k�1

X (1)
rk w̃xk + (a17 + a4)qw̃yr − a18

a6
σ̃zzr − a19

a6
H̃zzr ,

H̃xyr � a3qũxr + a3

N∑
k�1

X (1)
rk ũ yk + a4qw̃xr + a4

N∑
k�1

X (1)
rk w̃yk . (19)

Three boundary conditions of SSSS, CSCS, CSSS, and CSFS are considered in this paper, and the state
equations which satisfy the corresponding boundary conditions are listed in Eqs. (A.2)–(A.5) of “Appendix
A”.

The mechanical boundary conditions on the top and bottom surfaces of the plate can be expressed as
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z � H : σ̃xzr � σ̃yzr � H̃xzr � H̃yzr � H̃zzr � 0, σ̃zzr � σ0 sin(πxr/Lx ) sin qy,

z � 0 : σ̃xzr � σ̃yzr � H̃xzr � H̃yzr � H̃zzr � 0, σ̃zzr � kwũzr − kg

(
N−1∑
k�2

X (2)
rk ũzk − q2ũzr

)
, (20)

where kw and kg are the Winkler layer and shearing layer elastic coefficients of the elastic medium; σ 0 is the
phonon stress amplitude.

For the pth layer of the plate, Eq. (18) can be written in the following unified matrix form:

d

dz
δ(p) � T(p)δ(p), (21)

where δ(p) � [uTx ,u
T
y ,w

T
x ,w

T
y , σ

T
zz,H

T
zz, σ

T
xz, σ

T
yz,H

T
xz,H

T
yz,u

T
z ,w

T
z ],, such as uTx � ũxr ; T(p) is the coeffi-

cient matrix of the pth layer at the appropriate discrete points.
According to the theory of ordinary differential equations, the general solution of Eq. (21) is

δ(p)(z) � exp
[
T(p)(z − z p−1)

]
δ(p)

(
z p−1

) (
z p−1 ≤ z ≤ z p

)
. (22)

Letting z � zp in Eq. (22), we find that

δ
(p)+
1 � M(p)δ

(p)−
0 , (23)

where M(p) � exp
[(
z p − z p−1

)
T(p)

]� exp
[
h pT(p)

]
, and ‘−’ and ‘+’ represent the lower and upper surface

of the pth layer, respectively.
If the interfaces are in perfect bonding condition, the z-direction tractions and displacements are continuous

through this interface, the propagator relation can be expressed as

δ
(M)+
1 � P(1)−

0 , (24)

where the matrix P � M(M)M(M−1) · · ·M(p) · · ·M(1) � ∏1
p�M M(p) is the total propagator matrix.

Equation (24) can be rewritten as

δ
(M)
1 �

[
U(H )
Y(H )

]
�

[
P11 P12
P21 P22

]
δ
(1)
0 �

[
P11 P12
P21 P22

][
U(0)
Y(0)

]
, (25)

where U(z) �
[
uTx ,u

T
y ,u

T
z ,w

T
x ,w

T
y ,w

T
z

]T
,Y(z) �

[
σT
xz, σ

T
yz, σ

T
zz,H

T
xz,H

T
yz,H

T
zz

]T
.

Incorporating Eq. (20) with Eq. (25), the solution of the FG 3D cubic QC laminate can be obtained.

3 Numerical examples

In this Section, some typical numerical examples are presented for the static response of the FG multilayered
3D cubic QC plates on an elastic foundationwithmixed boundary conditions. Themultilayer plate is composed
of three single plates, and each layer has the same thickness. The dimensions of the plates are Lx ×Ly ×H
� 1 mm×1 mm×0.3 mm. According to the QC material coefficients shown in literature [29], two kinds of
material properties (QC1 and QC2) are listed in Table 1. These material parameters completely match the QC
elastic deformation energy density [30, 34], so they can be used to simulate the variation of the QC plates.
For the FGM laminate, five different exponential factors (η � − 10, − 5, 0, 5, 10) are investigated, and the
material properties of each layer are exponential distributions along the thickness direction shown in Fig. 2.
In this paper, the elastic coefficients are defined as kw � Kw ×Cmax/Lx and kg � Kg ×Cmax ×H, where Cmax
is the maximum elastic coefficient of the bottom surface of the plate.
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Table 1 Material properties (C0
mn , K

0
mn , and R0

i in 109 N/m2)

C0
11 C0

12 C0
44 K 0

11 K 0
12 K 0

44 R0
1 R0

2 R0
3

QC1 112.1 60.3 32.8 60 20 10 5 − 2 7
QC2 40 20 30 10 7 6 − 1 0.7 3
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Fig. 2 Variation of the FGM proportional coefficients for η � − 10, − 5, 0, 5, and 10
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Fig. 3 Normalized displacements and stresses for the QC1/QC2/QC1 plate

3.1 Validation

In order to verify the validity and accuracy of SS-DQM, a 3D cubic QC laminate with simply supported
boundary conditions is considered. The material elastic coefficients, the shape and size, and loading and
boundary conditions for this plate are consistent with those in the literature [29]. In addition, the FG exponential
factor is taken as η � 0, the foundation parameters are taken as Kw � Kg � 0, and the horizontal coordinate is
fixed at (x, y)� (0.75Lx, 0.75Ly). The phonon displacement uz, phason displacementwz, phonon stress σ zz, and
phason stress Hzz are normalized by their maximum among these four variables along the thickness direction.
Figure 3 shows the variation of the displacements and stresses for the QC1/QC2/QC1 plate with continuous
interface conditions under the mechanical load. It can be proved that the solutions by using SS-DQM are in
good agreement with the results of the literature [29]. Thus, the method in this paper has high precision and
good convergence.

In the above calculation process, the discrete points are taken asN � 13. However, for the different discrete
points N, the values of the relative error t of the field variables are listed in Table 2.

The relative error t is defined as

t � α1 − α2

α1
× 100%, (26)
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Table 2 The relative error t (%)

H N ux uz wx wz σ xz Hxz σ xx Hxx

0.1 5 1.406915 0.498020 1.137555 0.384173 1.307458 2.964223 0.091961 0.050030
7 0.017277 0.000979 0.015903 0.001006 0.016753 0.070485 0.000492 0.000233
9 0.000140 0.000011 0.000132 0.000011 0.000137 0.000161 0.000004 0.000002
11 0 0 0.000001 0 0.000001 0.000001 0 0

0.3 5 1.492743 0.540788 1.166653 0.486494 1.311766 4.620004 0.177884 0.061949
7 0.017762 0.001016 0.018108 0.001031 0.016940 0.126172 0.001704 0.000292
9 0.000148 0.000014 0.000141 0.000019 0.000146 0.000184 0.000011 0.000004
11 0.000001 0 0.000001 0 0.000001 0.000002 0 0

0.5 5 1.554029 0.600334 1.432899 0.331570 1.323954 6.398266 0.367182 0.075618
7 0.017303 0.001087 0.022998 0.001045 0.017231 0.206222 0.002809 0.001638
9 0.000157 0.000019 0.000150 0.000029 0.000155 0.000251 0.000013 0.000007
11 0.000001 0.000001 0.000001 0.000001 0.000001 0.000003 0.000001 0.000001
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Fig. 4 Effect of the Kg on the phonon displacement uz (10−12 mm): a Kg � 0, b Kg � 0.01, c Kg � 0.1, and d Kg � 1
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Fig. 5 Effect of the Kg on the phason displacement wz (10−12 mm): a Kg � 0, b Kg � 0.01, c Kg � 0.1, and d Kg � 1

where α1 is the exact solution of the plate in the literature [29]; α2 is the solution of SS-DQM for the plate
when N is given.

As shown in Table 2, ‘0’ denotes t ≤0.0000005%. Themaximal relative error of the present solution atN �
11 is only about t � 0.000003% for the solution in the literature [29]. Thus, this high-precision method can be
used to satisfy the requirements. Furthermore, for the same thickness of the plates, the solutions become more
accurate with the increase of N. However, when N ≥23, numerical instability is encountered. In addition, with
the increase of the plate thickness, the values of t keep getting larger. This feature indicates that the high aspect
ratio of H/Ly will cause numerical instability. Thus, numerical instabilities are always encountered during the
present solution procedure in the case of the high aspect ratio of H/Ly and large discrete point number N. In
order to ensure the accuracy and convergence of this method, the discrete points are taken as N � 13 in the
following examples.

3.2 The effect of the elastic coefficients on FG QC plates with boundary condition SSSS

In this part, we present the solution of the FG QC1/QC1/QC1 plate on an elastic foundation with boundary
conditions SSSS. The FG exponential factor is set as η � 5. The foundation parameters are taken as Kw � 0.1
and Kg � 0, 0.01, 0.1, and 1.

Figures 4 and 5 present the contour plots of uz and wz for the plate on the x–z plane with y � 0.5Ly,
respectively. The maximummagnitudes of uz (Fig. 4a–d) and wz (Fig. 5a–d) exist at the center of the x–y plane
and decrease with the increase of Kg. This feature indicates that Kg has a large effect on uz, and wz, and the
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Fig. 6 Effect of the Kg on the phonon stress σ zz (N/m2): a Kg � 0, b Kg � 0.01, c Kg � 0.1, and d Kg � 1

rigidity of the plate is constantly getting stronger. The distributions of uz and wz of the plate are symmetric at
x � 0.5 mm. It is observed that the magnitude of wz is larger than that of uz with the increase of Kg, so Kg has
a larger impact on wz.

Figures 6 and 7 present the contour plots of σ zz and Hzz for the plate on the x–z plane with y � 0.5Ly,
respectively. σ zz (Figs. 6 (a)-(d)) andHzz (Figs. 7 (a)-(d)) obviously change with the different Kg, and they are
sensitive to the values ofKg. The negative values ofHzz occur at 0<Kg <Cmax. In addition, stress concentration
appears in the distribution ofHzz (Fig. 7 (b)). Thus,Hzz is sensitive to theKg, and the distribution ofHzz exhibits
special characteristics. The values of Kg have a significant influence on σ zz and Hzz.

3.3 The effect of FG exponential factors on FG QC plates with boundary condition CSCS

In this part, we present the solution of the FG QC1/QC2/QC1 plate on an elastic foundation with boundary
conditions CSCS. The FG exponential factors are set as η � − 10,− 5, 0, 5, and 10. The foundation parameters
are taken as Kw � 0.2 and Kg � 0.02. To show the distribution of field variables along the thickness direction,
the horizontal coordinate is fixed at (x, y) � (0.25Lx, 0.5Ly).

The variation of the phonon and phason displacements of the plate along the thickness direction under the
mechanical load is presented in Fig. 8. On the top and bottom surfaces of the plate, the absolute values of
these displacements (Figs. 8 (a)-(f)) decrease with the increase of η. Different from the plate with boundary
condition SSSS, the values of ux and uy (Figs. 8 (a) and (b)) are not equal since the plate has different boundary
conditions. The distribution of uz (Fig. 8 (c)) decreases with the increase of η. This feature indicates that the
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Fig. 7 Effect of the Kg on the phonon stress Hzz (10−3 N/m2): a Kg � 0, b Kg � 0.01, c Kg � 0.1, and d Kg � 1

rigidity of the plate is constantly getting stronger. As same as ux and uy, the values of wx (Fig. 8 (d)) and wy
(Fig. 8 (e)) are also not equal. Meanwhile, the value of wy is less affected by η than that of wx. The distribution
of wz (Fig. 8 (f)) has a large variation with the difference of η, and wz is sensitive to η.

The variation of the phonon and phason stresses of the plate along the thickness direction under the
mechanical load is presented in Fig. 9. σ xx is discontinuous between different material layers in Fig. 9 (a).
Based on the classic laminate theory, only the local stress of the basic equation of the QC is considered. But in
fact, the stress state also includes the strong interlayer stress between the interfaces. The high-interlayer stress
is considered to be one of the special failure mechanisms of composite materials in engineering applications.
The values of σ xz and σ yz (Figs. 9 (b) and (c)) increase with the increase of η at z � 0.15 mm. Hxx (Fig. 9 (d))
is discontinuous at z � 0.1 mm, and the interlayer stress value decreases with the increase of η. The values of
Hxz and Hyz (Figs. 9 (e) and (f)) increase with the increase of η at z � 0.2 mm.

3.4 The effect of the stacking sequence on FG QC plates with boundary condition CSSS

In this part, we present the solution of six kinds of stacking sequence plates (QC1/QC1/QC1, QC1/QC1/QC2,
QC1/QC2/QC1,QC2/QC1/QC2,QC2/QC2/QC1, andQC2/QC2/QC2,) on an elastic foundationwith boundary
conditions CSSS. The FG exponential factor is set as η � − 5. The foundation parameters are taken as Kw �
Kg � 0. To show the distribution of the field variables along the thickness direction, the horizontal coordinate
is fixed at (x, y) � (Lx, 0.5Ly).
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Fig. 8 Variation of the phonon and phason displacements for a QC1/QC2/QC1 plate: a ux , b uy, c uz, d wx , e wy, and f wz
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Fig. 9 Variation of the phonon and phason stresses for a QC1/QC2/QC1 plate: a σ xx , b σ yz, c σ xz, d Hxx , e Hyz, and f Hxz
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Fig. 10 Variation of the phonon and phason displacements for six kinds of plates: a ux and b wx

0.0

0.1

0.2

0.3

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
σxz (N/m2)

z (
m

m
)

 QC1/QC1/QC1
 QC1/QC1/QC2
 QC1/QC2/QC1
 QC2/QC1/QC2
 QC2/QC2/QC1
 QC2/QC2/QC2

(a)

0.0

0.1

0.2

0.3

-3 -2 -1 0 1 2
σxy (N/m2)

z (
m

m
)

 QC1/QC1/QC1
 QC1/QC1/QC2
 QC1/QC2/QC1
 QC2/QC1/QC2
 QC2/QC2/QC1
 QC2/QC2/QC2

(b)

0.0

0.1

0.2

0.3

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2
Hxz (10-2N/m2)

z (
m

m
)

 QC1/QC1/QC1
 QC1/QC1/QC2
 QC1/QC2/QC1
 QC2/QC1/QC2
 QC2/QC2/QC1
 QC2/QC2/QC2

(c)

0.0

0.1

0.2

0.3

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Hxy (10-1N/m2)

z (
m

m
)

 QC1/QC1/QC1
 QC1/QC1/QC2
 QC1/QC2/QC1
 QC2/QC1/QC2
 QC2/QC2/QC1
 QC2/QC2/QC2

(d)

Fig. 11 Variation of the phonon and phason stresses for six kinds of plates: a σ xz, b σ xy, c Hxz, and d Hxy
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Fig. 12 Variation of the phonon and phason displacements for a QC2/QC2/QC2 plate: a uy, b uz, c wy, and d wz

The variation of the phonon and phason displacements of these plates along the thickness direction under
the mechanical load is presented in Fig. 10. It can be observed that ux and wx (Figs. 10 (a) and (b)) are
continuous at the interface between layers. Furthermore, the stacking sequence has little effect on ux and wx
and does not change their magnitude and direction at the top and bottom surfaces of the laminates. It should
be noted that the responses of uy, uz, wy, and wz are not given because their values are zero at x � Lx. This
feature is consistent with the linear elastic theory of QCs.

The variation of the phonon and phason stresses of these plates along the thickness direction under the
mechanical load is presented in Fig. 11. The solution strictly satisfies the basic equation of 3D cubic QC, and
the distribution of field variables at any position of the plate can be presented. Here, Figs. 11 (a)-(d) present the
accurate stress solutions at x � Lx, which also indicates that these solutions have theoretical significance. The
distribution of σ xz along the z-direction is not symmetrical in Fig. 11 (a). The distributions of these stresses at x
� Lx are consistent with the in-plane distribution trend, and the value is larger at the boundary. σ xy (Fig. 11 (b))
is the same as σ xx and σ yy, which is discontinuous between different material layers. If the material properties
of each layer are the same, the stress is continuous for these plates. The stacking sequences have a larger impact
onHxz (Fig. 11 (c)), which changes the overall distribution ofHxz. Similarly,Hyx (Fig. 11 (d)) is discontinuous
between two adjacent QC material layers. For the above physical variables, if DQM will be also utilized to
discretize domains along the y-direction, the superposition l will not appear in the formulations of the exact
solution.
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Fig. 13 Variation of the phonon and phason stresses for a QC2/QC2/QC2 plate: a σ yz, b σ zz, c Hyz, and d Hzz

3.5 The effect of the Winkler layer coefficients on FG QC plates with boundary condition CSFS

In this part, we present the solution of the QC2/QC2/QC2 plate on an elastic foundation with boundary
conditions CSFS. The FG exponential factor is set as η � 0. The foundation parameters are taken as Kw �
0, 0.01, 0.1, 1, and Kg � 0. To show the distribution of the field variables along the thickness direction, the
horizontal coordinate is fixed at (x, y) � (0.25Lx, 0.5Ly).

The variation of the phonon and phason displacements of the plate along the thickness direction under the
mechanical load is presented in Fig. 12. With the increase of Kw, the value of uy and uz (Figs. 12 (a) and (b))
on the bottom and top surface keep decreasing, but the value of wy and wz (Figs. 12 (c) and (d)) increases. The
displacements are sensitive to Kw, and the overall distributions of displacements along the thickness direction
are changed at Kw � 1.

The variation of the phonon and phason stresses of the plate along the thickness direction under the
mechanical load is presented in Fig. 13. With the increase of Kw, the stiffness of the foundation gradually
increases, and the amplitude of shear stress σ yz (Fig. 13 (a)) gradually decreases. The maximum value of σ zz
(Fig. 13 (b)) is not on the top surface of this plate, and Kw changes the position of the maximum value in the
plate. This feature indicates that the overall bending stiffness of the laminate is continuously increasing due
to the gradual stronger foundation stiffness. When Kw � Cmax, the overall distribution of Hyz (Fig. 13 (c)) is
changed. The value of Hzz (Fig. 13 (d)) at z � 0.15 mm is the maximum, and Kw does not change the position
of the maximum value in this plate.
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Fig. 14 Variation of the phonon and phason displacements for a QC2/QC1/QC2 plate: a uy, b uz, c wy, and d wz

3.6 FG QC laminate with boundary conditions SSSS, CSCS, CSSS, and CSFS

In this part, we present the solution of the FG QC2/QC1/QC2 plate on an elastic foundation with boundary
conditions SSSS,CSCS,CSSS, andCSFS. The FGexponential factor is set asη � 0. The foundation parameters
are taken as Kw � Kg � 0. To show the distribution of the field variables along the thickness direction, the
horizontal coordinate is fixed at (x, y) � (0.25Lx, 0.5Ly).

The variation of the phonon and phason displacements of the plate along the thickness direction under
the mechanical load is presented in Fig. 14. It can be observed that the different boundary conditions have an
obvious influence on uy and wy (Figs. 14 (a) and (c)). The maximum magnitudes of uz (Fig. 14 (b)) exist at the
top surface of the plate. In addition, uz and wz (Fig. 14 (d)) decrease with the increase of clamped-supported
boundary conditions except for boundary condition CSFS. This feature indicates that the clamped-supported
boundary conditions have a larger effect on uz andwz, and the rigidity of the plate is constantly getting stronger.

The variation of the phonon and phason stresses of the plate along the thickness direction under the
mechanical load is presented in Fig. 15. The value of σ yz (Fig. 15 (a)) with boundary conditions SSSS is larger
than that of σ yz with CSCS, CSSS, and CSFS. This feature indicates that the clamped-supported boundary
conditions are more constrained than the simply supported edge for the phonon stresses, and it can bear more
load. The maximum value of σ zz (Fig. 15 (b)) is not on the top surface of this plate, and σ zz is sensitive to the
free-supported boundary condition. The distribution of Hzz (Fig. 15 (d)) with SSSS is significantly different
from that of Hzz with CSCS, CSSSS, and CSFS.
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Fig. 15 Variation of the phonon and phason stresses for a QC2/QC1/QC2 plate: a σ yz, b σ zz, e Hyz, and f Hzz

4 Conclusions

In this paper, the related formulations of the static response of FG multilayered 3D cubic QC thick plates on
an elastic foundation based on the linear elastic theory of QCs were derived using the SS-DQM. Since no
assumptions on stresses and displacements have been employed, DQM has the superiority to yield results for
FG plates with clamped-supported or simply supported boundary conditions. Using the state-space method
along the thickness direction further allows one to deal with FG plates with an arbitrary thickness distribution
of the material properties. The propagator matrix can be applied to connect the field variables at the upper and
lower interfaces of each layer. Making use of the top surface boundary condition and the elastic foundations
as a boundary condition on the bottom surface, the static solutions can be derived from the global propagator
matrix. The numerical examples are presented to verify the accuracy of SS-DQM and illustrate the influence
of different boundary conditions, stacking sequence, foundation parameters, and FG exponential factor on the
phonon and phason variables. Finally, some significant features are listed below:

(i) Numerical examples in the literature prove that SS-DQM has high precision and good convergence in
this paper. In addition, it is proved that the high aspect ratio of H/Ly and large discrete point number N
are the causes of numerical instability.

(ii) The elastic coefficients Kw, Kg, and FG exponential factor η have a larger effect on the displacements
uz and wz, and the rigidity of the plate is constantly getting stronger with the increase of Kw, Kg, and η.

(iii) The stresses σ xx, σ yy, σ xy, Hxx, Hyy, and Hyz are discontinuous at the interface between the layers
when the materials of two adjacent layers of the laminated board are different. This interface stress
discontinuity is affected by the strong interlayer stress. Furthermore, Kg, Kw, and η have a larger effect
on these stresses.
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The semi-analytical method constructed in this paper is of high precision and fast convergence for deriving
the solutions of the FG 3D cubic QC laminates with mixed boundary conditions. Some special cases such as
multi-field coupled QC, FG 1D, 2D QC, and piezoelectric QC plates could all be investigated according to the
present solutions. Furthermore, the methods and numerical results in this paper can be utilized to validate the
accuracy of other numerical methods and serve for the analysis and design of intelligent QCmaterial laminates.

Funding This work was supported by the National Natural Science Foundation of China (Grant Numbers 11972365, 12102458,
and 11972354) and China Agricultural University Education Foundation (Grant Number 1101-240001).
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dH̃xzr

dz
� a11

N−1∑
k�2

X (2)
rk ũxk + a3q

2ũxr − a10
a6

N−1∑
k�2

frk ũxk − a12q
N−1∑
k�2

X (1)
rk ũ yk + a16

N−1∑
k�2

X (2)
rk w̃xk + a4q

2w̃xr

− a15
a6

N−1∑
k�2

frkw̃xk − a17q
N−1∑
k�2

X (1)
rk w̃yk +

a18
a6

N−1∑
k�2

X (1)
rk σ̃zzk +

a19
a6

N−1∑
k�2

X (1)
rk H̃zzk(2 ≤ r ≤ N − 1),

dH̃yzr

dz
� a12q

N−1∑
k�2

X (1)
rk ũxk − a3

N−1∑
k�2

X (2)
rk ũ yk − a11q

2ũ yr + a17q
N−1∑
k�2

X (1)
rk w̃xk − a4

N−1∑
k�2

X (2)
rk w̃yk

− a16q
2w̃yr +

a18
a6

qσ̃zzr +
a19
a6

q H̃zzr (2 ≤ r ≤ N − 1),

dũzr
dz

� a13
a6

N−1∑
k�2

X (1)
rk ũxk − a13

a6
qũyr +

a18
a6

N−1∑
k�2

X (1)
rk w̃xk − a18

a6
qw̃yr + a20σ̃zzr + a21 H̃zzr (2 ≤ r ≤ N − 1),

dw̃zr

dz
� a14

a6

N−1∑
k�2

X (1)
rk ũxk − a14

a6
qũyr +

a19
a6

N−1∑
k�2

X (1)
rk w̃xk − a19

a6
qw̃yr + a21σ̃zzr + a5 H̃zzr (2 ≤ r ≤ N − 1).

(A.3)

State equations for CSSS

dũxr
dz

� a4
a1

σ̃xzr − a3
a1

H̃xzr +

(
a23 − a2a4

a1

)
N−1∑
k�2

X (1)
rk ũzk(2 ≤ r ≤ N ),

dũ yr

dz
� a4

a1
σ̃yzr +

a4
a1

H̃yzr +

(
a23 − a2a4

a1

)
qũzr (2 ≤ r ≤ N − 1),

dw̃xr

dz
� −a3

a1
σ̃xzr +

a2
a1

H̃xzr +

(
a23 − a2a4

a1

)
N−1∑
k�2

X (1)
rk w̃zk(2 ≤ r ≤ N ),

dw̃yr

dz
� −a3

a1
σ̃yzr +

a2
a1

H̃yzr +

(
a23 − a2a4

a1

)
qw̃zr (2 ≤ r ≤ N − 1),

dσ̃zzr
dz

� −
N∑

k�2

X (1)
rk σ̃xzr + qσ̃yzr − a2

N−1∑
k�2

f1rk ũzk − a3

N−1∑
k�2

f1rkw̃zk(2 ≤ r ≤ N − 1),

dH̃zzr

dz
� −

N∑
k�2

X (1)
rk H̃xzr + q H̃yzr − a3

N−1∑
k�2

f1rk ũzk − a4

N−1∑
k�2

f1rkw̃zk(2 ≤ r ≤ N − 1),

dσ̃xzr
dz

� a8

N∑
k�2

X (2)
rk ũxk + a2q

2ũxr − a7
a6

N∑
k�2

f1rk ũxk − a8

N∑
k�2

fNrk ũxk − a9q
N−1∑
k�2

X (1)
rk ũ yk

+ a11

N∑
k�2

X (2)
rk w̃xk + a3q

2w̃xr − a10
a6

N∑
k�2

f1rkw̃xk − a11

N∑
k�2

fNrkw̃xk − a12q
N−1∑
k�2

X (1)
rk w̃yk

+
a13
a6

N−1∑
k�2

X (1)
rk σ̃zzk +

a14
a6

N−1∑
k�2

X (1)
rk H̃zzk(2 ≤ r ≤ N ),

dσ̃yzr

dz
� a9q

N∑
k�2

X (1)
rk ũxk − a2

N−1∑
k�2

X (2)
rk ũ yk − a8q

2ũ yr + a12q
N∑

k�2

X (1)
rk w̃xk

− a3

N−1∑
k�2

X (2)
rk w̃yk − a11q

2w̃yr +
a13
a6

qσ̃zzr +
a14
a6

q H̃zzr (2 ≤ r ≤ N − 1),
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dH̃xzr

dz
� a11

N∑
k�2

X (2)
rk ũxk + a3q

2ũxr − a10
a6

N∑
k�2

f1rk ũxk − a11

N∑
k�2

fNrk ũxk − a12q
N−1∑
k�2

X (1)
rk ũ yk + a16

N∑
k�2

X (2)
rk w̃xk

+ a4q
2w̃xr − a15

a6

N∑
k�2

f1rkw̃xk − a16

N∑
k�2

fNrkw̃xk − a17q
N−1∑
k�2

X (1)
rk w̃yk +

a18
a6

N−1∑
k�2

X (1)
rk σ̃zzk

+
a19
a6

N−1∑
k�2

X (1)
rk H̃zzk(2 ≤ r ≤ N ),

dH̃yzr

dz
� a12q

N∑
k�2

X (1)
rk ũxk − a3

N−1∑
k�2

X (2)
rk ũ yk − a11q

2ũ yr + a17q
N∑

k�2

X (1)
rk w̃xk − a4

N−1∑
k�2

X (2)
rk w̃yk

− a16q
2w̃yr +

a18
a6

qσ̃zzr +
a19
a6

q H̃zzr (2 ≤ r ≤ N − 1),

dũzr
dz

� a13
a6

N∑
k�2

X (1)
rk ũxk − a13

a6
qũyr +

a18
a6

N∑
k�2

X (1)
rk w̃xk − a18

a6
qw̃yr + a20σ̃zzr + a21 H̃zzr (2 ≤ r ≤ N − 1),

dw̃zr

dz
� a14

a6

N∑
k�2

X (1)
rk ũxk − a14

a6
qũyr +

a19
a6

N∑
k�2

X (1)
rk w̃xk − a19

a6
qw̃yr + a21σ̃zzr + a5 H̃zzr (2 ≤ r ≤ N − 1), (A.4)

with f1rk � X (1)
r1 X

(1)
1k , fNrk � X (1)

r N X (1)
Nr , frk � f1rk + fNrk .

State equations for CSFS
dũxr
dz

� a4
a1

σ̃xzr − a3
a1

H̃xzr +

(
a23 − a2a4

a1

)
N∑

k�2

X (1)
rk ũzk(2 ≤ r ≤ N − 1),

dũ yr

dz
� a4

a1
σ̃yzr+

a4
a1

H̃yzr +

(
a23 − a2a4

a1

)
qũzr (2 ≤ r ≤ N ),

dw̃xr

dz
� −a3

a1
σ̃xzr +

a2
a1

H̃xzr +

(
a23 − a2a4

a1

)
N∑

k�2

X (1)
rk w̃zk(2 ≤ r ≤ N − 1),

dw̃yr

dz
� −a3

a1
σ̃yzr +

a2
a1

H̃yzr +

(
a23 − a2a4

a1

)
qw̃zr (2 ≤ r ≤ N ),

dσ̃zzr
dz

� −
N−1∑
k�2

X (1)
rk σ̃xzr + qE1σ̃yzr − a2

N∑
k�2

f1rk ũzk − a3

N∑
k�2

f1rkw̃zk(1 ≤ r ≤ N − 1),

dH̃zzr

dz
� −

N−1∑
k�2

X (1)
rk H̃xzr + qE1 H̃yzr − a3

N∑
k�2

f1rk ũzk − a4

N∑
k�2

f1rkw̃zk(1 ≤ r ≤ N − 1),

dσ̃xzr
dz

� a8

N−1∑
k�2

X (2)
rk ũxk + a2q

2ũxr − a7
a6

N−1∑
k�2

f1rk ũxk −
(
a13c2
a6c1

+
a14c4
a6c1

) N−1∑
k�2

fNrk ũxk − a9q
N∑

k�2

X (1)
rk ũ yk

+

(
a13c3
a6

+
a14c5
a6

)
qE6ũ yr − a8

q

N∑
k�2

FNrk ũ yk +
a7
a6q

N∑
k�2

FNrk ũ yk +

(
a13c2
a6c1

+
a14c4
a6c1

)
1

q

N∑
k�2

FNrk ũ yk

+ a11

N−1∑
k�2

X (2)
rk w̃xk + a3q

2w̃xr − a10
a6

N−1∑
k�2

f1rkw̃xk −
(
a13c4
a6c1

+
a14c6
a6c1

) N−1∑
k�2

fNrkw̃xk − a12q
N∑

k�2

X (1)
rk w̃yk

+

(
a13c5
a6

+
a14c7
a6

)
qE6w̃yr − a11

q

N∑
k�2

FNrkw̃yk +
a10
a6q

N∑
k�2

FNrkw̃yk +

(
a13c4
a6c1

+
a14c6
a6c1

)
1

q

N∑
k�2

FNrkw̃yk

+
a13
a6

N∑
k�2

X (1)
rk σ̃zzk +

a14
a6

N∑
k�2

X (1)
rk H̃zzk(2 ≤ r ≤ N − 1), (A5)



Semi-analytical solutions for functionally graded cubic quasicrystal laminates 2197

dσ̃yzr

dz
� a9q

N−1∑
k�2

X (1)
rk ũxk −

(
a13c2
a6c1

+
a14c4
a6c1

)
qE4ũxr − a2

N∑
k�2

X (2)
rk ũ yk − a8q

2ũ yr + (
a13c3
a6c1

+
a14c5
a6c1

)q2E3ũ yr

− a9

N∑
k�2

fNrk ũ yk +

(
a13c2
a6c1

+
a14c4
a6c1

)
E5ũ yr + a12q

N−1∑
k�2

X (1)
rk w̃xk −

(
a13c4
a6c1

+
a14c6
a6c1

)
qE4w̃xr

− a3

N∑
k�2

X (2)
rk w̃yk − a11q

2w̃yr +

(
a13c5
a6c1

+
a14c7
a6c1

)
q2E3w̃yr − a12

N∑
k�2

fNrkw̃yk +

(
a13c4
a6c1

+
a14c6
a6c1

)
E5w̃yr

+
a13
a6

qE2σ̃zzr +
a14
a6

qE2 H̃zzr (2 ≤ r ≤ N ),

dH̃xzr

dz
� a11

N−1∑
k�2

X (2)
rk ũxk + a3q

2ũxr − a10
a6

N−1∑
k�2

f1rk ũxk −
(
a18c2
a6c1

+
a19c4
a6c1

) N−1∑
k�2

fNrk ũxk − a12q
N∑

k�2

X (1)
rk ũ yk

+

(
a18c3
a6

+
a19c5
a6

)
qE6ũ yr − a11

q

N∑
k�2

FNrk ũ yk +
a10
a6q

N∑
k�2

FNrk ũ yk +

(
a18c2
a6c1

+
a19c4
a6c1

)
1

q

N∑
k�2

FNrk ũ yk

+ a16

N−1∑
k�2

X (2)
rk w̃xk + a4q

2w̃xr − a15
a6

N−1∑
k�2

f1rkw̃xk −
(
a18c4
a6c1

+
a19c6
a6c1

) N−1∑
k�2

fNrkw̃xk − a17q
N∑

k�2

X (1)
rk w̃yk

+

(
a18c5
a6

+
a19c7
a6

)
qE6w̃yr − a16

q

N∑
k�2

FNrkw̃yk +
a15
a6q

N∑
k�2

FNrkw̃yk +

(
a18c4
a6c1

+
a19c6
a6c1

)
1

q

N∑
k�2

FNrkw̃yk

+
a18
a6

N−1∑
k�1

X (1)
rk σ̃zzk +

a19
a6

N−1∑
k�1

X (1)
rk H̃zzk(2 ≤ r ≤ N − 1),

dH̃yzr

dz
� a12q

N−1∑
k�2

X (1)
rk ũxk −

(
a18c2
a6c1

+
a19c4
a6c1

)
qE4ũxr − a3

N∑
k�2

X (2)
rk ũ yk − a11q

2ũ yr +

(
a18c3
a6c1

+
a19c5
a6c1

)
q2E3ũ yr

− a12

N∑
k�2

fNrk ũ yk +

(
a18c2
a6c1

+
a19c4
a6c1

)
E5ũ yr + a17q

N−1∑
k�2

X (1)
rk w̃xk −

(
a18c4
a6c1

+
a19c6
a6c1

)

)
qE4w̃xr

− a4

N∑
k�2

X (2)
rk w̃yk − a16q

2w̃yr +

(
a18c5
a6c1

+
a19c7
a6c1

)
q2E3w̃yr − a17

N∑
k�2

fNrkw̃yk

+

(
a18c4
a6c1

+
a19c6
a6c1

)
E5w̃yr +

a18
a6

qE2σ̃zzr +
a19
a6

qE2 H̃zzr (2 ≤ r ≤ N ),

dũzr
dz

� a13
a6

N−1∑
k�2

X (1)
rk ũxk −

(
a20c2
a6c1

+
a21c4
a6c1

)
E4ũxr − a13

a6
qũyr +

(
a20c3
a6c1

+
a21c5
a6c1

)
qE3ũ yr − a13

a6q

N∑
k�2

fNrk ũ yk

+

(
a18c2
a6c1

+
a21c4
a6c1

)
1

q
E5ũ yr +

a18
a6

N−1∑
k�2

X (1)
rk w̃xk −

(
a20c4
a6c1

+
a21c6
a6c1

)
E4w̃xr − a18

a6
qw̃yr

+

(
a20c5
a6c1

+
a21c7
a6c1

)
qE3w̃yr − a18

a6q

N∑
k�2

fNrkw̃yk +

(
a20c4
a6c1

+
a21c6
a6c1

)
1

q
E5w̃yr

+ a20E2σ̃zzr + a21E2 H̃zzr (2 ≤ r ≤ N ),

dw̃zr

dz
� a14

a6

N−1∑
k�2

X (1)
rk ũxk −

(
a21c2
a6c1

+
a5c4
a6c1

)
E4ũxr − a14

a6
qũyr +

(
a21c3
a6c1

+
a5c5
a6c1

)
qE3ũ yr

− a14
a6q

N∑
k�2

fNrk ũ yk +

(
a21c2
a6c1

+
a5c4
a6c1

)
1

q
E5ũ yr +

a19
a6

N−1∑
k�2

X (1)
rk w̃xk −

(
a21c4
a6c1

+
a5c6
a6c1

)
E4w̃xr



2198 X. Feng et al.

− a19
a6

qw̃yr +

(
a21c5
a6c1

+
a5c7
a6c1

)
qE3w̃yr − a18

a6q

N∑
k�2

fNrkw̃yk +

(
a21c4
a6c1

+
a5c6
a6c1

)
1

q
E5w̃yr

+ a21E2σ̃zzr + a5E2 H̃zzr (2 ≤ r ≤ N ),

where

c1 � C0
12K

0
12 − R0

2R
0
2, c2 � C0

11C
0
11K

0
12 − 2C0

11R
0
1R

0
2 − C0

12(c1 + R0
1R

0
1), c3 � C0

11 − C0
12,

c4 � C0
11R

0
1K

0
12 + C0

12R
0
1K

0
11 − C0

11R
0
2K

0
11 − C0

12R
0
2K

0
12 − R0

1R
0
1R

0
2 + R0

2R
0
2R

0
2, c5 � R0

1 − R0
2,

c6 � C0
12(K

0
11 − K 0

12)(K
0
11 + K 0

12) − 2R0
1R

0
2K

0
11 + (R0

1R
0
1 + R0

2R
0
2)K

0
12, c7 � K 0

11 − K 0
12, (A6)

E1 �
[

0 0
I(N−2)×(N−2) 0

]
,E2 �

[
0 I(N−2)×(N−2)
0 0

]
,E3 �

[
0(N−2)×(N−2) 0

0 1

]
,

E4 �

⎡
⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0
X (1)
N2 · · · X (1)

N (N−1)

⎤
⎥⎥⎥⎦,E5 �

⎡
⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0
X (1)
NN X (1)

N2 · · · X (1)
NN X (1)

NN

⎤
⎥⎥⎥⎦,

E6 �
⎡
⎢⎣
0 · · · 0 X (1)

N2
...
. . .

...
...

0 · · · 0 X (1)
N (N−1)

⎤
⎥⎦, (A7)

with FNrk � X (2)
r N X (1)

kN , FNrk � f1r N X (1)
kN , FNrk � fNr N X (1)

kN .
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