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Abstract In the present model, we have analyzed the dynamic stress concentration of a semi-infinite smooth
moving punch on the shear wave propagation in an initially stressed dry sandy strip. For the analytical solution
of the problem, the Wiener–Hopf technique and two-sided Fourier integral transforms have been used. The
expression of dynamic stress concentration for the force of a constant intensity has been determined in closed-
form. Noticeable effects of the speed of the moving punch, horizontal initial stress, vertical initial stress, and
sandiness parameter on the dynamic stress concentration in an initially stressed dry sandy strip have been
unraveled and depicted by numerical computations and graphical demonstrations. Further, the expression of
dynamic stress concentration for the case of constant load has been deduced from the obtained expression of
dynamic stress concentration. Comparison of dynamic stress concentration performed for different cases of
initial stresses and differently configured strips serve as one of the major highlights of the present problem.
Moreover, for the sake of validation, the obtained results for constant load have been matched with the pre-
established results as a particular case of the problem.

1 Introduction

Dry sandy materials have a unique resistive character normally used to construct reinforced structures with
geosynthetic reinforcement. This type of material is broadly used in bridge construction, buildings construc-
tion, and many more. The sandiness in the Earth’s crustal layers is of essential characteristics and could not be
neglected while modeling the geological problems. Therefore, sandiness is to be taken into account, along with
elasticity. In the solid mechanics and fractures mechanics field, problems related to punch is one of the exciting
subjects, particularly in possessing diverse dynamic, physical, and technical applications involving ballistic
impact, explosives, metal forming, and manufacturing operations punching and blanking. Nowadays, signifi-
cant consideration was drawn relating to determining the stress and strain fields in elastic solids having finite
dimension punches or cracks. In the dynamics case the punch strikes the material with finite velocity; hence,
the propagation of waves confounds the mathematical analysis. More specifically, in geophysical prospecting,
the propagation of seismic waves shows a significant role in an anisotropic medium. The application of the
Wiener–Hopf technique in dynamic elasticity problems has been discovered by Abrahams [1] and Koiter [2].
The solution of a matrix Wiener–Hopf equation connected with a diffraction plane wave by impedance loaded
parallel plate waveguide was examined by Büyükaksoy and Çınar [3]. With the help of the Laplace transform
technique, Miklowitz [4] discussed the linear problem of plane stress unloading waves emanating from a
suddenly punched hole in the stretched elastic plate. Dhaliwal [5] studied the problem related to the punch
for an elastic layer. Wave propagation in elastic solids was explored by Achenbach [6]. Keer and Parihar [7]
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explained the singularity at the corner of a wedge-shaped crack or punch by using Green’s function method.
The problem of the highly orthotropic elastic layer with the help of WH-technique and integral transforms
due to a moving punch was discussed by Georgiadis [8]. The problem of frictional crack and punch in-plane
elasticity was explored by Hasebe et al. [9]. Under horizontal impulsive punch loading, the solution for the
horizontal displacement at the center of an elastic half-space surface was studied by Jin and Liu [10]. The
contact problem of a rigid punch was discussed by Comez and Guler [11] and Çömez [12]. The impact of
gravity due to a torsional surface wave in the dry sandymediumwas examined by Dey et al. [13]. In a dry sandy
medium, the impact of initial stress and gravity due to torsional surface waves was studied by Dey et al. [14].
Naeini and Baziar [15] discussed the effect of fines content on the steady-state strength of mixed and layered
samples of sand. The propagation of a crack in bi-material dry sandy medium influenced by an SH-wave under
harmonic and non-harmonic loading conditions was studied by Singh et al. [16].

The initial stress is the stress present in a body not due to external forces. It is well known that the
Earth is an initially stressed medium. The initial stress might arise due to applied loads, gravity, atmospheric
pressure, creep, or temperature differences. Inside the Earth, many kinds of initial stress may exist. Further, the
initial stress affects the propagation of seismic waves, which are generated by any artificial process or natural
phenomena. Therefore, it is necessary to study the effect of initial stress on surface seismic wave propagation.
Du et al. [17] analytically studied the effect of initial stress on layered magneto-electro-elastic structures due
to propagating a Love-type wave. The effect of initial stress on guided waves in different material structures
was examined by Yu and Zhang [18, 19]. Further, the shear wave propagation in vertically heterogeneous two
distinct layers overlying an isotropic half-space with initial stress was studied by Singh et al. [20]. The impact
of heterogeneity, initial stress, and anisotropy on propagating seismic surface waves was studied by Mahanty
et al. [21]. Ejaz and Shams [22] discussed Rayleigh wave propagation in incompressible hyperelastic materials
with initial stress. Plane wave reflection/transmission in imperfectly bonded rotating piezothermoelastic fiber-
reinforced half-spaces with initial stress was examined by Guha and Singh [23].

The present work aims to develop a mathematical model for studying the effect of a semi-infinite smooth
moving punch on shear wave propagation in an initially stressed dry sandy strip for the case of constant load.
The Wiener–Hopf technique and Fourier integral transform have been implemented to obtain the closed-form
expression of dynamic stress concentration. Remarkable effects of numerous physical parameters viz. speed
of the moving punch, horizontal initial stress, vertical initial stress, and sandiness parameter on the dynamic
stress concentration are shown by graphs. Moreover, a comparative study of dynamic stress concentration has
also been carried out for different cases of initial stresses and differently configured strips, which is the major
highlight of the problem.

2 Formulation and geometry of the problem

In a rectangular system (x, y, z) of coordinates, let us consider an infinite strip −a ≤ z ≤ a in which a smooth
semi-infinite punch is pressed at x ≤ 0. The upper and lower surface i.e., z � ±a are rigidly clamped as
shown in Fig. 1. The horizontal initial stress (I11) acts along the x− direction, and vertical initial stress (I33)
acts along the z− direction.

The shear stress τ23 is subjected to the surface of the semi-infinite punch, which is moving with constant
speed ‘s’ in the positive direction of the x− axis associated with shear wave propagation in the considered
strip.

The constitutive equation for a dry sandy elastic model can be written as (Mandi et al. [24])

τi j � λδi j ekk + 2
μ

η
ei j , η > 1, (1)

where τi j are components of stress, ei j are components of strain, λ and μ are Lamé’s constants, η represents
the sandiness parameter, and δi j is the Kronecker delta.

The governing equation of motion without body forces is

τi j, j � ρ
∂2ui
∂t2

, (2)

where ui are the components of displacement, ρ denotes the density of the medium, and t denotes the time.
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Fig. 1 Geometrical sketch of the problem

The governing equations of motion for the strip can be written as by Biot [25],

τi j, j +
∂

∂x j

(
I jk�ik + I jkei jδi j − Iikek j

) � ρ
∂2ui
∂t2

, (3)

where �i j � 1
2

(
ui, j − u j,i

)
denote the local angles of rotation components and Ii j (i, j, k � 1, 2, 3) represent

the components of initial stresses.
If u, v, w are the displacement components in x, y, z directions, respectively, then for a shear wave prop-

agating in the x− direction and causing displacement in the y− direction only, we assume that

u � w � 0 , v � v (x, z, t),
∂

∂y
� 0. (4)

In view of Eqs. (4) and (3), we obtain

∂τ21

∂x
+

∂τ23

∂z
+
I11
2

∂2v

∂x2
+
I33
2

∂2v

∂z2
� ρ

∂2v

∂t2
, (5)

where τ21 � μ

η

(
∂v

∂x

)
, and τ23 � μ

η

(
∂v

∂z

)
. (6)

With the aid of Eqs. (6), and (5), we have

R
∂2v

∂z2
+ S

∂2v

∂x2
� ρ

∂2v

∂t2
, (7)

where R � μ

η
+
I33
2

, S � μ

η
+
I11
2

. (8)

For setting the frame of reference using Galilean transformation we replace the frame (x, y, z) by the
convective frame (x1, x2, x3) as

x � x1 + st, y � x2, z � x3. (9)

In view of the above Galilean transformation (9) and Eq. (6), Eq. (5) reduces to

R
∂2v

∂x23
+
(
S − ρs2

)∂2v

∂x21
� 0, (10)

and the shear stress reduces to

τ23(x1, x3) � R
∂v

∂x3
�

(
μ

η
+
I33
2

)
∂v

∂x3
. (11)
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3 Boundary conditions and solution of the problem

The boundary conditions of the considered problem are defined as

v(x1, x3) � 0 for |x1| < ∞, x3 � a,

v(x1, x3) � ϕ(x1) for x1 < 0, x3 � 0,

τ23(x1, x3) � 0 for x1 > 0 , x3 � 0,

⎫
⎬

⎭
(12)

where ϕ(x1) is the displacement due to the moving punch in the x1− direction.
Thus, Eqs. (10), (11), and (12) together establish a complete mathematical model for the present problem.

We consider the Fourier integral transform for an analytical solution of the problem, which is defined as

P(χ, x3) � 1√
2π

∞∫

−∞
p(x1, x3) e

iχx1dx1, (13)

and p(x1, x3) � 1√
2π

∞+iδ∫

−∞+iδ

P(χ, x3) e
−iχx1dχ, (14)

where χ denotes the complex transform variable such that the Fourier transform P(χ, x3) is analytic along
the integration path and iδ represents the purely imaginary number lying in the common strip of regularity of
all the transforms appearing in the solution.

With the help of properties of a regular function P(χ, x3) can be written as (Titchmarsh [26])

P(χ, x3) � P −(χ, x3) + P +(χ, x3), (15)

where

P−(χ, x3) � 1√
2π

0∫

−∞
p(x1, x3) e

iχx1dx1,

and P+(χ, x3) � 1√
2π

∞∫

0

p(x1, x3) e
iχx1dx1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(16)

are regular functions in the half-plane imag (χ) < δ2 and imag (χ) <δ1, respectively, and iδ1 and iδ2 rep-
resent purely imaginary numbers lying in the common strip of regularity of the transforms P−(χ, x3) and P+

(χ, x3), respectively.
With the aid of the Fourier integral transform (15), (16), Eqs. (10) and (11) lead to

d2V (χ, x3)

dx23
− γ 2χ2V (χ, x3) � 0, (17)

and the shear stress is

τ23(χ, x3) �
(

μ

η
+
I33
2

)
∂V

∂x3
. (18)

The solution of Eq. (17) can be written as

V (χ, x3) � C1(χ) sinh(χγ x3) + C2(χ) cosh(χγ x3), (19)

where C 1(χ) andC 2(χ) are arbitrary constants, and γ �
(
S
R − ρs2

R

) 1
2
.

In view of Eqs. (18) and (19), we obtain

τ23(χ, x3) �
(

μ

η
+
I33
2

)
(χγ )

[
C 1(χ) cosh(χγ x3) + C 2(χ) sinh(χγ x3)

]
. (20)
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Applying the Fourier integral transform (13) and (14) to the boundary condition (12) and with the help of
Eqs. (19) and (20), we get the following Wiener–Hopf equation:

τ−
23(χ, 0) � −

(
μ

η
+
I33
2

)
(γ χ)

{
ϕ(χ) + V +(χ, 0)

tanh(χγ a)

}
, (21)

where ϕ(χ) � 1√
2π

0∫

−∞
ϕ(x1)e

iχx1dx1. (22)

The domain of existence of Eq. (21) is in the range − π
2γ a < −ε < imag(χ)< 0, and the kernel of Eq. (21) is

F(χ) � χ

tanh(χγ a)
, (23)

which can be further expressed in the form of the 
− function as (Noble, [27])

F(χ) � π

γ a
F+(χ)F−(χ), (24)

where F+(χ) �


(
1 − iχaγ

π

)



(
1
2 − iχaγ

π

) , and F+(−χ) � F−(χ). (25)

The functions
{


(
1 + iχaγ

π

)
, 


(
1
2 + iχaγ

π

)}
and

{


(
1 − iχaγ

π

)
, 


(
1
2 − iχaγ

π

)}
are analytic and free from

zeroes in the half-planes imag(χ) < π
2γ a and imag(χ) > −π

2γ a , respectively.

In view of Eqs. (8), (23), and (24), Eq. (21) takes the form

−a τ−
23(χ, 0)

πRF−(χ)
� F+(χ)V +(χ, 0) + T (χ), (26)

where T (χ) � F +(χ)ϕ(χ). (27)

With the help of properties of the regular function T (χ) in the corresponding half-planes imag(χ) > −ε and
imag(χ) < 0 can be written as the following system (Titchmarsh, [26]):

T (χ) � T +(χ) − T −(χ), (28)

where T +(χ) � 1

2π i

∞−iτ1∫

−∞−iτ1

T (ν)

ν − χ
dν, (29)

and T−(χ) � 1

2π i

∞+iτ2∫

−∞+iτ2

T (ν)

ν − χ
dν, (30)

in which, −τ1 < imag(χ) < τ2 and iτ1, iτ2, lie within the required strip of regularity, and T +(χ) , T−(χ)
are regular in the half-planes imag(χ) > −π

2γ a , and imag(χ) < 0, respectively.
In view of Eq. (28), Eq. (26) can be written as

−a τ−
23(χ, 0)

πRF−(χ)
+ T −(χ) � F+(χ)V +(χ, 0) + T +(χ). (31)

Both the sides of Eq. (31) are regular and free from zeroes in the respective half-planes imag(χ) >
−π
2γ a and imag(χ)< 0. Now using Liouville’s theorem, we have

V +(χ, 0) � −T +(χ)

F+(χ)
, which is regular in imag(χ)< 0, (32)

and τ−
23(χ, 0) � πR

a
T−(χ)F−(χ), which is regular in imag(χ) >

−π

2γ a
. (33)
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Nowwe are considering that the functions T +(χ) and T−(χ) are analytic in the region −π
2γ a < imag(χ)< 0.

Therefore, the function T +(χ) and T−(χ) can be written in the following form:

T±(χ) � − 1

χ

⎧
⎨

⎩
Q − 1

2π i

∞−iτ∫

−∞−iτ

T (ν)

ν − χ
dν

⎫
⎬

⎭
, (34)

where

Q � 1

2π i

∞−iτ∫

−∞−iτ

T (ν) dν, τ1 < τ < τ2. (35)

Now using

(ξ + ζ )


(ξ)
≈ ξζ , |ξ | → ∞ (Noble, [27]), (36)

and using Eq. (34), the functions V +(χ, 0) and τ−
23(χ, 0) defined by Eqs. (32) and (33) become

V +(χ) � Q

χ

√
− π

iaχγ
, (37)

and τ−
23(χ) � −QR

√
iπγ

aχ
. (38)

By mean of Abel’s theorems (Noble, [27]), Eqs. (37) and (38) can be written as

τ23(x1) � Nγ R

2
√−x1

, for x1 → −ε, ε → 0, (39)

and v(x1) � N
√
x1, for x1 → +ε, ε → 0, (40)

where N � −2π i
√

2π
aγ

.

In the above expression N represents the expression of dynamic stress concentration.

4 Punch subjected to constant load

In this Section, we consider that the edge x3 � 0 of the punch is loaded by a force of intensity J0, which is
constant, i.e.,

ϕ(x1) � J0. (41)

Inserting Eq. (41) into Eq. (22) leads to

ϕ(χ ) � J0

iχ
√
2π

. (42)

With the help of Eqs. (24), (25), (36), (38), (39), and (42), we get

1√
γ

� −N
√

πa

2J0
, (43)

where γ �
⎡

⎢
⎣
S

′

R ′ −
(
s/

β

)2

R ′

⎤

⎥
⎦

1
2

, (44)

where S
′ �

[
1
η
+ S11

]
, R

′ �
[
1
η
+ S33

]
, S11 � I11

2μ , and S33 � I33
2μ are the dimensionless horizontal and

vertical initial stresses, respectively, and β �
√

μ
ρ
is the shear wave speed.

The above Eq. (43) represents the expression for dynamic stress concentration due to a smooth moving
punch for constant load in an initially stressed dry sandy medium.
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5 Special cases

5.1 When S11 � 0 � S33 (i.e., the considered strip is free from initial stresses, for which it becomes a dry
sandy strip), then Eq. (44) yields

γ �
√

1 − η
(
s/

β

)2
. (45)

Taking Eq. (45) into account, Eq. (43) represents the expression of dynamic stress concentration in the dry
sandy isotropic strip for constant load.

5.2 When η � 1 (i.e., the considered strip is free from sandiness, for which it becomes an initially stressed
isotropic strip), then Eq. (44) can be rewritten as

γ �
√

(1 + S11)

(1 + S33)
− (s/β)2

(1 + S33)
. (46)

In view of Eq. (46), Eq. (43) leads to the expression of dynamic stress concentration in an initially stressed
isotropic strip for constant load.

5.3 When S11 � 0 � S33 and η � 1 (i.e., the considered strip is free from initial stresses and sandiness,
for which it becomes a purely isotropic strip), then Eq. (44) reduces to

γ �
√

1 −
(
s/

β

)2
. (47)

Equation (43) together with Eq. (47) shows the expression of dynamic stress concentration in the isotropic
strip for constant load. This result is found in well agreement with the results (expression for dynamic stress
concentration) obtained by Chattopadhyay [28] for reinforced-free case (i.e., μL � μT , where μT represents
the shear modulus in transverse shear across the preferred direction, and μL denotes the shear modulus in
longitudinal shear in the preferred direction) and also with the results obtained by Singh et al. [29] for the
isotropic case without viscoelasticity and initial stress (i.e., μ′ � 0, S11

2μ � 0 � S33
2μ , where μ′ is the parameter

responsible for the effect of internal friction).

6 Computational results and discussion

To carry out the numerical calculations and graphical demonstrations of the various affecting parameters on
the dynamic stress concentration under constant load in an initially stressed dry sandy strip, we considered the
following data:

For dry sandy medium:ρ � 3364
(
kg/m3

)
,μ � 6.34 × 1010

(
N/m2

)
, (Gubbins, [30]).

Sandiness parameter (η) � 1.0, 1.2, 1.4, 1.6, 1.8,
Dimensionless horizontal initial stress (S11 � I11/2μ) � −0.4, −0.2, 0.0, 0.2, 0.4,
Dimensionless vertical initial stress (S33 � I33/2μ) � −0.4, −0.2, 0.0, 0.2, 0.4.

In order to describe the effects of various affecting parameters viz. sandiness parameter (η), horizontal
initial stresses (S11) , and vertical initial stresses (S33) on the dynamic stress concentration

(−N
√

πa/2J0
)

against the dimensionless speed (s/β) of the moving punch, the mathematical simulation was accomplished
by taking into account Eq. (43) for the case of constant load. Figures 2, 3, 4, 5, 6 graphically demonstrate the
variation of dynamic stress concentration against the dimensionless speed of the moving semi-infinite punch.
It is observed in Figs. 2, 3, 4, 5, 6 that at first the dynamic stress concentration increases with an increase in
the speed of the moving punch associated with the shear wave speed at a slow rate, but after a certain stage
it increases abruptly for both initially stressed strips with/without sandiness. Figure 2 shows the impact of
the sandiness parameter on the dynamic stress concentration subjected to a moving punch associated with the
shear wave propagation in the undertaken strip for constant load. In Fig. 2, curve 1 is associated with the case
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Fig. 2 Variation of dynamic stress concentration
(−N

√
πa/2J0

)
against dimensionless speed (s/β) of the moving punch for

distinct values of the sandiness parameter (η)

Fig. 3 Variation of dynamic stress concentration
(−N

√
πa/2J0

)
against dimensionless speed (s/β) of the moving punch for

different values of the horizontal initial stress (S11)

when the considered strip is free from sandiness, and curves 2, 3, 4, and 5 correspond to the case when the
strip is initially stressed dry sandy. It is manifested from Fig. 2 that the dynamic stress concentration decreases
when the sandiness parameter increases. It is established that the dynamic stress concentration is maximum
when the considered strip is free from sandiness, and it is minimumwhen the strip is with the considered higher
value of the sandiness parameter.

Figures 3 and 4 represent the effects of horizontal initial stresses and vertical initial stresses, respectively,
on the dynamic stress concentration in the considered strip for constant load. In Fig. 3, curves 1, 2, 3, 4, and
5 correspond to horizontal initial stresses when the strip is initially stressed dry sandy, and curves 6, 7, 8, 9,
and 10 represent horizontal initial stresses when the strip is free from sandiness. It is evident from Fig. 3 that
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Fig. 4 Variation of dynamic stress concentration
(−N

√
πa/2J0

)
against dimensionless speed (s/β) ofmoving punch for different

values of vertical initial stress (S33)

Fig. 5 Comparison of dynamic stress concentration
(−N

√
πa/2J0

)
against dimensionless speed (s/β) of moving punch for

different cases of initial stresses

the dynamic stress concentration decreases with an increase in horizontal initial stresses for both the cases
separately (i.e., the strip is initially stressed dry sandy and is free from sandiness parameter). It is observed
that the dynamic stress concentration attains higher values for the initially stressed dry sandy strip in contrast
to the sandiness-free strip when the horizontal initial stress (S11) takes values -0.4 and -0.2. When S11 � 0,
the dynamic stress concentration is found to attain a higher value for the initially stressed dry sandy strip in
contrast to the sandiness-free strip, up to a certain value of s/β, past which the pattern reverses. When S11
increases and takes value 0.2, the pattern reversal occurs at a much earlier stage for a lower value of s/β.Lastly,
when S11 � 0.4, it is observed that dynamic stress concentration attains a lower value for the initially stressed
dry sandy strip in contrast to the sandiness-free strip for all considered values of s/β. Furthermore, in Fig. 4,
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Fig. 6 Comparative study of dynamic stress concentration
(−N

√
πa/2J0

)
against dimensionless speed (s/β) of moving punch

for differently configured strip

curves 1, 2, 3, 4, and 5 correspond to the vertical initial stresses when the strip is initially stressed dry sandy
and curves 6, 7, 8, 9, and 10 represent the vertical initial stresses when the strip is free from sandiness. It is
noticed from Fig. 4 that the dynamic stress concentration increases with an increase in vertical initial stresses
for both cases when the strip is initially stressed dry sandy and it is free from sandiness. It is observed that
the dynamic stress concentration attains a lower value for the initially stressed dry sandy strip in contrast to
the sandiness-free strip when the vertical initial stress (S33) takes values -0.4, -0.2, and 0.0. When S33 � 0.2,
the dynamic stress concentration initially attains a higher value for the initially stressed strip with sandiness in
contrast to the sandiness-free strip. However, starting from a small value of s/β, the pattern reverses. Lastly,
when S33 � 0.4, the dynamic stress concentration attains a higher value for the initially stressed strip with
sandiness in contrast to the sandiness-free strip. However, starting from a moderate value of s/β, the pattern
reverses.

The combined effect of horizontal and vertical initial stresses on the dynamic stress concentration has been
discussed in Fig. 5. Curves 1, 2, 3, 4, and 5 correspond to the case when the considered strip is free from
sandiness, and curves 6, 7, 8, 9, and 10 represent the case when the strip consists of sandiness. It is reported
from Fig. 5 that the dynamic stress concentration decreases for both cases when the initially stressed strip is
with/without sandiness for increasing and equal value of horizontal and vertical initial stresses. It is observed
that the dynamic stress concentration attains a lower value for the initially stressed dry sandy strip in contrast
to the sandiness-free strip when the horizontal and vertical initial stresses (S11, S33) take values -0.4 and
-0.2. When S11 � S33 � 0, the dynamic stress concentration is found to attain a lower value for the initially
stressed dry sandy strip in contrast to the sandiness-free strip, up to a certain value of s/β, past which the
pattern reverses. When S11, S33 increase and take value 0.2, the pattern reversal occurs at a much earlier stage
for a lower value of s/β. Lastly, when S11 � S33 � 0.4, it is observed that the dynamic stress concentration
attains a higher value for the initially stressed dry sandy strip in contrast to the sandiness-free strip for all
considered values of s/β. Furthermore, the effects of horizontal initial stresses, vertical initial stresses, and
sandiness parameter on the dynamic stress concentration have been examined in Fig. 6. In Fig. 6, curve 1 is
associated with the case when the strip is initially stressed dry sandy, curve 2 corresponds to the case when the
strip is initially stressed without sandiness, curve 3 represents the case when the considered dry sandy strip
is free from initial stresses, and curve 4 corresponds to the case when the considered strip is free from initial
stresses and sandiness. It is evident from Fig. 6 that the dynamic stress concentration is higher when the strip
is without initial stresses as compared to the case when the strip is with initial stresses. It is also observed that
under the influence of initial stresses the dynamic stress concentration of the strip without sandiness is larger
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in contrast to the one with sandiness. However, in the absence of initial stresses, the impact of sandiness on
the dynamic stress concentration is also negligible.

7 Concluding remarks

The present study is concerned with the analysis of a semi-infinite moving punch associated with propagating
shear waves in an initially stressed dry sandy strip for constant load. An exact expression of the dynamic
stress concentration has been obtained in closed-form with the help of theWiener–Hopf technique and Fourier
integral transform. The effects of smooth moving punch, horizontal initial stresses, vertical initial stresses, and
sandiness parameters on the dynamic stress concentration have been examined by the graphs. The exact solution
of dynamic stress concentration under constant load in terms of the said parameters has been established. A
comparative study has been accomplished to reveal the effects of initial stresses and sandiness. The salient
features of the study are encapsulated as follows:

• The closed-form expression of dynamic stress concentration for the case of constant load was established
and matched with the pre-established results for validation.

• Initially, the dynamic stress concentration increases with an increase in the speed of the moving punch
associated with the shear wave speed at a slow rate but later it increases at a very fast rate and abruptly
approaches toward its maximum value in both initially stressed strips with/without sandiness.

• The dynamic stress concentration decreases with an increase in the sandiness parameter.
• The dynamic stress concentration decreases with an increase in horizontal initial stresses. The dynamic stress
concentration attains a higher value for an initially stressed dry sandy strip in contrast to the sandiness-free
strip for low values of horizontal initial stress, and a pattern reversal occurs for higher values of horizontal
initial stresses.

• The dynamic stress concentration increases with an increase in vertical initial stresses. The dynamic stress
concentration attains low values for an initially stressed dry sandy strip in contrast to the sandiness-free strip
for the smaller values of vertical initial stress, and pattern reversal occurs for larger values of vertical initial
stresses.

• The dynamic stress concentration decreases for both cases when the initially stressed strip is with/without
sandiness for increasing and equal value of horizontal and vertical initial stresses.

• The dynamic stress concentration is higher when the strip is without initial stresses as compared to the case
when the strip is with initial stresses. Under the influence of initial stresses, dynamic stress concentration of
the strip without sandiness is larger in contrast to the one with sandiness. However, in the absence of initial
stresses, the impact of sandiness on the dynamic stress concentration is also negligible.

The outcomes of the present workmay aid in the study of structural and stability analysis, fracture initiation,
and material toughness. The investigation of dynamic stress concentration for a semi-infinite smooth moving
punch associated with a propagating shear wave in an initially stressed dry sandy strip might also lead to
some essential contributions in building, bridge construction, and underground structures such as tunnels and
pipelines subjected to natural calamities. Also, this study could find applications in many fields of applied
sciences, for example, in the analysis of seismic data, soil mechanics, composite materials, civil engineering,
and earthquake science.
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