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Abstract In this work, a layerwise beam model based on Carrera’s Unified Formulation (CUF) is developed
to solve the geometrically nonlinear problem of sandwich beams with a special emphasis on global–local
buckling interaction. In the framework of CUF, the order of a beam theory can be chosen freely to ensure
the desired accuracy and computational effort. For beam theories with different orders, the element stiffness
matrix can be derived in a compact form. The efficient and robust Asymptotic Numerical Method (ANM)
is used as the nonlinear solver. A comparison with classical two-dimensional finite element analysis shows
that the proposed models can provide accurate predictions. The global and local buckling problems are also
addressed. It is found that accurate results can be obtained through the proposed CUF-based beam model with
reduced computational costs.

1 Introduction

Sandwich structures consist of two stiff thin face layers and one thick, soft layer placed between them. As
a result of this configuration, several excellent properties are achieved, such as high stiffness and strength,
low weight and high-energy absorption capability. Due to these desirable properties, sandwich structures are
widely used in astronautic, aeronautic, automotive and marine applications.

In practical engineering applications, highly flexible laminated composite structures are prone to large
deflections andpost-buckling.Thus, instability phenomena in sandwich structures have attractedmore andmore
attention. Several works on sandwich beam-like structures considering the geometrically nonlinear problem
have been carried out during the last thirty years. According to several reviews (Carrera and Brischetto [1], Hu
et al. [2], Sayyad and Ghugal [3]), classical laminate theory, first-order shear deformation theory, high-order
theory [4] and zig-zag theory [5] have been proposed for modelling sandwich composites.

Due to the mismatch and heterogeneity in material properties between the skin layer and the core layer,
compressed sandwich structures show more complex instability behaviours than structures made of homoge-
neous material. According to the buckling wavelength, instability can be divided into two prominent cases:
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(1) global buckling, whose wavelength value is of the order of a representative global dimension, (2) local
buckling (wrinkling) [6], whose wavelength is comparable to the thickness of the core layer [7]. In addition
to these uncoupled instabilities, the global–local-coupled instability, also called interactive buckling [8], is
another widespread phenomenon. Many valuable theories and models have been proposed to describe these
phenomena in the past decades in the literature (see Vonach and Rammerstorfer [9]). The global and local
buckling behaviours of sandwich beams were studied by Frostig and Baruch [10] via using a high-order sand-
wich panel theory. Analytical, numerical and experimental studies were carried out by Jasion et al. [11] for the
global and local buckling of sandwich beams and circular sandwich plates. The critical loads obtained by an
analytical model, a FEM model, and experimental investigations were compared. Ji and Waas [12] proposed
a numerical model based on the finite element method for both isotropic and orthotropic sandwich structures
with different aspect ratios. This study provided a benchmark for sandwich structures’ buckling problems with
different geometrical and material parameters. A sandwich model for detecting the global and local instability
phenomena was proposed by Leotoing et al. [13]. By a parametric analysis, several geometrical and material
parameters were assessed to control the global and local instability. Based on the displacement assumption of
Leotoing, Hu et al. [14] developed a finite element sandwich beam model to describe global and local instabil-
ity, and Yu et al. [15] further extended this model to the sandwich plate problem. On this basis, Liu et al. [16]
and Huang et al. [17] used the Fourier series to develop an envelope model independent of the wavelength.
The sandwich structure models mentioned above are valuable but not universal enough. It is often necessary
to select models of different orders to solve different problems. Huang et al. [6] recently proposed a model,
where the middle layer uses a model that can change the expansion order, whereas the skin layer is described
by the Euler beam model. However, this kind of low-order beam theory is not practical for the description
of the mechanical field of a thicker core layer of the sandwich structure. The description of the displacement
field in a thick core layer can also use cubic functions (Choe et al. [18], Huang et al. [19], Yu et al. [15]) or
MacLaurin expansions (Neves et al. [20]).

In this article, a CUF-based sandwich beam model is proposed to analyse sandwich beam-like structures
considering the geometrically nonlinear problem. The kinematics in the cross section can be refined through
a compact notation for a priori displacement field approximation. The governing equations are derived via
the Principle of Virtual Displacements (PVD) in the form of fundamental nuclei. Based on the PVD, both a
closed-formNavier-type analytical solution [21], as well as a weak form finite element solution, can be derived.
Regarding the approximation of the physical field, a continuous function such as MacLaurin polynomial can
be used globally, or a piecewise polynomial such as Lagrange polynomial can be applied locally. In this article,
the Lagrangian polynomial is taken for the description of the mechanical field in sandwich structures. Carrera’s
Unified Formulation (CUF) has been previously extended for modelling the beam structures on free vibration
problem (Hui et al. [22]), failure problem (Carrera and Giunta [23]), thermal problem (Giunta et al. [24]) and
hygro-thermal problem (Moleiro [25]). It is worth mentioning that D’Ottavio [26] proposed the Sublaminate
Generalised Unified Formulation (S-GUF) as an extension of CUF-based laminated models [27], which allows
to freely select the order of the through-thickness polynomial approximation at sublaminate level. S-GUF was
exploited to study sandwich buckling and wrinkling problems by D’Ottavio et al. [28] and Vescovini et al.
[29]. Recently, CUF-based beam models were applied to geometric nonlinear problems (Hui et al. [30,31], De
Pietro et al. [32,33]) and multiscale geometric nonlinear problems (Hui et al. [34]). The latter work extends
the framework of the CUF-based beam models by coupling it with the FE2 method (Feyel et al. [35], Xu et
al. [36]). Some recent developments of the FE2 method can be found in Yang et al. [37], Huang et al. [38]
and Raju et al. [39]. Carrera et al. [40,41] and Wu et al. [42] studied the geometrically nonlinear problem
of laminated composite beams by Taylor expansion and Lagrange expansion CUF models and the arc-length
method was used as the nonlinear solver. As far as the nonlinear solver is concerned, ANM is a continuation
method that associates a perturbation technique with a discretisation principle [43]. Under this framework,
the computation of a solution path is achieved step by step, where at each step, the solution is represented
by a truncated power series. Many studies presented in the literature show that the ANM is more robust and
efficient than classical nonlinear solvers (e.g., Newton–Raphson’s method, modified

Newton–Raphson’s method and Riks’ method). Azrar et al. [44] gave a time-cost comparison between
ANM and modified Newton–Raphson and concluded that ANM is more efficient and robust. Hui et al. [31]
made a detailed comparison between the Newton–Raphson method and the ANM method in CPU calculation
time. When the numerical model is the same (CUF-based beam model), the ANM solver’s time is one-fifth of
the Newton–Raphson method. For comparison purposes, results of FEM solutions from the commercial code
ABAQUS were employed.



A geometrically nonlinear analysis 69

Fig. 1 Sketch of a sandwich beam

The layout of the paper is as follows. Section 2 is devoted to introducing the studied problem, the notation
and the preliminary governing equations. Section 3 provides an overview of the theoretical derivation of the
hierarchical beam finite elements for sandwich structures. A mechanical analysis of sandwich structures is
carried out via a weak form finite element solution based on CUF. Numerical results and discussions are
presented in Sect. 4, where the accuracy, computational efficiency and robustness of the proposed models are
discussed. Finally, conclusions are presented in Sect. 5.

2 Preliminaries

A sandwich beam structure of width b, thickness ht and length L is displayed in Fig. 1. The displacement u
of the top, bottom and core layers can be decomposed into a separated representation of the space coordinates
(X = (x, z)):

u(ζ )(X) = u(ζ ) (x, z) =
{
u(ζ )
x (x, z) u(ζ )

z (x, z)
}T

, ζ = t, b, c, (1)

where “T” stands for the transpose operator. The corresponding first-order derivatives components can be
written as:

θ (ζ )(u(ζ )) =
{
u(ζ )
x,x u(ζ )

x,z u
(ζ )
z,x u(ζ )

z,z

}T
, (2)

where θ is the displacement gradient vector. Considering geometric nonlinearity, the Green–Lagrange strain
can be written as follows:

E(ζ ) =
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)]
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where the matrices H and A(ζ )
(
θ (ζ )(u(ζ ))

)
are defined as:

H =
⎡
⎣
1 0 0 0
0 0 0 1
0 1 1 0

⎤
⎦ , (4)

A(ζ )
(
θ (ζ )(u(ζ )

)
=

⎡
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u(ζ )
x,x 0 u(ζ )

z,x 0
0 u(ζ )

x,z 0 u(ζ )
z,z

u(ζ )
x,z u

(ζ )
x,x u(ζ )

z,z u(ζ )
z,x

⎤
⎥⎦ . (5)
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A virtual variation in strain can be written in the following form:

δE(ζ ) = δ

{
Hθ (ζ ) + 1

2
A(ζ )θ (ζ )

}
= Hδθ (ζ ) + A(ζ )δθ (ζ ), (6)

where δ stands for a virtual variation. For a two-dimensional problem, the material stiffness matrix can be
written in the following matrix form:

C(ζ ) =
⎡
⎢⎣
C (ζ )
11 C (ζ )

13 C (ζ )
15

C (ζ )
13 C (ζ )

33 C (ζ )
35

C (ζ )
15 C (ζ )

35 C (ζ )
55

⎤
⎥⎦ . (7)

The second Piola–Kirchhoff stress of each layer can be written into the following vector form:

S(ζ ) =
{
S(ζ )
xx S(ζ )

zz S(ζ )
xz

}T
. (8)

Thus, the constitutive law for each layer is defined by the following expression:

S(ζ ) = C(ζ )E(ζ ) = C(ζ )

(
Hθ (ζ ) + 1

2
A(ζ )θ (ζ )

)
. (9)

The virtual internal Lint and external Lext virtual work satisfies the following relationship:

δLint − δLext = 0. (10)

The whole sandwich structure’s internal work is obtained by summing contributions from top, bottom and core
layers as follows:

δLint = δL (t)
int + δL (c)

int + δL (b)
int

=
∑

ζ=t,b,c

∫

V0
δE(ζ )TS(ζ )dV

=
∑

ζ=t,b,c

∫

V ζ
0

δθ (ζ )T
[
H + A(ζ )(θ (ζ )(u(ζ )))

]T
S(ζ )dV, (11)

where V ζ
0 is the undeformed volume of a layer. By neglecting the body forces and considering an external

force proportional to a scalar parameter λ, the external work can be written in the following form:

δLext = λδuTF, (12)

where F is an external force vector. Based on the equations above, a weak formulation of the governing
equations of the sandwich structure reads:

∑
ζ=t,b,c

∫

V ζ
0

δθ (ζ )T
[
H + A(ζ )

]T
S(ζ )dV = λδuTF,

S(ζ ) = C(ζ )E(ζ ),

E(ζ ) =
[
H + 1

2
A(ζ )

]
θ (ζ ).

(13)

These equations are the starting point for developing geometrically non-linear hierarchical finite elements
using Carrera’s Unified Formulation.
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Fig. 2 Shape function corresponding to the axial direction and the thickness direction in the cross-section

3 Hierarchical beam finite elements of sandwich structures

In this section, the CUF is used to rewrite Eq. (13) for sandwich beam structures. For both transverse and
axial displacement components, CUF is used to approximate the through-the-thickness behaviour (variation
versus the z coordinate), whereas the finite element method is used to approximate the variation versus the
axial coordinate x .

As shown in Fig. 2, the idea of the proposed CUF-based model is to separate the displacement field of
different layers with the corresponding Lagrangian functions F (t)

τ , F (c)
τ and F (b)

τ . To be noticed, top, core and
bottom layer shares the same shape functions along the axial direction. The maximum number of terms in
F (t)

τ , F (c)
τ and F (b)

τ is N (t)
u , N (c)

u and N (b)
u , respectively. The maximum number of shape function along the

axial direction Ni is Ne
n . The displacement approximation can be rewritten as follows for a generic layer:

u (x, z) = F (ζ )
τ (z) Ni (x)qτ i ,

τ = 1, 2, . . . , N (ζ )
u ; ζ = t, b, c; i = 1, 2, . . . , Ne

n ,
(14)

where qτ i is the generalised nodal displacement vector q(ζ )T
τ i =

{
q(ζ )u
τ i q(ζ )w

τ i

}
. Based on Einstein’s notation,

a twice-repeated subscript implicitly represents a summation. Thus, the displacement gradient in Eq. (2) can
be defined as follows:

θ (ζ ) =
{
F (ζ )

τ Ni,x q
u
τ i F

(ζ )
τ,z Niquτ i F

(ζ )
τ Ni,x q

w
τ i F

(ζ )
τ,z Niqw

τ i

}T = G(ζ )
τ i qτ i , (15)
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Fig. 3 Static analysis: a sandwich beam under a transverse force

where G(ζ )
τ i is as follows:

G(ζ )
τ i =

⎡
⎢⎢⎢⎣

F (ζ )
τ Ni,x 0
F (ζ )

τ,z Ni 0
0 F (ζ )

τ Ni,x

0 F (ζ )
τ,z Ni .

⎤
⎥⎥⎥⎦ . (16)

The following expressions for virtual variations are derived within the CUF framework:

δu(ζ ) = F (ζ )
τ Niδq

(ζ )
τ i ,

δθ (ζ ) = G(ζ )
τ i δq(ζ )

τ i .
(17)

The governing equation of the sandwich model in Eq. (13) then can be written as follows:

∑
ζ=t,c,b

δq(ζ )T
τ i

∫

V (ζ )
0

G(ζ )T
τ i

[
H + A(ζ )

(
θ (ζ )

)]T
S(ζ )dV = δqTτ iλ

1NT
i FT

τ F,

S(ζ ) = C(ζ )E(ζ ),

E(ζ ) =
[
H + 1

2
A

(
θ (ζ )

)]
G(ζ )

s j δq(ζ )
s j .

(18)

The details of the perturbation form and the fundamental nucleus have been shown by Hui et al. [30,31,34].
They are not reported here for the sake of brevity. The resulting nonlinear problem in Eq. (18) is solved by the
ANM. A brief introduction on ANM for the resolution of nonlinear problems is given in Appendix A.

4 Numerical results

Three cases are shown in this section. The first problem is a static analysis and it aims at validating the
proposed numerical models. The second case addresses a global buckling analysis. The third case is devoted to
a discussion on the coupling phenomenon of global and local buckling. For all the presented results, a quadratic
beam element is used (3-node elements).

4.1 Static analysis

As shown in Fig. 3, a bending problem of a sandwich beam is considered, in which the transverse and axial
displacements of four corners are fixed and a transverse force is applied at the mid span. In this case, the
proposed sandwich models and a FEM solution based on two-dimensional solid elements implemented in
the commercial code ABAQUS are compared. Eight degrees of freedom from four corners of the beam are
constrained. The transverse concentrated force λF is applied with F = 1 N at the point (L/2, ht/2) as shown
in Fig. 3. The material of each layer is isotropic. The geometrical and material parameters are: ht = 1 m,
hs = hc/10, Es = 6.9 × 1010 Pa, Ec = 6.9 × 106 Pa, νs = νc = 0.3. The subscripts “s” and “c” stand
for skin and core, respectively, whereas “t" stands for total. For the ABAQUS FEM model meshed with CPS8
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Table 1 Static analysis: the displacement uz at point (L/2, h/2) with a load parameter λ = 1.0261 × 106

Model Nex N (c)
u N (s)

u uz[m] � N (s)
u uz[m] �

1D CUF 20 3, 4, 5, 6 3 −0.9972 1.88% 5 −0.9995 1.65%
1D CUF 40 3 3 −1.0060 1.01% 5 −1.0111 0.51%
1D CUF 40 4, 5, 6 3 −1.0061 1.00% 5 −1.0111 0.51%
1D CUF 60 3, 4, 5, 6 3 −1.0085 0.77% 5 −1.0111 0.51%
1D CUF 80 3, 4 3 −1.0094 0.68% 5 −1.0111 0.51%
1D CUF 80 5, 6 3 −1.0094 0.68% 5 −1.0112 0.50%
1D CUF 100 3 3 −1.0099 0.63% 5 −1.0133 0.30%
1D CUF 100 4, 5, 6 3 −1.0100 0.62% 5 −1.0133 0.30%
1D CUF 120 3 3 −1.0102 0.60% 5 −1.0149 0.14%
1D CUF 120 4, 5, 6 3 −1.0102 0.60% 5 −1.0150 0.13%
2D FEM Nex = 1200 Nez = (2, 20, 2) uz = −1.0163 [m]
2D FEM Nex = 600 Nez = (1, 10, 1) uz = −1.0163 [m]
The thickness of the core layer versus the skin layer hc/hs equals 10; the slenderness ratio is 50

Table 2 Static analysis: total degrees of freedom (DOFs) for 1D CUF models and 2D ABAQUS FE models

Model DOFs

1D CUF Nex = 80, N (c)
u = 6, N (s)

u = 3 3220
1D CUF Nex = 80, N (c)

u = 6, N (s)
u = 4 3864

1D CUF Nex = 80, N (c)
u = 6, N (s)

u = 5 4508
1D CUF Nex = 80, N (c)

u = 6, N (s)
u = 6 5144

2D FEM Nex = 600, Nez = (1, 10, 1) 45, 650
2D FEM Nex = 1200, Nez = (2, 20, 2) 177, 698

The thickness of the core layer versus the skin layer hc/hs equals 10; the slenderness ratio is 50

elements, the Riks arc-length method is selected as the nonlinear solver. The initial, minimum, maximum arc-
length increments are set as 10−5, 10−5 and 1000, respectively. A slenderness ratio L/ht = 50 is considered.
A coarse and a refined mesh grid is considered as reference results. When the slenderness ratio equals 50, for
the refined mesh, the number of elements along the axial direction Nex is 1200. N

(c)
u stands for the number of

nodes for the core layer, N (s)
u represents the number of nodes for the skin layers, since the number of nodes

of top layer N (t)
u and the number of nodes of the bottom layer N (b)

u are equal. The number of elements along
the thickness for the skin layers is 2, whereas for the core layer is 20, and the mesh along the thickness of the
cross-section is addressed as (2, 20, 2). For the coarse mesh, the number of sub-domains along the thickness of
the skin layers is 1, and the number of elements along the thickness of the core layer is 10, solution addressed
as (1, 10, 1). The number of elements along the axial direction Nex is 600. Each element’s length-to-thickness
ratio is set to be 1, which can guarantee an accurate result.

Table 1 shows the results obtained by selecting different number of axial elements Nex and expansion order
of skin and core layers N (s)

u , N (c)
u . It can be observed that when N (c)

u = 6, N (s)
u = 3 and Nex = 120, the

relative error � is 0.60%. By increasing the number of skin layers’ sub-domains N (s)
u to 5, the relative error

can be reduced to 0.13% if other parameters (including the core layer’s node number N (c)
u and the number

of axial elements Nex ) are unchanged. The models with N (s)
u = 5 predict a more accurate displacement than

the models with N (s)
u = 3. Increasing the number of axial elements can improve the accuracy of the results,

whereas only increasing the number of sub-domains in the core layer will not significantly affect the results.
One may notice that the responses seem to be dependent more on Ns

u than on Nc
u in this case. This may

be due to the concentrated load rather than the nonlinearity of the global solution. Meanwhile, all solutions
in Table 1 present less than 2% discrepancy compared to the reference solutions. Table 2 shows the total
degrees of freedom (DOFs) for 1D CUF models and 2D ABAQUS FEM models. 1D CUF model marked
as “1D CUF Nex = 80, N (c)

u = 6, N (s)
u = 6” has the highest degrees of freedom in the framework of CUF

solution, the value is 5, 144. 2D ABAQUS FEM model marked as “2D FEM Nex = 600, Nez = (1, 10, 1)”
has the lowest number of degrees of freedom, the value is 45, 650. 1D CUF models require 88.71% less dofs
than the 2D ABAQUS FEM model.
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Fig. 4 Load–displacement curves of the 1D CUF-based sandwich model (N (s)
u = 6) and 2D FEM model (based on ABAQUS).

The thickness of the core layer versus the skin layer hc/hs equals 10, and the slenderness ratio is 50
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Fig. 5 Load–displacement curves of the 1D CUF-based sandwich model (N (s)
u = 3, 4, 5, 6) and 2D FEM model (based on

ABAQUS). The thickness of the core layer versus the skin layer hc/hs equals 10, and the slenderness ratio is 50

The results in Figs. 4 and 5 illustrate the comparison with the 2D FEM solutions. Figure 4 shows the results
of the four sets of 1D CUF models (represented by the marked symbols) and the results of the two sets of
2D FEM models (represented by the dotted line). The number of nodes along the thickness in the skin layers
used in the 1D CUF model is N (s)

u = 6. As the number of nodes along the thickness in the core layer N (c)
u is

increased, the accuracy of the 1D CUF model is further improved to be entirely consistent with the reference
FEM model. In Fig. 5, the value of the reference point’s displacement is shown by changing the number of
skin layers’ nodes N (s)

u when the node number N (c)
u along the core layer’s thickness is fixed to 6. It can be

seen that when N (s)
u equals 6, the result is consistent with the reference solution in the range λ ∈ [0, 2× 106].

The results of the 1D CUF model with N (s)
u = 3, 4, 5 and the reference solution are different in the range of

λ ≥ 1.5 × 106. For the sake of brevity, the cases of the slenderness ratio L/ht = 10 and L/ht = 20 are not
shown here since they present a similar trend.

4.2 Buckling analysis

This case investigates the global buckling and post-buckling analysis of sandwich structures as in Huang et
al. [6]. A sandwich beam subjected to four concentrated forces is considered as shown in Fig. 6. To trigger
the post-buckling analysis, a small perturbation force of magnitude F × 10−5[N ] is applied at the point
(L/2, (hc + hs)/2). The length L and thickness ht are 0.5 m and 0.025 m, respectively. The slenderness ratio
is equal to 20. The width is assumed to be equal to the unit. The material properties are the same as the previous
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Fig. 6 Global buckling analysis: a sandwich beam under compressive loads

Table 3 Boundary and loading conditions in terms of nodal degrees of freedom (DOFs) for 1D CUF model and 2D FEM model

1D CUF
Boundary conditions utz = ubz = 0 at x = 0 and x = L utx = ubx = 0 at x = L/2
Loading conditions Futx = Fubx = λF at x = 0 Futx = Fubx = −λF at x = L
2D FEM
Boundary conditions uz(x, z) = 0 at x = 0 and x = L ux (x, z) = ux (x, −z) = 0 at x = L/2, z = hc+hs

2
Loading conditions Futx = Fubx = λF at x = 0, z = hc+hs

2 Futx = Fubx = −λF at x = L , z = hc+hs
2

Table 4 Buckling analysis: the total degrees of freedom (DOFs) for 1D CUF model and 2D FEM model

Model DOFs

1D CUF Nex = 60, N (c)
u = 3, N (s)

u = 3 1694
1D CUF Nex = 60, N (c)

u = 5, N (s)
u = 3 2178

1D CUF Nex = 60, N (c)
u = 7, N (s)

u = 3 2662
2D FEM Nex = 1640, Nez = (1, 80, 1) 813, 770
2D FEM Nex = 3280, Nez = (2, 160, 2) 3, 241, 298

The thickness of the core layer versus the skin layer hc/hs equals to 80, and the slenderness ratio is 20

analysis. The details of boundary and loading conditions are presented in Table 3. The core-to-skin thickness
ratio hc/hs is equal to 1, 10, 50, and 80.

Table 4 shows the comparison of DOFs. The DOFs of the 2D FEMmodel are 3, 241, 298 for a refinedmesh
scheme and 813, 770 for a coarse mesh scheme. When the degree of freedom of the 1D CUF-based model is
the largest, it is only 2662, which is 0.08% of that of refined mesh 2D FEM model and 0.33% of that of the
coarse mesh of the 2D FEMmodel. The obvious difference in DOFs is due to the limitation of the aspect ratio
of the 2D FEM model. The elemental length-to-width ratio is set to be close to 1 to ensure convergence.

In Fig. 7, the four sub-figures show the load-deflection curves of sandwich structures with four different
core-to-skin thickness ratios that are obtained by the 1D CUF sandwich model and the 2D FEM model. The
adopted models can accurately predict the instability curve and are consistent with the bifurcation results in
Huang et al. [6]. As the thickness ratio decreases, the buckling load increases. However, the degrees of freedom
of the proposed model are much less than that of ABAQUS, which is shown in Table 4. Then, due to the use
of ANM, under the same displacement conditions, the number of inversions of the stiffness matrix is greatly
reduced, and the computation cost is further reduced in terms of the nonlinear solver. One can see that all
nonlinear equilibrium paths from the proposed 1D CUF sandwich model match well the curve from the FEM
model before the post-buckling. However, only the model named “1D CUF N (c)

u = 7, N (s)
u = 3” can predict

the post-buckling behaviour accurately.
This model only needs to increase the order in the thickness direction to get the correct result. This is also

a significant advantage of the CUF approach: the order of the model can be adjusted arbitrarily so that it can
be easily used for various types (thick or thin) sandwich beam problems. One notes that a “softening" post-
buckling behaviour can be observed for the case with the largest core-to-skin thickness ratio (hc/hs = 80),
whereas stable post-buckling responses are found for the cases with smaller core-to-skin thickness ratios.
This is because the local wrinkling occurs in the post-buckling stage in the former case, which results in a
global–local-coupled buckling pattern that will be investigated in detail in the following subsection.
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(a) hc/hs = 80
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(b) hc/hs = 50
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(c) hc/hs = 10
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(d) hc/hs = 1

Fig. 7 Nonlinear equilibrium paths of the proposed 1D CUF-based model and 2D FEM model (based on ABAQUS). The
core-to-skin thickness ratio hc/hs equals 80, 50, 10 and 1, and the slenderness ratio is 20

4.3 Global–local-coupled buckling analysis

The problem of global–local-coupled buckling is relatively common in engineering, and it is a strongly nonlin-
ear problem involving two bifurcation points, which is usually difficult to solve, requiring accurate numerical
models and efficient path tracking methodologies [45]. Two cases of global–local-coupled buckling are here
presented. In the first case, the global buckling mode appears first; in the second one, the local buckling mode
occurs first. Except for the geometric parameters, the two cases have the same material properties, boundary
conditions and loads as reported in Sect. 4.2. For the first case, the beam length is 0.5 m, and the thickness of
skins and core layer is 0.0005m and 0.024m, respectively. For the second case, the beam length is 0.25m, and
the thickness of skins and core layer is 0.0003 m and 0.0244 m, respectively. This difference in geometrical
parameters leads to total different buckling behaviours in the two cases [7,18,46]. To trigger the post-buckling
analysis, a perturbation force of 1/20000 of a concentrated force is applied to the center points of the skin
layers.

For the first case, the nonlinear equilibrium paths of global and local coupled instability are shown in Fig. 8,
which corresponds to uz at point (L/2, (hc + hs)/2). Figure 8a represents the overall situation, where uz is in
the range of 0.012 to 0 [m]. Five curves are presented, four of which marked “1D CUF” are from the proposed
CUF-based model, and one of them labelled “2D FEM" is obtained from the FEM model in the ABAQUS
software. The DOFs comparison is found in Table 5. The overall trends of these five curves are consistent. The
first bifurcation point is around (−8.38×10−4[m], 2.84×104[N ]), which corresponds to the instability mode
of global buckling (see Fig. 9a). The second bifurcation point is near (−6.65 × 10−3[m], 2.86 × 104[N ]),
which corresponds to the instability mode of global–local-coupled buckling (see Fig. 9b). The enlarged picture
Fig. 8b shows more details around these two bifurcation points. From the point (0, 0) to the second bifurcation



A geometrically nonlinear analysis 77

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

λ
-4

 [N
]

uz
2 [m]

1D CUF N(c)
u  =3, N(s)

u  =3

1D CUF N(c)
u  =7, N(s)

u  =3

1D CUF N(c)
u  =3, N(s)

u  =5

1D CUF N(c)
u  =7, N(s)

u  =5

2D FEM

(a) Nonlinear equilibrium path diagram

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

 2.84

 2.86

 2.88

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0

λ
-4

 [N
]

uz
2 [m]

1D CUF N(c)
u  =3, N(s)

u  =3

1D CUF N(c)
u  =7, N(s)

u  =3

1D CUF N(c)
u  =3, N(s)

u  =5

1D CUF N(c)
u  =7, N(s)

u  =5

2D FEM

(b) Detailed view around two bifurcation points

Fig. 8 Nonlinear equilibrium paths for the global–local-coupled instability of the proposed CUF-based beammodel and 2D FEM
model

Table 5 Global buckling analysis: total degrees of freedom (DOFs) for 1D CUF FE model and 2D FE model

Model DOFs

1D CUF Nex = 60, N (c)
u = 3, N (s)

u = 3 1694
1D CUF Nex = 60, N (c)

u = 7, N (s)
u = 3 2662

1D CUF Nex = 60, N (c)
u = 3, N (s)

u = 5 2662
1D CUF Nex = 60, N (c)

u = 7, N (s)
u = 5 3630

2D FEM Nex = 2080, Nez = (2, 100, 2) 1, 306, 658
2D FEM Nex = 1040, Nez = (1, 50, 1) 328, 850

point, four curves marked “1D CUF” model are all slightly higher than the curve labelled “2D FEM”. This
relative error is around 0.35%. From the second bifurcation point to the leftmost endpoint, the models with the
number of nodes along the thickness of skin layers N (s)

u = 5 yield better results than the ones with N (s)
u = 3.

The curve marked 1D CUF N (c)
u = 7, N (s)

u = 5 and the curve marked 2D FEM almost perfectly overlap.
However, the relative error between the model with N (s)

u = 3 and the reference model is relatively high. This is
because the accurate simulation of the global buckling mode requires fewer nodes along the axis, while more
longitudinal nodes are needed to ensure the accurate simulation of the global–local coupled buckling. The
instability patterns and the displacement contour plots generated from the 1D CUF model are shown in Fig. 9.
The sandwich beam first undergoes the stage of overall buckling, as shown in Fig. 9a. During the deformation
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(a) Global buckling

(b) Global-local-coupled buckling

Fig. 9 Contour plots of displacement component uz [m]: global buckling at λF × 10−4 = 2.86 N and global–local-coupled
buckling at λF × 10−4 = 2.73 N . The results are obtained with 1D CUF model

process, corrugated local instability occurs in the transverse middle area of the sandwich beam, as shown in
Fig. 9b.

For the second case, the nonlinear equilibrium paths for the local–global-coupled instability of the proposed
CUF-based beammodel and 2DFEMmodel are shown in Fig. 10. The first bifurcation point is around (−9.86×
10−5[m], 2.57 × 104[N ]), which corresponds to the local anti-symmetric wrinkling (see Fig. 11a) that is the
dominant buckling mode for sandwich beams with isotropic linear elastic core [7,9,28]. Then, the sandwich
structure immediately evolves into the second bifurcation point near (−1.84×10−4[m], 2.57×104[N ]), which
demonstrates the local–global-coupled buckling pattern (see Fig. 11b). Four curves corresponding to the 1D
CUF model are consistent with the curve trends of the 2D FEM model. It was not until the second bifurcation
point that the results of the 1DCUF and 2D FEMmodels show amore obvious difference. The results of the 1D
CUF model gradually approach the reference solution by increasing the number of nodes along the thickness
of the core layer, and the relative error is about 0.83% only. In order to clearly determine the position of the
first and second bifurcation points, the nonlinear equilibrium paths shown in Fig. 10 correspond to the results
at point (37L/320, (hc +hs)/2)). The buckling instability mode diagram and displacement contour plot of the
two stages (local buckling and local–global-coupled buckling) are shown in Fig. 11, respectively. Compared
with the global–local-coupled buckling mode in the first case, the local buckling in the local–global-coupled
buckling mode in the second case occurs over the entire axial length and not just around the middle area.

5 Conclusions

This paper presents a numerical sandwich model to solve the geometrically nonlinear problem through the
Carrera Unified Formulation and the Asymptotic Numerical Method. The CUF-basedmodel is firstly validated
with the comparison of a FEMmodel from ABAQUS for static analysis. In some cases, the DOFs are reduced
by 99.88%. Then, the proposed model is applied to the global buckling case. Besides, an application of this
model to detect the global–local-coupled instability is demonstrated herein. Two cases of global–local-coupled
buckling are presented. In the first case, the global buckling mode occurs first; in the second case, the local
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Fig. 10 Nonlinear equilibrium paths for the local–global-coupled instability of the proposed CUF-based beam model and 2D
FEM model (point A in Fig. 11)

(a) Local buckling

(b) Local-global-coupled buckling

Fig. 11 Contour plots of displacement component uz [m]: local buckling at λF × 10−4 = 2.57 N and local–global-coupled
buckling at λF × 10−4 = 2.51 N . The results are obtained with 1D CUF model
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buckling mode occurs first. The nonlinear equilibrium paths have been evaluated. The accuracy is comparable
to the two-dimensional FEM-based reference solutions with a considerably reduced computational cost.
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Appendix A: Asymptotic numerical method

ANM falls into the category of second-order perturbation methods for resolving nonlinear equations. The
equilibrium path solution is expanded into a power series by a perturbation technique, thereby transforming
the nonlinear problem into a set of linear problems. Consider the quadratic differential equation as:

R(q, λ) = L(q) + Q(q, q) − λf = 0, (A.1)

where λ is the load factor and q is the node displacement vector. L is a linear differential operator and Q is a
quadratic differential operator, and f is a known external force. The nonlinearity of the equation comes from
the quadratic term Q. The differential equationR is derived for the unknowns q and λ to obtain the following
equations:

∂R

∂q
= Lt (q) = L + 2Q(q, ·),

∂R

∂λ
= −f,

(A.2)

where Lt ∈ R
n×n is the tangent differential operator, n being the number of equations or the dimension of the

unknown. The unknowns q and λ in the nonlinear systems are all expanded into power series starting from a
known solution at step m:

qm+1 = qm + apqp,
λm+1 = λm + apλp,

with p = 1, 2, . . . , Nmax . (A.3)

In the previous formula, qp, λp(p = 1, 2, . . . , Nmax ) are the coefficient of the power series, which are the
unknowns to be computed, and (qm, λm) and (qm+1, λm+1) are points on the equilibrium path. For these two
points, the differential equation is satisfied as:

R(qm, λm) = L(qm) + Q(qm,qm) − λmf = 0, (A.4)

R(qm+1, λm+1) = L(qm+1) + Q(qm+1,qm+1) − λm+1f = 0. (A.5)

Since R is a quadratic differential equation, the derivatives of the second and higher orders are small enough
and negligible. The first-order derivative is marked as ∇R and can be also called the gradient/Jacobian matrix
of R. Consequently, the following equation can be derived:

R(qm+1, λm+1) = R(qm, λm) +a(∇R(qm, λm)(q1, λ1)T ) + ...

+a p
(∇R(qm, λm)(qp, λp)

T + f pnl
)
.

(A.6)

Equation (A.6) can be rewritten into equivalent linear equations as follows:

a : ∇R(qm, λm)(q1, λ1)T ) = 0, (A.7)

a p : ∇R(qm, λm)(qp, λp)
T + f pnl = 0 with p = 1, 2, . . . , Nmax , (A.8)

where

∇R(qm, λm) = (Lt (qm), λmf) (A.9)
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and

f pnl =
p−1∑
r=1

Q(qr ,qp−r ). (A.10)

By substituting Eq. (A.10) and (A.9) into Eq. (A.7) and (A.8) and grouping the terms of the same order, the
quadratic differential equation can be transformed into a series of linear equations as:

a : Lt (q) − λ1f = 0, (A.11)

a p : Lt (q) +
p−1∑
r=1

Q(qr ,qp−r ) − λpf = 0. (A.12)

The first-order equation (A.11) is a linear problem, where (q1, λ1) is the tangent vector at the position of
(qm, λm). f pnl is determined by the displacement vectors qr (r = 1, 2, . . . , p− 1). Based on the previous p− 1
power series coefficients, the nonlinear force can be computed.
There is a total of (Nmax + 1) unknowns ((qp, λp) and a), but only Nmax equations are provided. Therefore,
an equation defining the path parameter a is introduced to obtain a well-posed problem:

a = 1

s2
[(qm+1 − qm)Tq1 + (λm+1 − λm)λ1], (A.13)

where s is the scale factor. a being the projection of the increment (�qm+1, �λm+1) in the predicted direction
(tangential direction) of the first-order solution (q1, λ1). By combining Eq. (A.3) with Eq. (A.13), the following
equations can be derived by separating the terms with the same order of a:

a : q1Tq1 + λ1
2 = 1, (A.14)

a p : q1Tqp + λp
2 = 0. (A.15)

The above series form can only describe the equilibrium path properly within a series convergence radius ε.
Usually, for ensuring the stability of the calculation, it is necessary to find an effective radius that is less than or
equal to the convergence radius, and the latter is defined according to the convergence condition of the power
series. At (m + 1)th step, the displacement for the first N∗ orders can be written as:

qN∗
m+1 = qm + apqp, p = 1, 2, . . . , N∗, (A.16)

that is, when the difference between qN∗
m+1 and qN∗−1

m+1 . It can be considered that the effective radius reaches
the maximum value. Therefore, the displacement difference between two adjacent orders of the power series
needs to be smaller than a given tolerance value ε as:

||qN∗
m+1 − qN∗−1

m+1 ||
||qN∗

m+1 − qm || ≤ ε. (A.17)

Obviously, apqp with p = 1, 2, . . . , N∗ satisfies the following relation:

||aq1|| ≤ ||
N∗∑
p=1

apqp||. (A.18)

By the above formula, the effective range of the path parameter is derived as:

a ≤ (ε
||q1||
||qN∗ ||

)

1
N∗−1

. (A.19)

By substituting N∗ by the highest-order Nmax , the maximum value of path parameter in the effective radius
can be obtained as:

amax =
(

ε
||q1||

||qNmax ||
) 1

Nmax−1

. (A.20)

After assigning the error tolerance ε and the order of power series Nmax , the step length can be calculated
adaptively.
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