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Abstract This paper presents the free vibration analysis of combined composite laminated conical—cylindrical
shells with varying thickness using the Haar wavelet method (HWM). The displacement field of the combined
shell is set based on the first-order shear deformation theory (FSDT), the displacement components, and rotation
of individual shells including boundary conditions that are expanded by the Haar wavelet and Fourier series in
the meridional and the circumferential direction. By solving the vibration characteristic equation discretized
by the Haar wavelet, the vibrational results of combined shells are obtained. Then, the results of the proposed
method are compared with those of published literature and finite element analysis (FEA). The results show
that HWM has high convergence and high accuracy for the free vibration analysis of the combined composite
laminated conical—cylindrical shells with varying thickness. Also, the effects of the parameters such as thickness
variation parameters, material properties, geometrical dimensions, and different boundary conditions, on the
vibrational behavior of the combined shells are investigated. Finally, new numerical results are provided to
illustrate the free vibration behavior of the combined composite laminated conical-cylindrical shells with
varying thickness.

1 Introduction

As is well known, shell structures such as conical shells and cylindrical shells are widely used in aerospace,
marine, civil, chemical industry, and mechanical engineering as important elements of structures. In addition,
with the development of science and technology, composite materials are actively used for these structural
elements. In actual processes, the combined conical—cylindrical structures are often applied, and many studies
on these combined structures are in progress.
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Irie et al. [1] applied the transfer matrix method to investigate the vibration characteristics of coupled cylin-
drical-conical shells. By using the multi-segmental numerical integration technique, Hu and Raney [2] carried
out vibration analyses of a coupled cylindrical-conical shell and confirmed the accuracy of the analytical results
by experiments. Benjeddou [3] proposed the local-global B-spline finite element method for the modal analysis
of the coupled shell structure. Caresta and Kessissoglou [4] studied the vibration characteristics of the coupled
isotropic cylindrical-conical shell using the classical approach. In order to obtain the total governing equation
of a coupled shell, the wave solution has been adopted for the cylindrical shell, and the power series solution
has been adopted. Then, these two solutions are coupled by the continuity condition at the interface of two
shells. EI Damatty et al. [5] used the three-dimensional finite element method for the numerical analysis of the
dynamic behavior of the coupled cylindrical-conical shell. Qu et al. [6—10] analyzed the dynamic behaviors of
the different coupled shells such as the ring-stiffened conical—cylindrical shell, cylindrical-conical-spherical
shell, and spherical—cylindrical-spherical shell using a modified variational approach. Based on the modi-
fied Fourier—Ritz method, Ma et al. [11, 12] analyzed the vibrational characteristics of a coupled isotropic
conical—cylindrical shell with general boundary conditions. Bagheri et al. investigated the free vibration char-
acteristics of a coupled conical—cylindrical—conical shell [13] and conical—conical shell [14] made of isotropic
material using the generalized differential quadrature (GDQ) method. Su et al. [15] analyzed the vibration
characteristics of a coupled conical—cylindrical-spherical shell with general boundary conditions using the
Fourier spectrum element method (FSEM). Cheng et al. [16] applied the variation method to investigate the
vibration characteristics of a coupled conical-cylindrical shell. Chen et al. [17] proposed an analytic method
to analyze free and forced vibration characteristics of ring-stiffened combined conical—cylindrical shells with
arbitrary boundary conditions. By using a power series solution, Efraim and Eisenberger [18] investigated
the free vibration characteristics of segmented axisymmetric shells and obtained relatively accurate natural
frequencies.

Although many studies have been performed for free vibration analysis of conical-cylindrical coupling
shells, it can be seen that most of them relate to coupled shell structures with uniform thickness. Kang [19]
performed an analysis of the free vibration of a combined conical—cylindrical shell structure in which a conical
shell with varying thickness and a cylindrical shell are combined. However, in this study, the coupled shell
structure is made of an isotropic material. As can be seen from the literature review, there are few studies
on the free vibration of the composite laminated combined conical-cylindrical shell structure of varying
thickness. Therefore, this study focuses on the free vibration analysis of combined composite laminated
conical—cylindrical shells of varying thicknesses.

Recently, the Carrera unified formulation (CUF) [20], proposed in 1995 by Italian scientist Carrera, has
attracted the attention of scientists who are trying to solve the vibration problems of structural elements.
Carrera et al. [21-25] made a great contribution to the static and dynamic analysis of structural elements such
as beams, plates, and shells using CUF. The CUF is a technique that permits one to handle a large variety of
shell models in a unified manner. The FSDT shell theories can also be obtained as particular cases of CUF.
Therefore, in this study, the FSDT is introduced as a theoretical model for the analysis of free vibration of the
combined composite laminated conical-cylindrical shells with varying thicknesses. HWM is applied to solve
the equation of motion of the combined conical—cylindrical shell. It has already been verified that HWM is
an efficient and accurate solution method not only for the free vibration analysis of cylindrical shells [26-29],
conical shells [28, 30, 31], and doubly curved shells of revolution [32], but also for free vibration analysis of
coupled shell structures [33]. All displacements and their derivatives in the motion equation are expressed by
the Haar wavelet and their integrals in the axis direction and by Fourier series in the circumferential direction.
The integral constant is determined by the boundary condition. New results to verify the accuracy and reliability
of this method are performed by parametric studies and numerical examples.

2 Theoretical formulations
2.1 Description of the model

Figure 1 shows the geometric structure of a combined composite laminated conical-cylindrical shell with the
semi-vertex angle ¢ of the cone, length L., and the small radius R, of the conical shell, and the radius R,
and length L., of the cylindrical shell. The thickness h.y of the cylindrical shell is constant while the thickness
h¢, of the conical shell varies according to a constant rule in the x-axis direction.

The conical shell is defined by the coordinate system (X0, 0o, Zco), in Which x., and 6, are the coordinates
of axial and circumferential direction, and z, is the coordinate in the direction perpendicular to the middle
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Fig. 1 Coordinate system and geometric relations of a combined composite laminated conical—cylindrical shell: a cross section
and boundary condition, b geometric relations of the combined shell

surface, respectively. The displacements of the conical shell in the x.,, 6.,, and z., directions are denoted by
Ucos Veos Weo-

The radius at any point of the conical shell can be written as R.,(Xc0) = Ro,co + Xco Sing. The cylindrical
shell is represented by the x.y, 8¢y, z¢y coordinate system, in which x.y, 6y, and z., mean axial, circumferential
and radial directions, respectively. The displacements of the cylindrical shell in the xcy, 6y, and z, directions
are denoted by u., v., and w. respectively. In all expressions of this work, the subscripts co and cy denote the
conical and cylindrical shell, respectively.

The thicknesses at origin and end of the conical shell are represented by kg, and £ ., respectively, and
the generalized equation of thickness depends on the following as:

Xco p
heo(Xeo) = hO,co 1 - 05< ) (1)

co

where o and B are thickness variation parameters.

2.2 Kinematic relations

FSDT is employed to represent the motion equations of the shell, and the displacement field for the shell based
on the FSDT is expressed as follows [11, 29, 32, 33]:

up(x, 0,2, 1) = ug(x,0, 1)+ 29 ¢ (x, 0, 1),
ve(x, 0,2, 1) = v(x, 0, 1) + 299, (x, 0, 1), (2)
we(x, 0,2, 1) = wi(x, 0, 1)

where the subscript ¢ (= co, cy) denotes the conical and cylindrical shell, respectively, u, v, and w are the
displacements in x, 6, and z directions, and ¥, and g represent the rotations of transverse normal with respect
to the 6- and x-axis.

The strain—displacement relations at the middle surface can be written as follows:
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Conical shell:

oul a0 u? w? .
e =2, &) = 4 “cosp+ —Lsing,
’ 0xco ’ Rco00c0  Reo Reo
vl dul 0 3
0 Vo Uco Vo llfx,co
Vx0,c0 = + - COS®, Xx,co = ,
’ 0xco  Reod0co Reo 0Xco
oeo = Vo, c0 N Vx,co COSQ.  Habeo = OV, co N Wo.co  Vo,co cos ¢
,€O ’ x0,co = — s
RC()BQC(] RCU RC()BGCO 8xC0 RCO
0 9 0 0
w
co co co
Yxz,c0 = +Yrc0,  Vzco= 55 s — 5 T V0.005
o 0xco e “ee Reo00c0 Reo ‘
Cylindrical shell:
0 0 0 0 0
O _ ity 0 _ Iy . Wey, - ey, Oty
BT Bxey” YT Reydbey Ryt YT 0xey Reydey
X awx,cy X aw@,cy X aw&cy " 3%,@
x,cy = "o by = 5 an x6,cy = ,
Bxcy Rcyf)@cy axcy Rcyaecy
0 0 0
YOy = ey, Py = ey Yoy
y — x,cy» Yy T 5C,
XZ,Cy axcy y 0z,cy Rcy aecy Rcy cy

3)

“)

where 82’ ¢ sg’ ¢ V;)e, ¢ represent the normal and shear strains in the middle surface, x. ¢, xo,c,and x.o ¢ are

curvature and twist changes, and yx; , Vs, are transverse shear strains [11, 32, 37].

The relations between the force and moment resultants with the strain and curvature changes of the middle

surface are expressed in matrix form as follows:

Ny [ Alic Aine Atec Biie Biog Bios | 52,;
No.¢ A A r Azer Bizc Bar B 58,§
Nxo,¢ _ A6, Azer Ass,c Bie,c Baec Bes,: J/)?e,;
M; ¢ Bi1,c Bia,r Bis,r Dii,c Di2c Diey ky.c ’
My, Bi2¢ Bor Bas,e Dize D Doy ko,
Mxo.¢ | Bi6.c Bas.c Bos.c Die.c Dasc Des.c | | krovc
Qx,g} _ K[Ass,; Ags ¢ } { J/xz,;}

Qo.¢ Ass,c Asar || Yoz

(&)

where Ny ¢, No,r, Nyo,c, Qo,c, Ox,c and My o, Mg , M g, are the in-plane force and twisting moment resultants.
In Eq. (5), k denotes the shear coefficient and is given as 5/6 in this paper. A, Bjj;, and D;j, represent

extensional, extensional-bending, and bending stiffness, respectively, and they are expressed as:

Ny
Aije =Y i (Zisre = Zig). G j=1,2.6),

k=1
N .
Aije =k ) 0 o(Zirie = Zie)s (G j=4,9),
k=1
1 Ne k
2% 2 2 ..
Bij¢ = 5 Z Qij.¢ (Zk+1,§ - Zk,;): (i,j=1,2,6),
k=1
1 N &
Dijc =52 Qe Zhrc = 2Zhe) Gj=1.2.6)
k=1

(6)
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where N denotes the number of total layers of the laminated shell, and Z; and Z; are the distances between
the kth or k + 1th layer and the middle surface. The coordinate Z; of the bottom surface of the kth layer is
expressed as a function of x,

2(x) = BN h(x). (7)
2 Ny

@fj g(i , ] =1,2,4,5, 6) are transformed elastic coefficients of kth layers and are defined as [11, 28, 33]:
alfl,; = 0f , cos* ¢l}iber + Z(Qlfz,; + 2Q1§6,;) cos ¢§‘iber sin® ¢§iber + 0%, , sin* ¢§‘iber’
alfz,; = (Qlfl,g +05, — 4Q§6,;) c08” B pr SI0° D iper + Ol (0034 iper + sin® ¢§'iber>’
5152,; = Oy ¢ sin* ¢, + 2<Qlf2,g + 2Qlé6,g) c08” oy Sin> B + 05y c08* Bl
élfé,g“ = (Q]ﬁ,; -0y, - 2Ql§6,;) c08” iy sin @i, + (Q]fz,; — 05y + 2Q1é6,;) 008 B sin® ¢l
6156,; = (Q’fl,g -0y, - ZQée,;) COS @y S0 G110, + (Q]fz,; - 05 + leéé,g) cos® ¢’]}iber Sind)]}iber’ ®)
626,{ = (Q’fl,; +05,, —20%,, - 2Q]é6,g“> cos® ‘f’]}iber sin® ‘f’]}iber + Qe (0054 ¢I}iber +sin* ¢]}iber>’
Eﬁ«;::Qﬁa;““2¢§waf*Q§i;““2¢ﬁbw’
Qlis.¢ = (ngs,; - Q§4,;) €08 @i per S0 G
Elgiz = Ql§5,; cos® ‘f”}iber + Oy sin® ‘f’]}iber

where ¢* Fiber indicates the angle between the principal material directions and the x-axis in the k™ layer. ol

ij.&
are the reduced elasticity coefficient at the k™ layer and expressed as follows [11, 28, 33]:
k k k k
k Ey Ere k M2 Ba
Qn,zzl— One=1—7 7 Qe=1— i i
Mlz ;1““21 ¢ — M M. — My M. &)

k k k
Q44,g = G23 I st = G13 s Q66,{ = Glz,;

where E '1‘ ¢ and E’z‘ ¢ represent Young’s moduli, and Glfz, ¢ Gl{S, ¢ and 6’53’ ¢ are the shear moduli. /L,fz, ¢ and
:“]51 ¢ are Poisson’s ratios.

Since the thickness of the conical shell is changed in the x.,-axis direction, the stiffness coefficients Ajj co,
Bijjco, and Dj; ., are functions of x.,, therefore, partial derivatives of the stiffness coefficients are appearing,
and can be written as follows:

a-Aij co 0Zk+1,c0 02k co ..
— = E — = ,j=12,6,
8.xc() Ql'] C(J( 3xm axm L
aAi/ co ik k 0Zk+1,co 0Zk,co L.
—’ = ij : - - bl = 47 57
axCo * Z Qlj,(,‘o axco Bxco LJ

10)

aBij co aZk+1 co 02k, co
— L — Z — Zk . c —_— i, | = ], 2, 6,
%o Z Ql, co\ Ck+l,co— %o k,co 9xeo J

aDijaCO 8Zk+1 co 5 0Zkco ..
9Xco _ZQU co Zk+1 0T g Yoo Zk,com i,j=126.

From Eq. (6),

aZk,co —(-05+ k—1 8hw (11)
0Xco ’ Ni 0xco ’
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where 0h / dx can be obtained from Eq. (1),

dhco . _hl,cna}\ <xco )'31
Lo '

(12)

0xco Xco

2.3 Governing equations, boundary and connecting condition

In the current study, Hamilton’s principle is applied for obtaining the equilibrium equations of motion of the
laminated composite conical shell with varying thickness and of the cylindrical shell. The equations of motion
of the laminated composite conical shell with varying thickness and the cylindrical shell for free vibration
analysis of coupled structure can be written as follows:

For the conical shell:

a]Vx co 1 8Nx0 co Cos @ azu(c)n awa co
— + ———— 4+ (Nx.co — Ng¢ =y +1 —,
8xw Rca 39w ( X,co G,w) Rco 0,co 3[2 1,co 81‘2
dN 1 9N, sin cos 3200 32
x0.co + f.co + 9,co_¢ +2Nx9,co 4 == O,CO_ZCO + Il,CO#!
%o  Reo 36co Reo Reo 3t at a3)
IMy co 1 0Myp.co cos ¢ 8%u? Vs co
€0 4 €0 4 (My.co — M, - = Do 2 + I pp—?
axco Rco 3900 ( X,co 9,c0) Rco Qx,co 1,co 312 2,co 3t2
My co 1 My, co CoS ¢ %00 821&9 co
— + — +2M - =1 <41 ’
8xw Rco 39co x0,co Rco Q@,co 1,co 3t2 2,co 3t2
For the cylindrical shell:
2.0
aNx,cy 1 8Nxe,cy 9 Uey 821/fx,cy
+ = = 10,cy P + Il,cy 7
0xcy Rey 00y ot dt
8Nx9,cy 1 aNG,cy Q@,cy zv?y 321//.9,cy
+ — + =locy— + 11y 7
Xy  Rey 30cy  Rey ot ot
2,0
Moey 0oy L 800y O Ve (14)
Rey  0xey  Rey 96 By
8]ux,cy 1 81‘4,\70,cy . Q -7 32M(C)y iy aZWx,cy
Oxey  Rey 90cy e T Ahe Ty T Re Ty
2.,0
aMxe,cy + LaMG,cy _ Q —7 vcy Iy aZI/fG,cy
Oxey  Rey 00cy Gy e T TR Ty
where I, 11, 12, are the inertia terms and defined as follows:
N Zk+1
k 2
(loc, Iie. L) = Z P (1, z¢, zg)dz. (15)
k=17,

ok is the mass of the kth layer per unit middle surface area.
By substituting Egs. (4)—(6) into Eqgs. (13) and (14), the equations of motion of the individual shells (i.e.,
conical shell with varying thickness and cylindrical shell) are written in matrix form as follows:
Ly Lig,e Lize Liae Lisc | [ u
Lote Looe Loz ¢ Logg Lose || v
L3¢ Lang L3ze LaacLase || w | =0 (16)
Lai¢ Lap¢ Laz ¢ Laa g Las ¢ || ¢a
Lsy¢ Lsy¢ Lsz ¢ Lsagc Lss e || ¢p

where the detailed expression formulas of the coefficients Lj;; can be found in Appendix 1.
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Table 1 Corresponding values of the spring stiffness for general boundary conditions

Corresponding spring stiffness values

BC kuy ky Ky ky ko

F 0 0 0 0 0

C 104 104 104 1014 1014
SS 1014 1014 104 0 10
SD 0 1014 1014 0 1014
E! 108 108 108 104 1014
E? 104 1014 1014 108 108
E3 108 108 108 108 108

Choosing reasonable boundary conditions in vibration problems has always been one of the most important
issues. Therefore, a consistent and useful approach is specified for handling boundary conditions. One of the
advantages of this method is its good compatibility with boundary condition equations. In this paper, we
simulated boundary conditions using artificial springs. Therefore, generalized elastic boundary conditions are
well modeled using three kinds of linear springs (ku, kv, kw) and two kinds of rotational springs (k¢, k). In
other words, arbitrary boundary conditions can be modeled by selecting the appropriate stiffness values of
these springs. For simplicity of representation, we denote fully clamped, free, simply supported, and shear
diaphragm boundary conditions as C, F, SS, SD, respectively. In addition, in this study, three kinds of elastic
boundary conditions, expressed as E1, E, and E3, are investigated. Then, the simulated boundary condition
equations at the start edge of the conical shell and the end edge of the cylindrical shell can be expressed as

o =0 = { ;Zuco = Nx co, kszvcn = Nyxg,co kz,o},wcn = Qx,co»
co = . .
k;z,()l//x,co = Mx,cm kézwe,c‘o = MxB,cov

. . . 17)
cy _ cy _ cy — (

oo = L. = kub”cy = —Nx.cy» kvbvcy = —Nxp,cy, kwbwcy = —0Ox.cy

cy — =y kcy _ kcy _

xwa,cy = _Mx,cys gbwé‘,cy = —Mx0,cy-

The boundary conditions considered along with the corresponding values of spring stiffness are given in Table
1.

Taking into account the change in curvature, the coupling conditions at the interface between the conical
shell and the cylindrical shell can be given as [11]

Uco = Uey COSP — Ueo SINQ, Voo = Vey,

Weo = Ucy Sin ¢ + we, cos @, Iﬁx,co = 1//)c,z:ya 1/’0,00 = '(/fG,cy 5

Ny co = Ncy Cos ¢ — Qx,cy sin @, Nxo,co = Nx@,cy»

Qx,ca = Nx,cy Sin(p + Qx,cy Cos @, Mx,ca = Mx,cy, Mx@,co = Mxe,cy

(18)

where ¢ is the angle of difference between conical shell and cylindrical shell in the meridian direction. Since
different coordinate directions are used on both sides of the coupling interface, the transformation relationship
in Eq. (18) ensures continuity of displacements, forces, and moments. The force and moment resultants at the
junction of a combined conical—cylindrical shell are given in accordance with the sign convention shown in
Fig. 2.

As shown in Egs. (13) and (14), since the equations of motion of the conical shell and the cylindrical shell
are partial differential equations, it is necessary to convert them into a set of ordinary differential equations.
Considering that the shell discussed in this paper is a perfectly rotating shell, if we proceed with variable
separation using the Haar wavelet series in the meridian direction and the Fourier series in the circumferential
direction, the displacement and rotation components can be written as follows:

ud(x, 0, 1) = Ug(x) cos(nf) ',

v(x, 0, 1) = Ve (x)sin(nd) ',

wi(x, 0, 1) = We(x) cos(nd) e, (19)
Yy.c(x,0,1) = @ (x)cos(nd) e,

Vo (x,0,1) = O (x)sin(nd) '’
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N, x6,co

Fig. 2 Force and moment resultants at interface of the combined composite laminated conical—cylindrical shell

where w is the angular frequency, and the nonnegative integer n is the number of waves of the corresponding
mode. U(x), V(x), W(x), @(x), and ©(x) are unknown functions to be determined. Substituting Eq. (19) into
Eq. (16) and carrying out several algebraic operations, the governing equations of the individual shells can be
written in the following unified form:

LY U + L1 gV+L2 —d2 §+L0 V +L! %% +L! d dd S
11,¢Y¢ 11 11, 12, V¢ 12, 13 ¢ 13,
4 4 dx; ¢ dx? ¢ Cdx; ¢ S dx X¢ 20.1)
dq) dzcbg—

dO;
+L14§¢§+L14§d L14§d2 15§®§+L15§d +10§CL)RU§+]1§CL)RCD§—O

dU; dw, 5 d*W;
L31§U;+L31§d +L32{V;+L33§W;+L335d + L

33,¢ d 2
4o, aG (20.2)
+L34§®§+L34§d +L35§®;+IO§wR W, =0,
dU; aw, , d*W;
L31;UC+L31¢d c +L324V§+L33;W§+L33;d +L33"F
4o, ¢ (20.3)
+L34§<I>; +L34§d e +L35{®;+10§a) R} tWe =0,
dU; d*U, dv; dW,
L41;U§+L41;d 0 L41; o) +L42;V§+L42;d 0 +L43;W£+L43;d
¢ (20.4)
dod, d*o, do;
+L44§¢;+L44§d +L44§ Ix 2 +L455®§+L45{d . Sy LW ’R? U;+12§a) R} P =0,
dU; dv; d*v,
L51;U§+L51;d{ +L52;VC+L52;d§ Lsz;d +L53;Wc
Xt (20.5)

2
410 o, 41l 2% o+l 29 2 4O, 2RZV; + L *R}O, =0
54,6 ¢ 54,0 7 dx; 55§ ¢ ssgd 55070 2 1t (T w ¢ =

where the detailed expressions of the coefficients LY. _ can be found in Appendix 2.

ij,&
The boundary condition equations can be obtained in a similar way to Eq. (20) and can be written as

follows.
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At the left boundary:
dUc . co
Ay l,coRcoW + (A12,co sme — kubRco)Uco + AlZ,con Veo + A12,co cospWe,
co

do,
+Bll coReco—— dx + BIZ co Sinp®.y + BIZ c0Bco =0,

co

dv, . .

—Ag6,conUco + A66,coReco—— — (Aéé,co sin @ + k;z Rco) Veo
dxco
doe .

_B66,conq)cn + B66,coRco xco - B66,CO sm (0®co =0,

co
aw,
KASS coReco——— dx — - kw ReoWeo + KASS,coRcoq)co =0, (21.1)
co

dUco .
Bll,coRcoK + BlZ,co sin Uy + B12,conVeo + B12,co C0S W,
co

dd .
+D11,coRcoﬁ + (D12,c0 sme — k)CCZRco)CDco + DlZ,c‘o"l@ca = 0’

co
dV;,
—Be6,conUco + Bes,coRco———— — Be6,co SN 9 Ve — Deg,conPeo

dxeo
de,
+D66,co Rco - -

Xco

(Dé6,co Sin @ + k55 R:) Oy = 0;

At the right boundary:
. dd;

All,cy cy d — kLyRcyUcy"'AlZ cynch+A12 cchy‘l‘BllcyRcydx + B12 cyn®cy =0
cy

Vey

cy
—Agt cynUcy + Ages, cyRcy dx k Rcy ch - B66,cynq)cy + B66,cyRcy®cy =0,
Xc

aw, |
(A ey Rey ——5 4 ki Rey Wey + K Ass ey Rey ey = 0, (21.2)
cy

dUe¢y do
B cyRcy dx + Bio Cynch + BIZ cy WC} + D11 cyRcy a4 k)ccchyq)cy + D12,cyn®cy =0,

¢y dxcy

Vey

d®
~ Detsi®e, + D Ry o 4K5} ey Oy 0.

—Bgg cancy + Bes cyRcy
Xey cy

2.4 Haar wavelet series and discretization

The Haar wavelet function A;(x) for x € [0, 1] is defined as [26, 27, 32, 33]

I x e [x,x]
hi(x) =1 —1 x € [x2, x3] (22)
0 elsewhere

In Eq. (22), notations x| = k/m, and x, = (k + 0.5)/m, x3 = (k + 1)/m are introduced, in which the integer
m=2j(j=0,1,...,J) is the scale factor, and the maximal level of resolution determined by the integer J; k =
0, 1,..., m-1 is the delay factor.

Any function f(x), which is square integrable in the interval [0, 1], can be expanded into Haar wavelet
series of infinite terms. If f(x) is piecewise constant by itself, or may be approximated as piecewise constant
during each subinterval, then f(x) will be truncated with finite terms, that is,

flx) = Za,h (x) (23)
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wherea;(i=1,2,...,2 M)is the unknown wavelet coefficient. The interval [0, 1] is divided into 2 M subintervals
of equal length Ax = 1/2 M the collocation points are given as:

_(1-0.5)

1=1,2,...2M. (24)
2M

Xy

In order to solve an nth-order PDE, the integrals of the wavelets

Pn,i(x) :/x // hi(t)dt" = ! / (x — )" hi(t)dt (25)
o Jo 0 m—=1D!Jy

n—times

are required. In Eq. (25), i = 1,2,...,2 M. The case n = 0 corresponds to function /;(¢). These integrals can be
calculated analytically. In case of i = 1, the integral of the wavelet is p,, 1 (x) = x"*/n!, and in case i > 1 it is

0 X < X1,
%(x —x)" x| < Xx < X3,

Pn,i(x) = i[(x ) = 20— x2)"] Y <x <, (26)
%[(x —x)" =2(x —x)" + (x —x3)"] x> x3.

For solving boundary value problems, the values p, ;(0) and p;, ;(1) should be calculated in order to satisfy
the boundary conditions. Substituting the collocation points in Eq. (24) into Eq. (26) yields

P, 1) = ppi(x) 27)

where P™ is a2 M x 2 M matrix. It should be noted that calculations of the matrices H(i, /) and P (i, [) must
be carried out only once.

The Haar wavelet series is defined in the interval [0, 1]; therefore, to apply the HWM, the linear transfor-
mation statute is used for the coordinate conversion from length interval [0, L] of the shell to the interval [0,
1] of the Haar wavelet series, that is,

X
£= . (28)

In the HWM, the highest order derivatives of the displacements are expressed using the Haar wavelet
series, and the lower-order derivatives can be obtained by integrating the Haar wavelet series. The highest order
derivative of the displacements in the governing equations of motion and boundary condition expressions is
second order, which can be obtained by means of the Haar wavelet series as follows:

22U 2M d2v = d*w =
f) =3 aihi®), f) = bihi (), f) = cihi(®),
T R €S 29)
PoE) M *0E) X
d—,c;:zzzdihi(é)’ d—éjzzzeihi(é)’

i=1
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where a;, b;, ¢, and d; are unknown coefficients of the Haar wavelets. The first-order derivatives of displace-
ments are obtained by integrating Eq. (29), and the displacements and rotations can be calculated by integrating

the above result again. The first-order derivatives of displacements and rotations are written as follows:

2M 2M
du dU0
=Y are+ T e =Y api© -+ 00,
d§ i=1 dg i=1
2M 2M
dv(E) o dVv(0) V(0)
T_Ealpl,,@H E v<s>—;b Pri(6) + £ & TV
awe) S dW(0) - dW(0)
F_;QPL,@H B W(&)—izlc,Pz,l@ns & tWO.
ddD(E) ®(0) el
“iE —del,(sn o *®= ;sz,@Hs +®(0),
2M
dO) _ b dO0) _ T de0)
-5 = l;e,Pl,,(sﬂ & 0= i;e,Pz,,(SH%‘ & TOO.

Equations (29) and (30) can be expressed in the discretized matrix form as follows:

a;i;z]—Ha‘FHllf TE =Pa+P, f,U=Pra+Pxf,

2
TV = Hb+Hug 4 = Pib+Pig, V=Pb+Png,

d;!zv =Hc+Hh, %=P1€+P11h, W = Pyc+ Pxh,

déz_Hd+H”k %:P}d+P]]k, 8=P2d+P22k,

Z'? He+H111 %=P18+P111, 2=P28+P221,

where H and Py, P, are the Haar wavelet and its integrals, and are defined as

hi(§1) ha(§1) -+ ha(§1) 00
. h1(&2) ha(&) -+ - hy(&2) . 00
h1(8n) ha(&n) -+ hn(5n) 00
lpl,l(él) P1a(1) - PLa) 10
P11(&) P12(82) -+ Pra(82) 10
Py = . . . 7 Pu=|_ .1
P11Gn) Pr2aGn) -+ P1n(8n) 10
[Pu(a) Pya(1) -+ Pyn(r) £ 1
Py 1(52) P22(52) -+ Pan(52) &1
Py = i . ) ) ’ 2= ’

Pz,l(én) P2,2(‘§n) e P2,n(§n) Sn 1

(30)

(€19

(32)

(33)

(34)
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Fig. 3 Convergence of frequency parameters for acombined composite laminated conical—cylindrical shell with varying thickness
according to the maximal level of resolution J: a-model; b-mode2; c-mode3

and the notations are defined as follows:

U=[UED)UE),....UE",

V =[V(E), V), -, VED,

W =[W(ED), W), -, WEDT,

® = [D(&)), D(&), -+, DEN],

0 =[0(1), 0&), -+, BE],

a=1|a,a,...
b=1b1,by, -
c=[c1,co, -
d=1d, da,--

e=e, e,

al’, f = [dlil—f” U(&»]T,

S [dfi(j”, v@wT,

el b= [”Zf‘”, W(EO)T, (35)
Ld)", k= [‘”;—fo) d>(so)}r,

e, 1= [d(z(;"), ®(‘§°)}T

where f, g, h, k, and l indicate the integral constants, which can be obtained by applying the boundary condition.
The highest order of the displacements of the boundary condition equations is first order, and the first-order
derivatives and displacements in Eq. (30) are calculated when & = 0 and £ = 1. The discretization of the
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Table 2 Comparison of frequency parameters €2 for an isotropic combined conical—cylindrical shell with uniform thickness

n m Maetal. [12] Iric et al. [1] Efraim and Caresta and Kessissoglou [4] Present
Eisenberger [18]
ANSYS Reissner Flugge Reissner—Naghdi Donnell-Mushtari ~ Flugge FSDT
0 1 0.501989  0.503792  0.5047 0.503779 0.503752 0.505354  0.503707
T 0.609866  0.609854  — 0.609852 0.609855 0.609816  0.60985
2 0.929602  0.93089 0.9312 0.930942 0.930916 0.930904  0.930965
3 0.953238  0.953124  0.9566 0.956379 0.956315 0.956292  0.956474
4 0.968473  0.969493  0.9718 0.971634 0.971596 0.971538  0.971757
5 1.006064 1.009102 1.0122 1.01209 1.011884 1.011873 1.012376
1 1 0.292689  0.292873  0.293 0.292875 0.292908 0.293357  0.292864
2 0.633491 0.63581 0.6368 0.635834 0.635819 0.636844  0.635836
3 0.8111 0.811231 0.8116 0.811454 0.811446 0.811434  0.811439
4 0.929372  0.930879  0.9316 0.931565 0.931481 0.931458  0.931567
5 0.947084  0.948502  0.9528 0.952178 0.952189 0.95212 0.952356
6 0.983178  0.991452  0.9922 0.992175 0.991959 0.991936  0.992376
2 1 0.09981 0.099915  0.101 0.099968 0.102034 0.100087  0.099981
2 0.501471 0.502641 0.5032 0.502701 0.502899 0.502819  0.502609
3 0.690708  0.691144  0.6916 0.691305 0.691479 0.691353  0.69131
4 0.857243  0.858632  0.8592 0.859114 0.858901 0.858971 0.85911
5 0.912869  0.906351 0.9164 0.91587 0.916072 0.915877  0.916054
6 0.955633  0.960521  0.9608 0.960702 0.960475 0.960429  0.960877
3 1 0.087406  0.087584  0.09076 0.087603 0.093771 0.08733 0.087508
2 0.390717  0.391539  0.3921 0.391569 0.392199 0.39145 0.391456
3 0.514212  0.514379  0.5148 0.514478 0.515184 0.514424  0.51441
4 0.751608  0.750903  0.7537 0.753402 0.753593 0.753295  0.753383
5 0.794909  0.79208 0.797 0.79659 0.796983 0.796557  0.796624
6 0.915186  0.919605  0.9197 0.919635 0.919391 0.919369  0.919797
4 1 0.144547  0.144599  0.1477 0.144619 0.150574 0.144478  0.144439
2 0.32975 0.330337  0.3312 0.330354 0.331698 0.330177  0.330175
3 0.39538 0.395622  0.3965 0.395649 0.397604 0.395495  0.395413
4 0.645119  0.644582  0.6473 0.646678 0.6477 0.646548  0.6465
5 0.691826  0.691144  0.6932 0.692805 0.693197 0.69269 0.692734
6 0.871991 0.871938  0.872 0.871812 0.871555 0.871532  0.871922
5 1 0.199367  0.199464  0.2021 0.199546 0.203896 0.19954 0.199375
2 0.295743  0.295989  0.2966 0.29602 0.29633 0.295939  0.295926
3 0.370626  0.370866  0.373 0.370901 0.376227 0.370707  0.370203
4 0.578509  0.57849 0.5805 0.57975 0.581667 0.579581 0.579258
5 0.61269 0.612703  0.6138 0.613363 0.614222 0.613231 0.61313
6 0.815318  0.816743  0.8187 0.817951 0.819801 0.818014  0.817532

boundary condition equation can be manipulated in the same way as that of the displacement, and it can be
written in the matrix form as follows:

dUy
dE
d®y,
di

Up = Py2a + Pye22 f,
®p = Pycad + Pyea2k,

where
Left boundary:

Poct = [ p1.1(0) p12(0) -+~ p1.4(0)

Pocz = [ £2.1(0) p2.2(0) -+ p2.4(0)

dVy
= Ppc1a +Pye11f; —— = Pbe1d + Ppenng,

d§

dg§

Vb = Ppe2b + Pyeazg,

dWy
dé§

dOy
= Ppc1d + Pye11k, —— = Ppcre + Ppernl,

Op = Pype2e + Ppeazl

]7 Pbcllz[ll]a

], Ppe2z = [S(O) 1];

= Ppc1¢ + Pyerrh,

Wh = Ppeac + Ppe2h,

(36)

(37)

(38)
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Fig. 4 Variation of frequency parameters of a combined composite laminated conical-cylindrical coupled shell with varying
thickness according to the increase in the boundary spring stiffness

Right boundary:

Phe1 = [Pl,l(l) pia2(l) -+ Pl,n(l)]’ Pherr = [1 1]’

Pye2 = [pz,l(l) p22(1) - Pz,n(l)]’ Ppe2z = [5(1) 1]' >

With respect to the continuity condition, the equations can be expressed in a similar way as the boundary
condition. Therefore, the entire systems of the combined composite laminated conical—cylindrical shell includ-
ing boundary conditions are discretized using the HWM, and the entire governing equations can be expressed
in matrix form as follows:

K K A M;; M A
dd Kap |: d:| 2 dd Map |: d:| 0. 40)

Kpp Kpg |LAb 0 0 Ap
Aj=1la. b c d el Ay=[f. g h k 1] (41)

Ay atboth sides of Eq. (40) can be eliminated by performing some algebraic manipulations, and the standard
characteristic equation is expressed as follows:

[Kdd - KuK;, Kbb]Ad =’ [Mdd —MuyK;, Kbb]Aa’- (42)
By the further simplification of the above equation, the following matrix expressions can be obtained:
(K —0*™M)A4, =0 (43)

where K = [Kdd — deK;d1 Kbb] and M = [Mdd — Md;,Ml;dl Mbb] are stiffness and mass matrices of the
structure, respectively.
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Fig. 5 Variation of frequency parameters of the combined composite laminated conical—cylindrical shells with varying thickness
as thickness variation parameters changes
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Fig. 6 Firstsix frequency parameters of a combined composite laminated conical—cylindrical shell with varying thickness accord-
ing to lamination schemes
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Fig. 7 Frequency parameters of a [0°/90°]; combined shell with different thickness variation parameters:an=1,m=1,bn =
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3 Numerical results and discussions

In this Section, the convergence, accuracy, and reliability of the proposed HWM for the free vibration analysis of
a combined composite laminated conical—cylindrical shell with a varying thickness are presented by numerical
examples. First, the convergence and verification study of the presented method is performed. Then, the
parametric studies including the thickness variation parameters, material properties, geometrical dimensions,
and different boundary conditions are carried out. In order to express the boundary conditions, expressions
such as C-SS are used, which denotes that both end boundaries of the combined shell are clamped and simply
supported, respectively. Also, it is assumed that the conical and the cylindrical shell are made of the same
laminated composite material, and unless otherwise stated, the material properties in the numerical examples
below are as follows: E; = 10Gpa, E/E; = open, w12 = 0.25, Gip = G13 = 0.6E2, Go3 = 0.5Ex», p =

1500 kg/m?>.

In addition, the natural frequency of the combined composite laminated conical-cylindrical shell is

expressed with the frequency parameter Q2 = wR.y/ p(1 — M%z) /E3.
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3.1 Convergence and verification study

As given in Sect. 2.4, theoretically, the Haar wavelet series can be extended to infinity. However, for the
actual numerical calculation, it should be truncated into appropriate finite number terms in consideration of the
accuracy of the solution and the calculation cost. Therefore, a convergence study is required to determine the
appropriate number of series terms. Figure 3 shows the change of the frequency parameter of the composite
laminated conical—cylindrical shell laminated with 3 layers [0°/90°/0°] according to the increase in the maximal
level of resolution J. The geometric dimensions of the combined shell are as follows: k., = 0.05 m, L., =
2m, Ry o =1m, ¢ =30° L., =5 m. In addition, the thickness variation parameters area = — 1, 8 =1, and
the C—C boundary condition, which is completely clamped at both ends of the combined shell, is considered.
As shown in Fig. 3, as the maximal level of resolution J increases, the frequency parameters of the combined
shell are converged to a constant value regardless of the circumferential wave number and mode sequence. In
particular, when J is less than 5, the frequency parameters are decreased rapidly, and when J is larger than 7,
it converges to a constant value with little change. Based on the convergence results, it can be concluded that
arelatively accurate solution for the free vibration of the combined shell can be obtained when J is 7 or more.
In this paper, considering the calculation cost, J = 8 is set in all numerical examples.

Then, the verification studies are performed to verify whether an accurate solution can be obtained for
the vibration analysis of combined composite laminated conical-cylindrical shells of varying thickness using
HWM. First, the frequency parameters of a combined conical—cylindrical coupling of uniform thickness by
the proposed method are compared with the results of the previous literature. Table 2 shows the frequency
parameters of the combined isotropic conical-cylindrical shell according to different shell theories in compar-
ison with the results of the proposed method. As shown in Table 2, the frequency parameters of the combined
isotropic conical—cylindrical shell with uniform thickness by HWM are in good agreement with the results of
the previous literature.

Since this study is about the free vibration analysis of combined composite laminated conical—-cylindrical
shells with varying thickness, the accuracy of the proposed method for the structure to be considered should
be verified.

Due to the lack of published literature on the free vibration analysis of this structure, in this verification
study, the accuracy of HWM is verified by comparison with the FEA results. For the FEA, the finite element
analysis software ABAQUS is used. The material properties and thickness variation parameters of the combined
shell considered in this comparison study are the same as in the case of Fig. 3, and the geometric dimensions
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Fig. 8 Variation of the frequency parameters of the combined composite laminated conical—cylindrical shells with different elastic
modulus ratios
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are as follows: o =0.03 m, Loo =2 m, Roco = 1 m, ¢ = 30° L., = 3 m. For FEA, the element type S4R
is selected. The calculation accuracy and efficiency of the proposed method in Table 3 are compared with the
results of FEA.

As shown in Table 3, when the number of elements is 41224, it is the most similar to the result of the
proposed method, and at this time, the required calculation time is about 30 s, although there is a slight
difference depending on the boundary conditions. In the case of the proposed method, the calculation time is
about 0.6 s (in the case of J = 8), and it can be seen that the calculation time is much shorter than that of the
FEA. Thus, by the verification studies, it is confirmed that the proposed method is an efficient and accurate
method for free vibration analysis of combined composite laminated conical-cylindrical shells with varying
thicknesses.

3.2 Parametric studies and new results

In this Subsection, the influence of parameters such as thickness variation parameters, material properties,
geometric dimensions, and various boundary conditions on the natural frequencies of combined composite
laminated conical—cylindrical shells with varying thicknesses is reported by numerical examples.

As mentioned in the previous Section, one of the advantages of the proposed method is to model arbitrary
boundary conditions with the introduction of the artificial spring technique. That is, the boundary conditions are
changed according to the change of the stiffness values of the artificial spring, and consequently, the frequencies
of combined shells are changed. Therefore, the effect of artificial spring stiffness on the free vibration of the
combined shell is investigated. The variation of the first frequency parameters of the combined composite
laminated conical—cylindrical shell according to different artificial springs (i.e., ky, kv, ki, kg, ko) is shown in
Fig. 5. The material properties and geometrical dimensions are the same as in Fig. 3. To investigate the effect of
ku, the spring stiffness values are changed from 10* to 10'. At this time, the other spring stiffness values (k,,
kw, kg, ko) are set to infinite values (10%9). In the same way, the influences of different spring stiffness values
on the frequency parameters of the combined shell are investigated. As shown in Fig. 4, the effect of individual
spring stiffness values on the frequency parameters is different depending on the circumferential wave number
and the mode sequence. However, the common point is that, in all cases, when the spring stiffness values are
less than 107, the frequency parameters hardly change, but when it exceeds 10, the frequency parameters are
increased rapidly. In addition, when the spring stiffness value is 10'3 or more, the frequency parameters are
hardly changed.

The change characteristics of the frequency parameters (n = 1, m = 1) of the combined shells with different
boundary conditions for different thickness variation parameters are investigated by Fig. 5. The individual shells
are laminated in three layers [90°/0°/90°], and the geometric dimensions of the combined shells are as follows:
heo =0.05m, Lep =1 m, Ryeo =1 m, ¢ =30° L.y, = 1 m. As shown in Fig. 5, the thickness variation
parameters have a great influence on the frequency parameters of the combined shell. In particular, in the case
of o = 1, the frequency parameters are changed very severely, unlike other cases.

Also, Fig. 5 shows that the boundary conditions have a very significant effect on the same thickness variation
parameters.

The effects of the fiber angle on the frequency parameters (n = 1) of combined shells with different
lamination schemes ([0°/¢°], [¢°/0°], [0°/¢°/0°], [¢p°/0°/¢°]) are investigated. The geometric dimensions of
the combined shell are: i, =0.05m, Loo =2 m, Ry co = 1 m, ¢ =30°, L., = 3 m, and the thickness variation
parameters are « = — 1, § = 1. In addition, the fiber angle ¢ changes from 0° to 180° by setting the calculation
interval equal to 5°.

As shown in Fig. 6, the frequency parameters are symmetrical with respect to ¢ = 90°, and the frequency
parameter of the combined shell about the fiber angle is varied with the lamination schemes and mode sequence.

Figure 7 shows the variations of the frequency parameters for a [0°/90°]; combined shell with several
thickness variation parameters against the number of layers k. Except for the length of the cylindrical shell
Ly =1 m, other geometrical dimensions are the same as in Fig. 6. As clearly shown in Fig. 7, the frequency
parameters of the combined shell increase rapidly with increasing layers and may reach their crest around k
=5 (i.e. the number of layers is 10), and beyond this range, the frequency parameters are hardly changed.

Figure 8 shows the frequency parameters of the four-layered [0°/90°/0°/90°] combined shell according to
the E1/E; ratio. The geometric dimensions are: i, = 0.05m, Leo =2 m, Roeo = 1 m, ¢ =30° Loy =3 m,
and thickness variation parameter 8 = 1. Figure 8 shows that as the ratio of E{/E increases, the frequency
parameter of the combined shell increases for all boundary conditions and for different thickness variation
parameters.
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Table 7 Frequency parameters of a combined composite laminated conical—cylindrical shell with different circumferential wave
numbers

n m Boundary conditions

c-C C-F §S-SS C-SS SD-SD C-SD C-E' C-E? C-E* E!-E' E2E? E-B’

1.62114 0.04848 1.57863 1.57869 1.3197 1.33539 0.54553 1.56774 0.54438 0.56546 1.56783 0.56391
2.01506 1.43474 1.9632 1.97903 1.56278 1.56306 1.54348 1.79982 1.54189 1.56084 1.79925 1.5593
2.28993 1.43474 2.08831 2.10339 2.0099 2.02786 1.54348 2.06312 1.54189 1.56084 2.04321 1.5593
1.64146 0.10322 1.62894 1.63731 1.41933 1.47802 0.67591 1.61189 0.66955 0.69623 1.60046 0.69
2.16202 1.49245 1.96661 1.97455 1.96289 1.97561 1.52896 1.82407 1.52812 1.41498 1.82267 1.41045
24273 1.81424 2.392 2.40091 2.19194 2.20412 1.98348 2.39098 1.97748 1.96719 2.38443 1.95854
1.36066 0.32633 1.32556 1.35026 1.18396 1.27702 0.92002 1.33539 0.89808 0.91511 1.29623 0.89387
2.39882 1.32388 2.21363 2.21358 2.20043 2.20017 1.38086 1.9922 1.37649 1.26705 1.99066 1.25162
2.53626 2.33285 2.44462 2.48297 243911 2.48 2.38945 2.4636 238718 2.09139 2.41164 2.05862
1.29045 0.59094 1.2623 1.28491 1.19151 1.25803 1.144 1.27712 1.1182 1.11238 1.23431 1.08814
2.47399 1.30029 2.29975 2.31297 2.25497 229838 1.4217 2.04846 1.39903 1.3673 2.0331 1.32935
2.64256 2.48889 2.5425 2.58218 2.50162 2.5515 2.51776 2.56791 2.51604 2.20162 2.47288 2.14602
1.45396 0.87245 1.43573 1.45002 1.40269 1.43458 1.37632 1.44202 1.35516 1.34924 1.40923 1.32639
2.495 1.47795 2.35776 2.37582 2.26571 2.31376 1.66938 2.10549 1.62427 1.643 2.08444 1.58662
2.85236 2.58949 2.73596 2.77395 2.70658 2.77128 2.64128 2.71028 2.63675 2.41121 2.57916 2.34803

W= W = W — WK — W —

Next, the effect of geometrical parameters on the frequencies of the combined composite laminated con-
ical-cylindrical shell with varying thickness is presented with the new numerical results. Table 4 shows the
frequency parameters of the combined shell for different thicknesses £, of the conical shell according to the
boundary conditions. The combined shell has been laminated in 4 layers [30°/— 30°/30°/— 30°], the geometric
dimensions are: L, = 2m, Ry o = 1 m, ¢ =30°, L, = 1 m, and the thickness variation parameters are o = —
1, B = 1. As shown in Table 4, as the thickness &, of the conical shell increases, the frequency parameters are
increased for all boundary conditions except for the C—F boundary condition. Also, under the C—F boundary
condition, the frequency parameters are varied irregularly when the thickness of the conical shell increases.

Table 5 presents the frequency parameters of the combined shell for the different semi-vertex angles of
the conical shell. The combined shell has been laminated in 4 layers [30°/60°/30°/60°], and the geometric
dimensions and thickness variation parameters are the same as in Table 4 except s, = 0.05 m. Table 5 shows
that the frequency parameters of the combined shell increase as the semi-vertex angle of the conical shell
increases when other geometric dimensions are the same.

The frequency parameters of the combined shell according to the increase in the length L., of the cylindrical
shell are presented in Table 6 for various boundary conditions. The combined shell has been laminated in 4
layers [15°/— 15°/15°/— 15°], and the geometric dimensions and thickness variation parameters are the same
as in Table 4. As the length of the cylindrical shell increases, the frequency parameters of the combined shell
decrease for all boundary conditions. This is related to a decrease in the stiffness of the combined shell as the
length increases.

As the last numerical example of this study, Table 7 shows the change of the frequency parameters of
the combined shell for different circumferential wave numbers. The combined shell has been laminated in 4
layers [45°/— 45°/45°/— 45°], and the geometric dimensions and thickness variation parameters are the same
as in Table 4. As shown in Table 7, the frequency parameters of the combined shell vary depending on the
circumferential wave number and the mode sequence.

In order to help the reader understand the free vibration of the combined composite laminated shell with
varying thickness, Figs. 8, 9, 10 show the mode shapes of the combined shell with the classical boundary
conditions (C—C and C-F of Figs. 9 and 10) and the elastic boundary condition (Fig. 11). The combined shell
has been laminated in 3 layers [0°/90°/0°], and the geometric dimensions of the combined shell are as follows:
heo =0.05m, Lo =2m, Ry o = 1 m, ¢ = 30°, Loy =2 m. In addition, the thickness variation parameters are
B = 1, the circumferential wave number is n = 3. As shown in Figs. 8, 9, 10, it can be intuitively seen that the
mode shapes in the case where the thickness does not change (o = 0) for all boundary conditions are different
from the mode shapes in the case where the thickness changes.
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m=1 m=2 m=3

Fig. 9 Mode shapes of the combined composite laminated conical-cylindrical shell with varying thickness and C—C boundary
condition,a: « = — 0.5,b: ¢ =0,c: ¢ = 0.5

4 Conclusions

This paper presents an effective solution method based on the Haar wavelet for the free vibration analysis of
combined composite laminated conical—cylindrical shells with varying thickness. The FSDT is employed to
formulate the theoretical model of combined shells, and the HWM is applied to discretize the governing equation
of the combined shell. That is, displacement and rotation components of the combined shell are extended by
the Haar wavelet series in the axis direction and by the Fourier series in the circumferential direction. The
integral constant is satisfied by the boundary condition. The boundary conditions are generalized by using
the artificial spring technique. The efficiency, reliability, and accuracy of this method are verified in the free
vibration analysis of the combined shell with varying thickness by convergence, verification, and parametric
studies. The advantages of the present method are its simplicity, fast convergence, and good accuracy. Several
new results on the combined composite laminated conical—cylindrical shell with varying thickness which can
be used as benchmark materials in this field are presented.
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()

m=1 m=2 m=3

Fig. 10 Mode shapes of the combined composite laminated conical-cylindrical shell with varying thickness and C-F boundary
condition, a: « = — 0.5,b:a =0,¢c: ¢ = 0.5
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m=1 m=2 m=3

Fig. 11 Mode shapes of the combined composite laminated conical—-cylindrical shell with varying thickness and E1-E1 boundary
condition,a:a = —05,b: ¢ =0,c:a =0.5

Appendix 1

For the conical shell:
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. _ g 92 .\ 2Bi6.co  0° B 92 B sing 9 sin® ¢
41,co = Dll,co aszo Rco 8)6003960 66,co Rgo 8930 11,co » axco 22,co Rgo
L Biieo 9 I Bigeo 9  Bipcosing ] 9
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26,co w axCO ( 22,co 66,50) Rgo 39w
sin? sin~ ¢ cos @ 1 Bizco 0 Bi6,co 0 Bi6,co sing
B26 co~ 5y Tt A45 co—— | + - y
ch co Reo 0xco 06c0 0Xco 0Xco 0xco Reo
cos ¢ ] cos ¢ 1 ad singcosg  B12 o COS@
L =B — —A — B —A — B - ,
43,co ( 12,co Reo 55,00) 9xco ( 26,co ch 45, co > 36eo 22,co Rgg 9%co  Reo
92 2Di6.co 0% Deg.co 0> sing 0 sin? 19
L4 co = Dy + : +— +Ditco—5— —| D22co—5— +A
<0 ““9x2 " Re, 9x30  RZ, 962, “° Reo 0xco 0TRE T T 0
Di1.co 0 Di2.co sin ¢ 1 Dig,co a A 8_2
0xco 0Xco 0xco Reo Reo 0xco 00c0 €912
32 D12,co + D66,co 82 D26,co 82 sin (,0 d
L45,c0 = Dl6,co B B B D26 (o7 R—
axg, R., 0X¢c000c0 Rz, 007, R, 9xco
sing 0 sin? ¢
- (D22,co + D66,co)R_2_ + D26,coR—2 - A45,c0
co 8060 co
+ D12,c0 1 a D]6,co a _ D6, co sin ¢
0xco Reo 36c0 0Xco 0Xco 0xco Reo '
3>  Bl.co+B a2 B a2 sing 9
LSl,co = B16,ca 2 12.co 66.co 262,60 2 + (2B16,CO + BZ6,00)_¢
x5, R.o 0Xc000:0 Rz, 007, R 0xc0
. . 2 .
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+ (B22,CD + B66,C{))_2_ 326,00 B © © « s
Rz, 36¢ RZ, 0Xco 0Xco 0Xco Reo 6.0 0Xco Reo
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For the cylindrical shell:
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3 2A16e 07 Agocy 9% 32
Lll,cy - All,cy B + + P 2 IO,cy_2 s
0x2, " Rey Oxeyd0cy K2, 962 a1
82 AlZ,cy A66,cy 32 A26,cy 82 AlZ,cy el A26,cy d
Ll2,(,‘y = A]G,(,‘y 2 + + 2 2 LlS,cy = 2
0x2,  \ Ry = Rey )oxeydbe,  RZ, 962 Rey 0%y RZ, 96cy
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xcy cy XeydUey cy cy
82 BlZ,Cy B66,cy 82 B26,cy 82
LlS,cy = Blﬁ,cy B + + + B 7
8xcy Rcy Rcy 8xcy890y Rcy aecy
I I I A 92 N 2A26,cy 92 N A2 ey 92 kA4 cy 92
2l,cy = L12,cy> 22,cy = £466,cy 7 o B 5 5 —10,cy 577>
axcy Rcy axcyaecy Rcy 390y Rcy dt
A26,cy KA45,cy ad A KA44,Cy 0
o =% " "R, Jowo T\R2 TR, b0,
cy cy Xcy cy cy cy
32 Bi2,ey  Bee,cy 32 Bygey 0% KkAss
Lo = Broga *\ R 7 R, Joxo000 T R2, 902 T Ry
Xy cy cy XeyOUey oy 90%y cy
32 2326,cy 32 BZ2,cy 32 KA44,cy 32
Las.cy = Beo,cy 75 + +—> 7+ — ey,
: 912 R 9xd0  RZ, 963, R o1
L31,cy = L13,cya L32,cy = L23,cyv
A22,cy 32 2’<A45,cy 32 KA44,cy 92
Ly = —pa = = \ KA vy o v = 5 e R2, a2 ) " oega
cy xcy cy ny cy cy cy
B12,cy 0 Bo6,cy KA45,cy 0
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Rey dxey  \ RZ, Rey | 00y
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L35,cy = - KA45,cy + 7 s
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L41,cy == L]4,cy, L42,cy = L24,cy7 L43,cy == L34,cy,
32 2Dy 07 Deg.cy 92 92
Lag ey = Di1,cy + <L + <L —KkAs5cy — Doy —
s s 2 2 2 ,CY €Y a2
0x2, " Rey Oxeydbe, R, 062, o1
9 (Diey  Desey) 9 D6 ey
€Y ,CY ,CY
L45,cy = Dl6,cy 9x2 + R + R 9x.-90 + RZ 962 - KA45,cy’
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3% 2Dyey 07 Dy 92 32
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Appendix 2
Conical shell:
0 c 2 2 1 : 2 2
Lll,co = _A22,c‘0 sm- @ — A66,con s Lll,co = All,coRco sme, Lll,co = All,coRCm
0 : 1
le’w = _(A66,co + A22,co)n sme, le,w = (A12,c0 + A66,co)chm
0 . 1
L13’CO = —A2 o COS@sing, L13’CO = A12,coRey cOS @,
0 s 2 2 1 . 2 2
L14’Co = —B2) o 8In” ¢ — Bgg con”, L14,w = Bi1,coRcoSIn g, L14,w = Bll,CoRcov

0 : 1
LlS,co = _(B22,c0 + Béé,co)n s @, LlS,co = (312,60 + B66,C())nR6‘07

’



1596 K. Kim et al.

9 i 1

L21eo = ~(A22.c0 + Ae.co)n sin ¢, Latco = —(A12,c0 + A66,c0)nReo,
9 2 in2 2 1 .

L3 co = —A22,con” — A66,c0 SIN” @ — KA44,c0 08" @, Lyy ., = A66,coRcosing, L22 co = A66Rco,
0

L33 o = —A22,c0N COSQ — K A4, coN COS P,

0 . 1
L24,co = _(322»00 + Bﬁéyw)n Sing, L24,(;0 = _(BIZ‘C() + Bﬁé,co)”Rcm
0 . 2 1 . 2 2
Lzs’m = Kk As5,c0nRco COSQ — B co fln(ﬂ — B2 con”, L25,m = 366,000Rco sme, L25,CO = Be6,co Ry
L3 oo = —Ancosingcose, L3, =—AcoReocosg, L3 ., =—(A2co+KkAdsco)ncosg,
2 2 1 . 2
L33 co — —I(A44,an - A22,co cos™ @, L33,co = KASS coReo sin @, L33 co — KASS co

L34 co = KA55coRco sing — B2 ¢ Sing cos ¢, L34 co = K Ass, wR — B12,c0 COS @,

L35 co = KA44,c0Rco — B22,coh COS @,

L41 co = —B2,co sin? (2 366,00”2’ L}n’w = Bi1,coReo sin @, L4211,w = Bll,coRg
L42 co = _(322,60 + B66,co)n sin ¢, L4112,co = (BIZ,CO + B66,c0)ch0a
L43 co = —B22,cosingcos @, L}Bm = B12,coRco 0S¢ — kAss5 o R
L44 co = =—Dx»o Sin2 (" D66,con2 - KASS,coRgga L4114,c0 = Dll,coRco sin ¢, Lz214,co = D 1,00R2
L45,w = —(D22.co + Deg.co)n sin g, L4115,co = (D12.co + De6,co)n Reo,
Lglym = _(322,00 + B66,co)n sin ¢, Lé]yco = _(BIZ,CO + B66,C0)nR(,’07
L(5)2,co = K A44,c0Rco COS — 822,c0n2 — 2Bg6,co sin? @, Léz,co = Bg6,coRco sin @, L%Z,co = BGG,CORCZ-O’
L(5)3,C0 = KA44,cocho - BZZ,con cos @, L(5)4 co = —(D22 cot D66 w)n sin @,
L§4,C,, = —(D12,co + Dg6,co)n Reo, L(5)5,m = —De6,co SiN* ¢ — K Aas coR2, — D22 con?,
LéS,co = Deg,coRco Sin ¢, Lgs,m = D66,coRgo
Cylindrical shell:
L11 oy = _A66,cyn27 L%l”cy = All,cngy, L12 ,Cy (A12 cy t A66 cv)chy, L}:’,”cy = Al2,cyRcy7
L14 cy = B66,cy”2’ L%4,,cy = BIIR? L15 cy (312 ey + B, cy)”Rcy’
L21,cy = _(A12,cy + A66,cy)chy7 Lzz Ly = _A22,cyn2 - KA44,cy’ L%z,cy = A66,cyR§y’
ng,cy = —An.cynt — KAg4 cyn, Lz4,cy = —(Bi2,cy + Be,cy)n Rey,
L(2)5,Cy = KA44,cychy - BZZ,cynz, L%5,cy = B66,Cngy7
Lél,cy =—Ap.cyR, ng,cy = (A22,cy + K Agg cy)n, ng,’cy = KA44,cyn2 — A2y,
L%icy = —kAss cyRZ,. L§4,Cy = B1aRey — kAss oy R2,, Lgm = By eyn — k Aag cyn Rey,
Lgl‘cy = _B66£y”27 Lézll,cy = B“sC}’ng’ Lé]lZ,cy = (BIZ,cy + B66 CY)nRCY’ LélB,cy = BlzsCyRCy - KASSsCyRcz‘y’
LYy ey = —Des.cyn” — i Ass oy REy, Ligey = DiteyRey,  Lis ey = (Diziey + Deo.ey)n Rey,
Lél,cy = —(Biz.cy + Beb.cy) 1 Rey, L(S)Z,cy = KAg4.cyRey — BZZ»cy”Z’ L52,cy = B66,cngyv
L53 cy — KA44,cychy - BZZ,cyna
L54,cy = —(D12,cy + D66,cy)chy, L55 cy — —kAgq CVR — D2 Cyn2 L%S,cy = D66,C}’R§y
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