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Abstract The problem of attitude stabilization of a rigid body exposed to a nonstationary perturbing torque
is investigated. The control torque consists of a restoring component and a dissipative one. Linear and non-
linear variants of restoring and perturbing torques are analyzed. Conditions of the asymptotic stability of the
programmed orientation of the body are found with the use of the Lyapunov direct method and the averaging
technique. The results of computer modeling, illustrating the conclusions obtained analytically, are presented.

List of symbols

A1, A2, A3 Satellite principal central moments of inertia with respect to body frame axes x1, x2, x3, kg ·m2

a1, a2 Positive constants
B Constant symmetric and negative definite matrix
b1, b2 Positive constants
c Positive constant
c1, . . . , c9 Positive constants
D1(t) Continuous and bounded matrix for t ∈ [0,+∞)
D2(t) Continuous and bounded matrix for t ∈ [0,+∞)
J Satellite inertia tensor in body frame x1, x2, x3, kg ·m2

h Positive parameter
h0 Positive number�L Control torque vector in body frame, N·m
�Ld Dissipative component of control torque, N·m
�L p Perturbing torque vector in body frame, N·m
�Lr Restoring component of control torque, N·m
t Time, s
V Lyapunov function
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V1, . . . , V4 Lyapunov functions
α Positive constant
δ Positive parameter
δ̄ Positive parameter
ε Positive parameter such that ε ∈ (0, 1)
�η1, �η2, �η3 Unit vectors of body-fixed frame
θ “Aircraft” angle
λ Auxiliary positive parameter
λ0 Positive number�ξ1, �ξ2, �ξ3 Unit vectors of inertial frame
ϕ “Aircraft” angle
ψ “Aircraft” angle
�ω Angular velocity of satellite in inertial reference frame, rad/s

1 Introduction

The art of mathematical modeling of mechanical systems is based on the correct estimation of the acting forces
and torques that affect the dynamics and provide qualitative and quantitative properties ofmotion. In those cases
where the acting forces can be considered known and time invariant, the estimations are based on calculating
the absolute values of forces and torques. In cases of time-varying forces and torques, such estimates are not
enough. Important quantitative characteristics of variable force factors are their mean values. A comparison
of the mean values of acting forces often reveals the main ones, and the rest can be classified as disturbances.
However, numerous well-known examples of the analysis of the mechanical systems behavior indicate that
disturbances with zero mean values are not necessarily insignificant. Therefore, neglecting such disturbances
is unacceptable in many problems. At the same time, their account often significantly complicates analytical
qualitative analysis of the mechanical system behavior [1–6]. Hence, on the one hand, there is a significant
interest of specialists in problems of the dynamics of systems subjected to perturbations with zero mean values,
and on the other hand, these complex problems are not well understood, and therefore the stream of publications
on this topic continues [7–12]. Attitude stabilization of a spacecraft is one of the typical nonlinear problems,
usually complicated by the presence of numerous nonstationary disturbances, including those with zero mean
values. This problem is relevant in many astronautical and engineering applications [1,12–16]. This article is
dedicated to this specific problem. It is worth mentioning that a similar problem was earlier considered in our
paper [17], but with other assumptions concerning disturbances and control torques.

2 Statement of the problem

Let a rigid body rotating around its mass center O with angular velocity �ω be given. Denote by Ox1x2x3
the principal central axes of inertia of the body. The attitude motion of the body under a control torque �L is
described by the Euler equations [1]

J �̇ω + �ω × J �ω = �L. (1)

Here, J = diag{A1, A2, A3} is inertia tensor of the body in the axes Ox1x2x3.
Consider two right triples of mutually orthogonal unit vectors �ξ1, �ξ2, �ξ3 and �η1, �η2, �η3. Let vectors �ξ1, �ξ2, �ξ3

be constant in the inertial frame, and vectors �η1, �η2, �η3 be constant in the body-fixed frame. Thus, vectors �ξ1,�ξ2, �ξ3 rotate with respect to the system Ox1x2x3 with the angular velocity −�ω. Hence, we obtain the Poisson
kinematic equations

�̇ξ i = −�ω × �ξi , i = 1, 2, 3. (2)

It is worth noting that the systems (1), (2) may describe a wide variety of objects such as aircraft, satellite,
submarine, missile, and quadcopter (Fig. 1) [1,18–20].

Let torque �L be the sum of a dissipative component �Ld and a restoring one �Lr : �L = �Ld + �Lr . We will
assume that the dissipative torque is linear with respect to �ω [21,22] and it is defined by the formula

�Ld = hB �ω, (3)
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Fig. 1 Quadcopter attitude motion and angles φ, θ , ψ

where B is a constant symmetric and negative definite matrix, h is a positive parameter. The restoring torque
�Lr should be chosen such that the torque �L provides triaxial stabilization of the body, i.e., the system of Eqs.
(1), (2) should admit the asymptotically stable equilibrium position

�ω = �0, �ξi = �ηi , i = 1, 2, 3. (4)

It is known (for example, see [19]), that the torque �Lr can be defined by the formula

�Lr = −c f ν(�ξ1, �ξ2)
(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)
. (5)

Here, c, a1, a2 are positive constants,

f (�ξ1, �ξ2) =
(
a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2

)
/2,

ν ≥ 0, and ‖ · ‖ is the Euclidean norm of a vector.
In the present paper, we consider the casewhere, alongwith the control torque �L , a nonstationary perturbing

torque �L p acts on the body.

3 Construction of a strict Lyapunov function for the unperturbed system

Consider the unperturbed system composed of the Poisson kinematic Eq. (2) and the Euler dynamic equations

J �̇ω + �ω × J �ω = �Ld + �Lr , (6)

where dissipative and restoring torques are defined by the formulae (3) and (5), respectively.
Stability of the equilibrium position (4) for the system (2), (6) was proved in [19]. However, it is worth

mentioning that results of [19] are based on the construction of a weak Lyapunov function. The derivative of
this function along the solutions of the considered system is only nonnegative. Such Lyapunov functions are
not well applicable to robustness analysis of nonlinear systems, since their negative semi-definite derivatives
could become positive under arbitrarily small perturbations [23,24].

In [20,25], an approach was developed to transform the weak Lyapunov function constructed in [19] into
a strict one (a function with negative definite derivative) [26,27]. At the same time, it should be noted that the
approach of [20,25] can be used only for the case of linear restoring torque. Moreover, this approach is not
effective for the investigation of the problem studied in the present paper. Therefore, we will propose another
construction of a strict Lyapunov function for the system (2), (6).

Choose a Lyapunov function candidate as follows:

V
(

�ω, �ξ1, �ξ2
)

= λ

2
�ω�J �ω + a1

2
‖�ξ1 − �η1‖2 + a2

2
‖�ξ2 − �η2‖2

−1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1J �ω. (7)
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Here, λ is an auxiliary positive parameter. Then,

λc1‖�ω‖2 + a1
2

‖�ξ1 − �η1‖2 + a2
2

‖�ξ2 − �η2‖2

−c3
h

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)
≤ V

(
�ω, �ξ1, �ξ2

)

≤ λc2‖�ω‖2 + a1
2

‖�ξ1 − �η1‖2 + a2
2

‖�ξ2 − �η2‖2 + c3
h

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)
,

where c1, c2, c3 are positive constants.
Differentiating the function (7) along the solutions of (2), (6), we obtain

V̇ = λh �ω�B �ω − λc f ν �ω� (
a1�ξ1 × �η1 + a2�ξ2 × �η2

)

+1

h

(
a1( �ω × �ξ1) × �η1 + a2( �ω × �ξ2) × �η2)�B−1J �ω

+1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1( �ω × (J �ω))

+ c

h
f ν

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)
.

The matrix B is negative definite. Therefore, the inequality

V̇ ≤ −
(
λhc4 − c5

h

)
‖�ω‖2 − c6

h
f ν

∥∥∥a1�ξ1 × �η1 + a2�ξ2 × �η2
∥∥∥
2

+c7
h

‖�ω‖2
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)
+ λc8‖�ω‖

(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)2ν+1

holds. Here, ci > 0, i = 4, . . . , 8.
Choose a number ε ∈ (0, 1). In [28], it was proved that there exists δ > 0 such that

∥∥∥a1�ξ1 × �η1 + a2�ξ2 × �η2
∥∥∥
2 ≥ ε

(
a21‖�ξ1 − �η1‖2 + a22‖�ξ2 − �η2‖2

)

for ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ2. Hence,

V̇ ≤ −
(
λhc4 − c6

h

)
‖�ω‖2 − c9

h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

+c7
h

‖�ω‖2
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)
+ λc8‖�ω‖

(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)2ν+1

for ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ2, where c9 = const > 0.
As a result, we obtain that there exist positive numbers λ, h, δ̄ such that

1

2
λc1‖�ω‖2 + a1

4
‖�ξ1 − �η1‖2 + a2

4
‖�ξ2 − �η2‖2

≤ V
(

�ω, �ξ1, �ξ2
)

≤ 2λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2,

V̇ ≤ −1

2
λhc4‖�ω‖2 − c9

2h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

for �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2.

It is worth noting that, in the case where ν = 0, value of λ should be sufficiently small and the value of h
should be sufficiently large, whereas, in the case where ν > 0, h may be an arbitrary positive number and λ
should be sufficiently large.

Thus, for an appropriate choice of λ and h, (7) is a strict Lyapunov function for the unperturbed system
(2), (6).

In what follows, using the approach developed in [29–31] and taking into account structure and properties
of the nonstationary torque �L p, we will propose some modifications of the function (7) to derive conditions
ensuring asymptotic stability of the equilibrium position (4) of the perturbed system.



Attitude stabilization of a rigid body subjected to disturbances 1235

4 Linear restoring and perturbing torques

Let ν = 0 and �L p = D1(t)(�ξ1 − �η1) + D2(t)(�ξ2 − �η2). Here matrices D1(t),D2(t) ∈ R
3×3 are continuous

and bounded for t ∈ [0,+∞). Then, the system (1) takes the form

J �̇ω + �ω × J �ω = hB �ω − a1�ξ1 × �η1
−a2�ξ2 × �η2 + D1(t)(�ξ1 − �η1) + D2(t)(�ξ2 − �η2). (8)

Thus, we consider the case where restoring and perturbing torques are linear.
Let us determine conditions underwhich perturbations do not disturb asymptotic stability of the equilibrium

position (4).
Consider the derivative of the Lyapunov function (7) with respect to the system (2), (8). If λ and δ̄ are

sufficiently small and h is sufficiently large, then the inequalities

V̇ ≤ −1

2
λhc4‖�ω‖2 − c9

2h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

+λ �ω� �L p − 1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1 �L p

≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

−1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1 �L p (9)

hold for �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2.

Theorem 1 Let the matrices
t∫

0

Di (s) ds, i = 1, 2, (10)

be bounded for t ∈ [0,+∞). Then, there exists a number h0 > 0 such that the equilibrium position (4) of the
system (2), (8) is uniformly asymptotically stable for any h ≥ h0.

Proof Modify the Lyapunov function (7) as follows:

V1
(
t, �ω, �ξ1, �ξ2

)
= V

(
�ω, �ξ1, �ξ2

)
+ 1

h

(
a1�ξ1 × �η1

+a2�ξ2 × �η2
)�B−1

2∑
i=1

t∫

0

Di (s) ds (�ξi − �ηi ).

Using the results of the previous Section and the inequalities (9), it is easy to verify that one can choose and fix
sufficiently small values of λ and δ̄ and after that find h0 > 0 such that if h ≥ h0, ‖�ξ1− �η1‖2+‖�ξ2− �η2‖2 < δ̄2,

then the function V1
(
t, �ω, �ξ1, �ξ2

)
and its derivative with respect to the system (2), (8) satisfy the estimates

1

2
λc1‖�ω‖2 + a1

4
‖�ξ1 − �η1‖2 + a2

4
‖�ξ2 − �η2‖2

−b1
h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)
≤ V1

(
t, �ω, �ξ1, �ξ2

)

≤ 2λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2 + b1
h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)
,

V̇1 ≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

+b2
h

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)
,

where b1, b2 are positive constants.



1236 A. Yu. Aleksandrov, A. A. Tikhonov

Hence, for sufficiently large values of h0, the inequalities

1

2
λc1‖�ω‖2 + a1

8
‖�ξ1 − �η1‖2 + a2

8
‖�ξ2 − �η2‖2

≤ V1
(
t, �ω, �ξ1, �ξ2

)
≤ 2

(
λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2

)
,

V̇1 ≤ −1

4
λhc4‖�ω‖2 − c9

4h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

hold for h ≥ h0, t ≥ 0, �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2.

Thus, all the assumptions of the theorem on the uniform asymptotic stability (see [32]) are fulfilled for the

function V1
(
t, �ω, �ξ1, �ξ2

)
. 	


Remark 1 For instance, the assumption of Theorem 1 on boundedness of the matrices (10) is fulfilled if entries
of these matrices are periodic functions with zero mean values.

The next theorem gives us stability conditions for a wider class of perturbed systems.

Theorem 2 Let

1

T

t+T∫

t

Di (s) ds → 0 as T → +∞, i = 1, 2, (11)

uniformly with respect to t ∈ [0,+∞). Then, there exists a number h0 > 0 such that the equilibrium position
(4) of the system (2), (8) is uniformly asymptotically stable for any h ≥ h0.

Proof In this case, we will use the following modification of the Lyapunov function (7):

V2
(
t, �ω, �ξ1, �ξ2

)
= V

(
�ω, �ξ1, �ξ2

)
+ 1

h

(
a1�ξ1 × �η1

+a2�ξ2 × �η2
)�B−1

2∑
i=1

t∫

0

eα(s−t)Di (s) ds (�ξi − �ηi ),

where α is a positive parameter.
Under an appropriate choice of λ, h0, δ̄, we obtain

1

2
λc1‖�ω‖2 + a1

4
‖�ξ1 − �η1‖2 + a2

4
‖�ξ2 − �η2‖2

− b3
αh

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)
≤ V2

(
t, �ω, �ξ1, �ξ2

)

≤ 2λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2 + b3
αh

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)
,

V̇2 ≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

+ b4
αh

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)

+αb5
h

2∑
i=1

∥∥∥∥∥∥

t∫

0

eα(s−t)Di (s) ds

∥∥∥∥∥∥
(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)
,

where b3, b4, b5 are positive constants.
In [33], it was proved that

α

t∫

0

eα(s−t)Di (s) ds → 0 as α → 0, i = 1, 2,



Attitude stabilization of a rigid body subjected to disturbances 1237

uniformly with respect to t ∈ [0, +∞). Therefore, there exists α > 0 such that

6b5α
2∑

i=1

∥∥∥∥∥∥

t∫

0

eα(s−t)Di (s) ds

∥∥∥∥∥∥
< c9

for t ∈ [0,+∞).
Then, for fixed values of λ, δ̄, α, one can find a sufficiently large number h0 such that

1

2
λc1‖�ω‖2 + a1

8
‖�ξ1 − �η1‖2 + a2

8
‖�ξ2 − �η2‖2

≤ V2
(
t, �ω, �ξ1, �ξ2

)
≤ 2

(
λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2

)
,

V̇2 ≤ −1

4
λhc4‖�ω‖2 − c9

8h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)

for h ≥ h0, t ≥ 0, �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2. 	


Remark 2 The conditions (11) are fulfilled if entries of the matricesD1(t),D2(t) are almost periodic functions
with zero mean values. It is known (see [34]), that, for such matrices, the integrals (10) may be unbounded.

Remark 3 It is worth noting that Theorem 1 is a special case of Theorem 2. However, Theorem 1 possesses
own meaning, since the proof of the theorem gives us less conservative restrictions on the parameter h than
those in the proof of Theorem 2.

5 Purely nonlinear restoring and perturbing torques

Next, assume that ν > 0 and the perturbing torque has the form �L p = D(t) �G(�ξ1 − �η1, �ξ2 − �η2), where the
matrix D(t) ∈ R

3×m is continuous and bounded for t ∈ [0, +∞) and components of the vector �G(�u, �v) ∈ R
m

are continuously differentiable for �u, �v ∈ R
3 homogeneous functions of the order 2ν + 1. Hence, we consider

the system

J �̇ω + �ω × J �ω = −c f ν(�ξ1, �ξ2)
(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)

+hB �ω + D(t) �G(�ξ1 − �η1, �ξ2 − �η2). (12)

In this case, restoring and perturbing torques are purely nonlinear and homogeneous vector functions, and
the homogeneity order of �Lr coincides with that of �L p.

Remark 4 It is known (see [35–38]) that, in numerous models of mechanical systems, strong nonlinear restor-
ing forces with real-valued powers should be taken into consideration. Such forces can be related both to
physical configurations and purely nonlinear material properties [3,39]. In addition, power-law characteristics
of restoring forces provide smooth approximations of non-smooth forces [38].

The aim of the present Section is to show that, for purely nonlinear restoring and disturbing torques, the
asymptotic stability of the equilibrium position (4) can be guaranteed under less conservative conditions than
for linear torques.

For an arbitrarily chosen h > 0, one can find λ0 > 0 and δ̄ > 0 such that the derivative of the Lyapunov
function (7) with respect to the system (2), (12) satisfies for λ ≥ λ0, �ω ∈ R

3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2

the inequality

V̇ ≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

−1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�
B−1 �L p.

Theorem 3 Let the matrix
∫ t
0D(s) ds be bounded for t ∈ [0,+∞). Then the equilibrium position (4) of the

system (2), (12) is uniformly asymptotically stable for any h > 0.
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Proof Choose and fix an arbitrary positive value of the parameter h. Construct a Lyapunov function by the
formula

V3
(
t, �ω, �ξ1, �ξ2

)
= V

(
�ω, �ξ1, �ξ2

)

+1

h

(
a1�ξ1 × �η1 + a2�ξ2 × �η2

)�B−1

t∫

0

D(s) ds �G(�ξ1 − �η1, �ξ2 − �η2).

If λ is sufficiently large and δ̄ is sufficiently small, then the function V1
(
t, �ω, �ξ1, �ξ2

)
and its derivative

with respect to the system (2), (8) satisfy the estimates

1

2
λc1‖�ω‖2 + a1

4
‖�ξ1 − �η1‖2 + a2

4
‖�ξ2 − �η2‖2

−b1
h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1 ≤ V3
(
t, �ω, �ξ1, �ξ2

)

≤ 2λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2 + b1
h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1
,

V̇3 ≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

+b2
h

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)2ν+1

for t ≥ 0, �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2. Here b1 and b2 are positive constants.

Using properties of homogeneous functions (see [40,41]), it can be proved the existence of a number δ0 > 0
such that the estimates

1

2
λc1‖�ω‖2 + a1

8
‖�ξ1 − �η1‖2 + a2

8
‖�ξ2 − �η2‖2

≤ V3
(
t, �ω, �ξ1, �ξ2

)
≤ 2

(
λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2

)
,

V̇3 ≤ −1

4
λhc4‖�ω‖2 − c9

4h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

hold for t ≥ 0, �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ0

2. 	

Theorem 4 Let

1

T

t+T∫

t

D(s) ds → 0 as T → +∞

uniformly with respect to t ∈ [0,+∞). Then, the equilibrium position (4) of the system (2), (12) is uniformly
asymptotically stable for any h > 0.

Proof Let h be a fixed positive number. Consider the Lyapunov function

V4
(
t, �ω, �ξ1, �ξ2

)
= V

(
�ω, �ξ1, �ξ2

)
+ 1

h

(
a1�ξ1 × �η1

+a2�ξ2 × �η2
)�B−1

t∫

0

eα(s−t)D(s) ds �G(�ξ1 − �η1, �ξ2 − �η2),

where α = const > 0.
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If λ is sufficiently large and δ̄ is sufficiently small, then

1

2
λc1‖�ω‖2 + a1

4
‖�ξ1 − �η1‖2 + a2

4
‖�ξ2 − �η2‖2

− b3
αh

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1 ≤ V4
(
t, �ω, �ξ1, �ξ2

)

≤ 2λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2 + b3
αh

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1
,

V̇4 ≤ −1

3
λhc4‖�ω‖2 − c9

3h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

+ b4
αh

‖�ω‖
(
‖�ξ1 − �η1‖ + ‖�ξ2 − �η2‖

)2ν+1

+αb5
h

∥∥∥∥∥∥

t∫

0

eα(s−t)D(s) ds

∥∥∥∥∥∥
(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1
.

Here, b3, b4, b5 are positive constants.
Similarly to the proof of Theorem 2, choose α > 0 such that

6b5α

∥∥∥∥∥∥

t∫

0

eα(s−t)D(s) ds

∥∥∥∥∥∥
< c9

for t ∈ [0,+∞). Then, for sufficiently small values of δ̄, we obtain

1

2
λc1‖�ω‖2 + a1

8
‖�ξ1 − �η1‖2 + a2

8
‖�ξ2 − �η2‖2

≤ V4
(
t, �ω, �ξ1, �ξ2

)
≤ 2

(
λc2‖�ω‖2 + a1‖�ξ1 − �η1‖2 + a2‖�ξ2 − �η2‖2

)
,

V̇4 ≤ −1

4
λhc4‖�ω‖2 − c9

4h

(
‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2

)ν+1

for t ≥ 0, �ω ∈ R
3, ‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2 < δ̄2. 	


Remark 5 Theorem 3 is a special case of Theorem 4. However, the proof of Theorem 3 permits us to derive a
wider estimate of attraction domain of the equilibrium position than that which can be obtained with the aid
of the proof of Theorem 4.

Remark 6 Compared with Theorems 1 and 2, Theorems 3 and 4 guarantee the asymptotic stability of the
equilibrium position (4) for any h > 0.

6 Computer modeling and discussion

The aim of the present paper is to provide a constructive approach to robustness analysis in the problem of
attitude control for a rigid body subjected to nonstationary disturbing torques with zero mean values. It is
worth noting that the disturbing torques (linear and nonlinear) are not assumed to be small in magnitude. For
this reason, the obtained results seem to be attractive from the practical point of view.

The suggested approach is based on construction of a strict Lyapunov functions for the system governing
the rigid body attitude dynamics. Theorems 1–4 ensure conditions under which perturbations do not disturb
asymptotic stability of the programmed attitude motion.

In this Section, we illustrate Theorems 1–4 bymeans of a numerical simulation with the use ofMaple-2019
tools for the numerical integration of differential equations.

Let the inertial parameters of a rigid body be given as: A1 = 20, A2 = 24, A3 = 16. Here and in what
follows all parameters are taken in International System of Units. The programmed orientation (4) of the body
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Fig. 2 Angles time history, h = 0.1, ν = 0

Fig. 3 Angles time history, h = 0.4, ν = 0

Fig. 4 Angles time history, h = 0.1, ν = 0.5

is such that “aircraft” angles ϕ, θ , ψ in the inertial coordinate system are all equal to zero. The disturbing
torque is taken in the form �L p = D(t) �G(�ξ1 − �η1, �ξ2 − �η2), where

D(t) = diag{sin t + cos(
√
3 t), sin 2t + cos(

√
2 t), sin 3t + cos t},

�G(�ξ1 − �η1, �ξ2 − �η2) =
((

‖�ξ1 − �η1‖2 + ‖�ξ2 − �η2‖2
)

/2
)ν

(�ξ1 − �η1 + �ξ2 − �η2).
Choose the matrix B of dissipative torque in the form B = −diag{1, 1, 1}. Let a1 = 1, a2 = 1, c = 1.
Consider the control process governed by the system (2), (12) for different values of h and ν and the same
initial conditions ϕ(0) = 0.4, θ(0) = 0.4, ψ(0) = −0.4, ω1(0) = ω2(0) = ω3(0) = 0.2.

First, we take h = 0.1 and ν = 0. In this case disturbing and control torques are linear, the dissipative
torque is small, and the process doesn’t converge to the programmed motion as can be seen from Fig. 2.

In accordance with Theorems 1 and 2, there exists a number h0 > 0 such that the programmed motion is
uniformly asymptotically stable for any h ≥ h0. In our case h0 = 0.4 is appropriate as it can be seen from
Fig. 3. where the stabilization process is shown.
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At the same time, Theorems 3 and 4 give us the possibility to reach the goal of a stabilization process
without dissipative torque increasing. This possibility is based on applying the nonlinear restoring torque
(ν > 0). As is shown in Fig. 4. asymptotic stability is achieved at ν = 0.5 even for h = 0.1.

We believe that our approach to the Lyapunov stability analysis in the problem of attitude control for a
rigid body subjected to nonstationary disturbing torques with zero mean values is rather effective, and it can
be exploited for the problem of satellite attitude stabilization with the use of electrodynamic attitude control
system [28,42,43]. As is known, a satellite that moves in the Earth’s gravitational and magnetic fields [44,45]
is subjected to a lot of disturbing torques [18,46–48]. From the mathematical point of view, the majority of
these torques can be modeled by almost periodic functions of time with zero mean values [49]. The magnitudes
of these torques are often close to each other, and, generally speaking, they are not negligibly small [1]. For
this reason, the usage of well-known perturbation methods faces difficulties in such problems, and the methods
based on the application of Lyapunov functions seem to be promising.

Acknowledgements Sections 3 and 5were supported by theMinistry of Science andHigher Education of the Russian Federation
(Project No. 075-15-2021-573).
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