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Abstract The subject of the paper are homogeneous beams of symmetrically variable depth and bisymmetrical
cross sections. Free flexural vibrations of these beams are analytically and numerically studied. Based on
Hamilton’s principle, the differential equations of motion of these beams are obtained. The equations of motion
are analytically solved with consideration of the bending lines of these beams subjected to their own weight.
The fundamental natural frequency for exemplary beams is derived and presented in Tables and Figures.

1 Introduction

The variable depth beams are widely used, especially in building structures and transportation machinery.
The vibration problems of these structures are significant for safety during their operation. Carrera et al. [1]
proposed a new original unified approach to beam theory that includes practically all classical and advanced
models for beams. According to the Carrera unified formulation (CUF), the error can be reduced by increasing
the number of unknown variables. It is suitable for computer implementations and can deal with the most
typical engineering challenges. The objective of the Ganesan and Zabihollah works [2, 3] was to perform an
investigation of the free undamped vibration response of tapered composite beams, using the finite element
method (a higher-order finite element formulation was developed). The finite element method was also used
by Shahba et al. [4] for the structural analysis of axially functionally graded tapered Euler–Bernoulli beams.
A beam element was proposed which takes advantage of the shape functions of homogeneous uniform beam
elements. El-Sayed and El-Mongy [5] applied the modified variational iterationmethod (VIM) to solve the free
vibration problem of a tapered Euler–Bernoulli beammounted on two degrees of freedommass-spring-damper
subsystems. Both conical and wedge beams were investigated. Viglietti et al. [6] presented the free vibration
analysis of tapered aircraft structures made of composite and metallic materials, taking into account global and
local damage. A refined one-dimensional model was used to describe the structure in detail. Multicomponent
aeronautical structures were modeled adopting Lagrange polynomials to evaluate the displacement field over
the cross section. The model was assessed by comparing the results with classical FE models. The authors
provided an accurate solution for the free vibration analyses of complex structures and are able to predict
the consequences of global or local failure of a structural component. Banerjee and Ananthapuvirajah [7]
investigated the free flexural vibration behaviour of a range of tapered beams by making use of the exact
solutions of the governing differential equations and then imposing the necessary boundary conditions. It
has been pointed out that an exact solution for the problem is possible by using Bessel functions rather than
relying on a series solution which is somehow unnecessary and inefficient from a computational point of view.
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In another paper, Magnucki et al. [8] presented a three-point bending of an expanded-tapered beam with a
rectangular cross section. The analytical model of the beam was formulated with consideration of a non-linear
hypothesis of the cross-section deformation. The problem of shear stress distribution in the beamwas analyzed.
Zhou and Cheung [9] studied the vibrational characteristics of tapered beams with continuously varying
rectangular cross sections of depth and breadth. The Euler–Bernoulli theory of bending was used to describe
the motion of the beam. The eigenfrequency equation was obtained by the Rayleigh–Ritz method. Nijgh and
Veljkovic [10] derived analytical prediction models for the elastic behaviour and the first eigenfrequency of
non-prismatic composite beams with non-uniform shear connector arrangements. The approach was based
on 6th and 2nd order differential equations used to define matrix equations for a finite number of linearized
composite beam segments. The analytical models were validated using experimental and numerical results
obtained with a simply supported tapered composite beam.

Demir et al. [11] studied the free vibration behavior of a multilayered symmetric sandwich beam made
of functionally graded materials (FGMs) with variable cross-section resting on variable Winkler elastic foun-
dation. It was assumed that the width of the beam varies exponentially along the length of the beam, and
also the beam is resting on an elastic foundation, whose coefficient is variable along the length of the beam.
Mahi et al. [12] proposed a new hyperbolic shear deformation theory applicable to bending and free vibration
analysis of isotropic, functionally graded, sandwich, and laminated composite plates. The energy functional
of the system was obtained using Hamilton’s principle. Free vibration frequencies were accurately calculated
using a set of boundary characteristic orthogonal polynomials associated with the Ritz method. Numerical
comparisons were also carried out to verify and demonstrate the accuracy and efficiency of their theory. Chen
et al. [13] investigated the free and forced vibration characteristics of functionally graded (FG) porous beams
with non-uniform porosity distribution, whose elastic moduli and mass density are nonlinearly graded along
the thickness direction. The authors derived the equation of motion within the framework of Timoshenko beam
theory and by employing the Lagrange equation method together with Ritz trial functions.

Magnucki et al. [14] presented simply supported beams subjected to non-uniformly distributed loads.
Shapes of bisymmetrical cross sections of the beamswere expressed by special functions. The analytical model
of the beams was formulated with consideration of the shear effect. A nonlinear hypothesis of deformation
of a planar cross section of beams was assumed. The bending moment and the shear transverse force were
formulated. The analytical model was validated using numerical FEM results. Magnucki and Lewinski [15]
presented simply supported beams with symmetrically varying mechanical properties in the depth direction.
Generalized load of the beams included the load types from uniformly distributed to point load (three-point
bending). This load was described analytically by means of a certain function containing a dimensionless
parameter. The individual nonlinear “polynomial” hypothesis was applied to describe the deformation of a
planar cross section. Based on the definitions of the bending moment and the transverse shear force, the
differential equation of equilibrium was obtained, and then analytically solved. In the paper, Magnucki et al.
[16] presented a rectangular plate with symmetrically varying mechanical properties in the thickness direction.
The nonlinear hypothesis of deformation of the straight line normal to the plate neutral surface was assumed.
According to this hypothesis, the plate displacement field was formulated. Based on the Hamilton’s principle,
three differential equations of motion were obtained and then solved analytically. The critical loads and
fundamental natural frequencies for exemplary plates were derived. The analytical model was verified by
the numerical FEM method. Magnucki et al. [17] presented a beam with symmetrically varying mechanical
properties in the depth direction. The proposed formulation of the functions of the properties makes a certain
generalization in the research of functionally gradedmaterials and allows to describe homogeneous, nonlinearly
variable, and sandwich structures with the use of only one consistent analytical model.

Elishakoff [18] described the problem of the cross-correlation effect in random vibrations of discrete
systems, beams, plates, and shells. It is demonstrated that natural frequencies in beams on elastic foundations
as well as cylindrical or spherical shells might cluster together, resulting in a substantial percentage error
if cross-correlations are ignored. In the paper [19], Magnucki considered the problem of free axisymmetric
flexural vibration of a circular plate with a clamped edge supported on an elastic foundation. The mechanical
properties also vary in the depth direction.Uzny et al. [20] presented the boundary problemof columnvibrations
in which the longitudinal inertia of themass element, which loads the slender system, is taken into account. The
column was analyzed as a simply supported structure. Experimental verification of the adopted mathematical
model was also carried out. Good agreement between the numerical and experimental tests was obtained.
Nikkhoo et al. [21] proposed a fast computation of beam-type dynamic response to a force or a mass moving
across. Dynamics of a single-span beamwas computedwith a semi-analytical procedure based on characteristic
orthogonal polynomials. Yuan et al. [22] developed a method to simplify the governing equations for the free
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Fig. 1 Schemes of beams with linearly varying depths—expanded-tapered beams

(a)

(b)

Fig. 2 Schemes of beams with nonlinearly varying depths

vibration of Timoshenko beams with both geometrical non-uniformity and material inhomogeneity along the
beam axis. A series of exact analytical solutions was derived from the reduced equations. In [23], due to many
works on beam vibrations dealing with analytical and numerical techniques, the authors (Guo and Zhang)
presented a procedure of a spreading residue harmonic balance for approximating the periodic behavior of a
tapered beam. Tan et al. [24] presented an exact approach to investigate the flexural free vibrations of multistep
non-uniform beams. The authors used the transfer matrix method, the exact general solutions of one-step beam
and iterative method to determine the natural frequencies and modal shapes of a multistep beam with variable
cross section. The results were verified by the finite element method. Zingoni [25] considered the problem
of the free vibration of plates and developed an efficient group-theoretic formulation for the solution of the
problem by the method of finite differences.

The subject of the studies are two types of simply supported homogeneous beams of symmetrically variable
depth and bisymmetrical cross sections. The first type beams have a linearly variable depth (Fig. 1), while the
second type concerns a nonlinearly variable depth (Fig. 2).

The linearly variable depth of the beam is

h1(ξ) � heh̃1(ξ), (1)
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Fig. 3 Scheme of the shape of the bisymmetrical cross section of the beam ends

with the dimensionless depth

h̃1(ξ) � 1 + 2χξ, (2)

and ξ � x/L dimensionless coordinate (0 ≤ ξ ≤ 1/2), χ � λ tan α—dimensionless coefficient, λ �
L/he—relative length of the beam, L—length of the beam, he—depth of the beam ends.

The nonlinearly variable depth of the beam is

h2(ξ) � heh̃2(ξ), (3)

with dimensionless depth

h̃2(ξ) � 1 + χ sin(πξ), (4)

and: ξ � x/L—dimensionless coordinate (0 ≤ ξ ≤ 1), χ—dimensionless coefficient, L—length of the beam,
he—depth of the beam ends.

Taking into account the papers [14], the shape of the bisymmetrical cross section of these beams is assumed
as shown in Fig. 3.

The width of the cross section symmetrically varies in the depth direction is

b(η) � bb̃(η), (5)

with the dimensionless width

b̃(η) � β0 + (1 − β0)
(
5η2 − 256η10

)kc
, (6)

and η � y/he—dimensionless coordinate (−1/2 ≤ η ≤ 1/2), β0 � b0/b—parameter, kc—exponent (real
number).

The shape of the cross section (Fig. 3) is controlled by values of the parameter β0 and exponent kc. The
area of the bisymmetrical cross section of the beam ends is

Ae � bhe

1
2∫

− 1
2

b̃(η)dη. (7)
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Fig. 4 Scheme of the load of the beam with linearly varying depth under the own weight

The second moment—moment of inertia of the bisymmetrical cross section of the beam ends is

Jze � bh3e

1
2∫

− 1
2

η2b̃(η)dη. (8)

An analytical model presented in this paper involves only the bisymmetrical shape of the beam.

2 Beams with linearly varying depths: analytical studies

The load of the beam with linearly varying depth under its own weight is shown in Fig. 4.
The intensity of the load is

q(ξ) � qeh̃1(ξ), (9)

where qe � g	Ae, g � 9.81m/s2– acceleration of gravity, 	—mass density.
The reactions of the supports are

R � qeL

1
2∫

0

h̃1(ξ)dξ � 1

2

(
1 +

1

2
χ

)
qeL . (10)

The bending moment is

Mb(ξ) � RLξ − qeL
2

ξ∫

0

(ξ − ξ1)h̃1(ξ1)dξ1 (11)

where ξ1—dimensionless coordinate (0 ≤ ξ1 ≤ ξ ).
Consequently, after integration and simple transformation, one obtains

Mb(ξ) � M̃b(ξ)qeL
2, (12)

where the dimensionless bending moment is as follows:

M̃b(ξ) � 1
2

(
ξ − ξ2

)
+

( 1
4ξ − 1

3ξ
3
)
χ. (13)

The differential equation of the beam deflection curve, according to the Euler–Bernoulli beam theory, is
in the following form:

E Jz(ξ)

L2 · d2vdξ2
� −Mb(ξ), (14)

where Jz(ξ) � Jzeh̃31(ξ)—moment of inertia of the bisymmetrical cross section of the beam, v(ξ)—deflection
of the beam.

Substituting the expressions (12) into Eq. (14), one obtains

d2v
dξ2

� − M̃b(ξ)

h̃31(ξ)
· qeL4

E Jze
. (15)
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This equation, after integration, is in the following form:

dv

dξ
�

{

C1 +
4+6χ+3χ2+4χ

[
3(1+χ)2+h̃21(ξ)

]
ξ

96χ3h̃21(ξ)

}
qeL4

E Jze
, (16)

where
C1 � − 4+6χ+3χ2+8χ(1+χ)2

96χ3(1+χ)2
—integration constant resulting from the condition dv/dξ |1/2 � 0. Equa-

tion (16) after integration is as follows:

v(ξ) � ṽ(ξ)
qeL4

E Jze
, (17)

with the dimensionless deflection curve of the beam

ṽ(ξ) � C2 + C1ξ +
2+6χ+3χ2+2

[
2χ2ξ2+3(1+χ)2 ln h̃1(ξ)

]
h̃1(ξ)

192χ4h̃1(ξ)
, (18)

and C2 � − 2+6χ+3χ2

192χ4 —integration constant calculated from the condition v(0) � 0.
The dimensionless deflection curve of the beam with constant depth (χ � 0—the particular case) is as

follows:

lim
χ→0

ṽ(ξ) � 1
24

(
1 − 2ξ2 + ξ3

)
ξ. (19)

Hamilton’s principle reads

δ

t2∫

t1

(Uk −Uε)dt � 0, (20)

where

• The kinetic energy:

Uk � 	AeL

1
2∫

0

h̃1(ξ)

(
∂v

∂t

)2

dξ, (21)

• The elastic strain energy:

Uε � E Jze
L3

1
2∫

0

h̃31(ξ)

(
∂2v

∂ξ2

)2

dξ. (22)

Therefore, based on Hamilton’s principle (20), the differential equation of motion is in the following form:

h̃1(ξ) ∂2v
∂t2

+ h̃1(ξ)
{
24χ2 ∂2v

∂ξ2
+ 12χ h̃1(ξ) ∂3v

∂ξ3
+ h̃21(ξ) ∂4v

∂ξ4

}
E Jze

	AeL4 � 0. (23)

The differential Eq. (23) is approximately solved with the use of the assumed function

v(ξ, t) � ṽ(ξ)va(t), (24)

where ṽ(ξ)—dimensionless deflection curve of the beam (18), va(t)—function of time t.
Substituting this function into Eq. (23) one obtains

h̃1(ξ)ṽ(ξ)
d2va
dt2 + h̃1(ξ)

E Jze
	AeL4 va(t) � 0. (25)

Then, after applying the Galerkin method, this equation is approximately solved,
1
2∫

0


1(ξ)ṽ(ξ)dξ � 0, (26)



Free flexural vibrations of homogeneous beams 4315

Fig. 5 Three example cross sections of the family beams

Table 1 Values of the dimensionless coefficient Cω

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

Cω1 12.675 36.2.6 64.963 97.548 133.351 172.024 213.339

Table 2 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 72.05 121.77 163.11 199.88 233.70 265.43 295.59
ω(An)/2π [Hz] 11.47 19.38 25.96 31.81 37.19 42.24 47.01

where 
1(ξ)—the left part of Eq. (25).
Integrating the expressions (26), with consideration of the function (18) and after simple transformation,

one obtains

d2
va

dt2 + Cω1
E Jze

	AeL4 va(t) � 0, (27)

with the dimensionless coefficient Cω1 � J11/J01, and

J01 �
1
2∫

0

h̃1(ξ)ṽ2(ξ)dξ, J11 �
1
2∫

0

h̃1(ξ)ṽ(ξ)dξ � 0.

Equation (27) is approximately solved with the use of the assumed function

va(t) � va sin(ωt), (28)

where va—amplitude of the flexural vibration, ω—fundamental natural frequency.
After substituting this function into Eq. (27), the fundamental natural frequency is obtained,

ω � 106

L2

√
Cω1

E Jze
	Ae

[rad/s], (29)

where L [mm]—length of the beam, 	 [kg/m3]—mass density, Ae [mm2]—area of the cross section of the
beam ends, Jze [mm4]—moment of inertia of the cross section of the beam ends. Three exemplary cross
sections of the beam family are assumed for the studies (Fig. 5).

The detailed calculations of the exemplary beams with linearly varying depths are carried out for the
following data: length L � 3600mm, width of the beam b � 80mm, depth of the beam ends he � 180mm,
material constants ρ � 7850 kg/m3 and E � 2 · 105 MPa. The results of the calculations are specified in
Tables 1, 2, 3, and 4.
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Table 3 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s] 85.56 144.60 193.69 237.35 277.51 315.19 351.00
ω(An)/2π [Hz] 13.62 23.01 30.83 37.78 44.17 50.16 55.86

Table 4 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 96.34 162.82 218.10 267.26 312.48 354.91 395.24
ω(An)/2π [Hz] 15.33 25.91 34.71 42.54 49.73 56.49 62.90

3 Beams with nonlinearly varying depths: analytical studies

The load of the beam with nonlinearly varying depth under its own weight is similar to that shown in Fig. 4.
The intensity of the load is

q(ξ) � qeh̃2(ξ), (30)

where qe � g	Ae.
The reactions of the supports are

R � qeL

1
2∫

0

h̃2(ξ)dξ � 1

2

(
1 +

2

π
χ

)
qeL . (31)

The bending moment is

Mb(ξ) � RLξ − qeL
2

ξ∫

0

(ξ − ξ1)h̃2(ξ1)dξ1. (32)

Thus, after integration and simple transformation, one obtains

Mb(ξ) � M̃b(ξ)qeL2, (33)

where the dimensionless bending moment is as follows:

M̃b(ξ) � 1
2

(
ξ − ξ2

)
+ 1

π2 χ sin(πξ). (34)

The differential equation of the deflection curve of the beam, according to the Euler–Bernoulli beam theory,
with consideration of the expression (34) is in the following form:

d2v
dξ2

� − M̃b(ξ)

h̃32(ξ)
· qeL4

E Jze
. (35)

Solving this equation in a similarway as for a beamwith linearly varying depth, the dimensionless deflection
curve of the beam is obtained in the following form:

ṽ(ξ) � C1ξ −
¨

M̃b(ξ)

h̃32(ξ)
dξ2, (36)

where C1 � ∫1/20
M̃b(ξ)

h̃3(ξ)
dξ—integration constant calculated from the condition dv/dξ |1/2 � 0.

Based on Hamilton’s principle (20), the differential equation of motion is in the following form:

h̃2(ξ) ∂2v
∂t2

+ h̃2(ξ)
{
f2(ξ) ∂2v

∂ξ2
+ 6πχ cos(πξ)h̃2(ξ) ∂3v

∂ξ3
+ h̃22(ξ) ∂4v

∂ξ4

}
E Jze

ρAeL4 � 0, (37)
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Table 5 Values of the coefficient Cω2

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

Cω2 8.370 29.464 59.677 97.548 142.259 193.264 250.170

Table 6 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 58.55 109.85 156.34 199.88 241.38 281.34 320.09
ω(An)/2π [Hz] 9.32 17.48 24.88 31.81 38.42 44.78 50.94

Table 7 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 69.52 130.44 185.64 237.35 286.63 334.08 380.10
ω(An)/2π [Hz] 11.06 20.76 29.55 37.78 45.62 53.17 60.49

where f2(ξ) � 3π2χ
[
2χ cos2(πξ) − sin(πξ)h̃2(ξ)

]
.

The differential Eq. (37) is approximately solved with the use of the assumed function

v(ξ, t) � ṽ(ξ)va(t), (38)

where ṽ(ξ)—dimensionless deflection curve of the beam (36), va(t)—function of time t.
Substituting this function into Eq. (37) one obtains

h̃2(ξ)ṽ(ξ)
d2

va
dt2 + h̃2(ξ)

E Jze
	AeL4 va(t) � 0, (39)

This equation is approximately solved with the use of the Galerkin method,

1∫

0


2(ξ)ṽ(ξ)dξ � 0, (40)

where 
2(ξ)—the left part of Eq. (39).
Integrating the expressions (40), with consideration of the function (36) and after simple transformation,

one obtains

d2
va

dt2 + Cω2
E Jze

ρAeL4 va(t) � 0, (41)

with dimensionless coefficient Cω2 � J12/J02, and

J02 �
1/2∫

0

h̃2(ξ)ṽ2(ξ)dξ, J12 �
1/2∫

0

h̃2(ξ)ṽ(ξ)dξ.

Equation (41) is approximately solved with the use of the function (28), and the fundamental natural frequency
is obtained as

ω � 106

L2

√
Cω2

E Jze
ρAe

.[rad/s]. (42)

The detailed calculations of the exemplary beams with nonlinearly varying depths are carried out for the
same date as for beams with linearly varying depths. The results of the calculations are specified in Tables 5,
6, 7, and 8.
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Table 8 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 78.28 146.88 209.04 267.26 322.75 376.18 428.00
ω(An)/2π [Hz] 12.46 23.38 33.27 42.54 51.37 59.87 68.12

Fig. 6 Exemplary FEM model of the beam with linearly varying depth for numerical studies

Table 9 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 11.44 19.32 25.86 31.65 36.95 41.90 46.56

Table 10 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 13.45 22.84 30.56 37.40 43.59 49.39 54.79

Table 11 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 15.14 25.97 34.74 42.35 49.34 55.87 62.09

4 Beams with linearly varying depths: numerical FEM studies

The FEMmodel of the beam with linearly varying depth is developed with the use of the Abaqus 6.12. Taking
into account the symmetry of the beam, the model relates to a quarter of the beam (Fig. 6).

The FEM calculations are performed for the data adopted above for analytical studies. The results of the
calculations are specified in Tables 9, 10, and 11.

The analytical (Tables 2, 3, 4) and numerical (Tables 9, 10, 11) results are graphically compared in Fig. 7.
Comparison of the results indicates very good convergence of both series of the results. The differences do not
exceed 1.95%.



Free flexural vibrations of homogeneous beams 4319

Fig. 7 Comparison of the values of the fundamental natural frequency of the beams with linearly varying depths calculated
analytically (AN) and numerically (FE)

Fig. 8 Exemplary FEM model of the beam with linearly varying depth for numerical studies

Table 12 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 9.30 17.44 24.79 31.65 38.15 44.37 50.34

Table 13 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 11.00 20.64 29.24 37.40 44.99 52.24 59.16

Table 14 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(FEM) [rad/s ] 12.28 23.37 33.27 42.35 50.94 59.14 67.00
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Fig. 9 Comparison of the values of the fundamental natural frequency of the beams with nonlinearly varying depths calculated
analytically (AN) and numerically (FE)

5 Beams with nonlinearly varying depths: numerical FEM studies

The FEMmodel of the beam with linearly varying depth is developed with the use of the Abaqus 6.12. Taking
into account the symmetry of the beam, the model refers to a quarter of the beam (Fig. 8).

The FEM calculations are carried out for the data adopted above for analytical studies. The results of the
calculations are specified in Tables 12, 13, and 14.

The analytical (Tables 6, 7, 8) and numerical (Tables 12, 13, 14) results are graphically compared in Fig. 9.
Comparison of the results indicates very good convergence of both series of the results. The differences do not
exceed 2.25%.

6 Analytical study based on a simplified model of the beams

The simplified model of the studied beams is formulated taking into account the constant average value of
their depth. Therefore,

• The average area of the bisymmetrical cross section of the beams is

Aav � bhav Ã, (43)

where: hav—average depth, Ã � ∫ 1/2
−1/2 b̃(η)dη—dimensionless area.

The intensity of the load (9), in this case, is constant,

q0 � gρAav. (44)

Thus, the bending moment (12) is as follows:

Mb(ξ) � 1
2

(
ξ − ξ2

)
q0L2, (45)

and the deflection curve of the beams (17) is in the following form:

v(ξ) � ṽ(ξ)
5q0L4

384E Jz,av
, (46)

with the dimensionless deflection curve

ṽ(ξ) � 16
5

(
ξ − 2ξ3 + ξ4

)
. (47)
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The function sin(πξ) is equivalent to this function (47); therefore, for further studies it is assumed that

ṽ(ξ) � sin(πξ). (48)

The elastic strain energy (22) is as follows:

Uε � E Jz,av

L3

1
2∫

0

(
∂2v

∂ξ2

)2

dξ. (49)

and the kinetic energy (21) is in the following form:

Uk � 	AavL

1
2∫

0

(
∂v

∂t

)2

dξ. (50)

Based on Hamilton’s principle (20), the differential equation of motion is as follows:
∂2v
∂t2

+ E Jz,av

	AavL4
∂4v
∂ξ4

� 0. (51)

Equation (51) is approximately solved with the use of the assumed function

v(ξ, t) � va(t) sin(πξ), (52)

where va(t)—function of time.
Substituting this function into Eq. (51) one obtains

d2va
dt2

+ π4 E Jz,av

	AavL4 va(t) � 0. (53)

Equation (53) is approximately solved with the use of the assumed function

va(t) � va sin(ωt), (54)

where va—amplitude of the flexural vibration, ω—fundamental natural frequency.
After substituting this function intoEq. (53) one obtains the fundamental natural frequency for the simplified

model of the beam as

ω(S) � π2106

L2

√
E Jz,av

ρAav
.[rad/s]. (55)

The average dimensionless depth of the beams with linearly varying depths (2) is as follows:

h̃1,av �
1
2∫

0

h̃1(ξ)dξ � 1 +
1

2
χ. (56)

The results of the detailed calculations of the fundamental natural frequency (55) for the exemplary beams
with consideration of the average depth (56) are specified in Tables 15, 16, and 17 and presented in Fig. 10.
The average dimensionless depth of the beams with nonlinearly varying depths (4) is as follows:

h̃2,av �
1
2∫

0

h̃2(ξ)dξ � 1 +
2

π
χ. (57)

The results of the detailed calculations of the fundamental natural frequency (55) for the exemplary beams
with consideration of the average depth (57) are specified in Tables 18, 19, and 20 and presented in Fig. 11.

The relative difference between the calculated fundamental natural frequencyvalues for exact and simplified
models of the beams is as follows:

� � ω(S)−ω(An)

ω(An) .[%]. (58)

The values of the relative differences (58) for the beams with linearly varying depths are specified in
Table 21. The values of the relative differences (58) for the beams with nonlinearly varying are specified in
Table 22.
A significant relative difference is noticeable for the beams with a negative dimensionless coefficient χ (the
concave beams), whereas for the beams with a positive dimensionless coefficient χ (the convex beams) the
relative difference is insignificant from a practical point of view.



4322 K. Magnucki et al.

Table 15 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(s) [rad/s ] 124.84 149.80 174.77 199.88 224.70 249.67 274.64
ω(s)/2π [Hz] 19.87 23.84 27.82 31.81 35.76 39.74 43.71

Table 16 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 148.24 177.88 207.53 237.35 266.83 296.47 326.12
ω(An)/2π [Hz] 23.59 28.31 33.03 37.78 42.47 47.19 51.90

Table 17 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 166.92 200.30 233.68 267.26 300.45 333.45 367.22
ω(An)/2π [Hz] 26.57 31.88 37.19 42.54 47.82 53.13 58.44

Fig. 10 Comparison of the values of the fundamental natural frequency of the beams with linearly varying depths calculated
accurately (AN) and approximately (AVG)

Table 18 Values of the fundamental natural frequency of the beam CS-1 (β0 � 1, kc � 1)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 104.37 136.16 167.95 199.88 231.53 263.31 295.10
ω(An)/2π [Hz] 16.61 21.67 26.73 31.81 26.85 41.91 46.97

Table 19 Values of the fundamental natural frequency of the beam CS-2 (β0 � 0.3, kc � 2)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 123.93 161.68 199.43 237.35 274.93 312.68 350.42
ω(An)/2π [Hz] 19.72 25.73 31.74 37.78 43.76 49.76 55.77
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Table 20 Values of the fundamental natural frequency of the beam CS-3 (β0 � 0.1, kc � 9)

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

ω(An) [rad/s ] 139.55 182.06 224.56 267.26 309.57 352.08 394.58
ω(An)/2π [Hz] 22.21 28.98 35.74 42.54 49.27 56.04 62.80

Fig. 11 Comparison of the values of the fundamental natural frequency of the beams with nonlinearly varying depths calculated
accurately (AN) and approximately (AVG)

Table 21 Values of the relative differences (58) for the beams with linearly varying depths

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

� [%] 73.3 23.0 7.1 0 − 3.9 − 5.9 − 7.1

Table 22 Values of the relative differences (58) for the beams with nonlinearly varying depths

χ − 0.75 − 0.50 − 0.25 0 0.25 0.50 0.75

� [%] 78.3 24.0 7.4 0 − 4.1 − 6.4 − 7.8

7 Conclusions

In this paper, the two types of simply supported homogeneous beams with symmetrically variable depth and
bisymmetrical cross sections were considered. The mathematical model of analyzed beams was proposed,
and the formulas for the natural frequencies were derived. The results obtained in the analytical study were
compared with finite element ones fromAbaqus. The difference between results from analytical and numerical
(FEM) approach is slightly below 2% in the case of beams with linearly varying depths and slightly above 2%
in the case of beams with nonlinearly varying depths. It is shown that in engineering practice it is acceptable
using a constant average depth (approximate solution) only for the convex beams.
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